椭圆及其标准方程精讲精练
- 格式:doc
- 大小:258.39 KB
- 文档页数:4
椭圆及其标准方程【学习目标】 1. 知识与技能目标:掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导. 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力.3. 情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神.【要点梳理】 要点一:椭圆的定义平面内到两个定点1F 、2F 的距离之和等于常数(大于12F F )的点的集合叫椭圆.这两个定点1F 、2F 叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距.要点诠释:(1)1F 、2F 是椭圆上不同的两个顶点;(2)若P 是椭圆上任意一点,则12PF PF +=常数; (3)当 常数12F F > 时,轨迹为椭圆; 当 常数=12F F ,则轨迹为线段12F F ; 当 常数12F F <,则轨迹不存在. 要点二:椭圆的标准方程 1. 椭圆的标准方程要点诠释:1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2. 在椭圆的两种标准方程中,都有0a b >>和222c a b =-;3. 椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -;4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 2. 标准方程的推导:由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤:建系、设点、列式、化简.以焦点在x 轴上的方程22221x y a b+=(0)a b >>为例.(1)建系建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两个定点1F ,2F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系(如图).(2)设点设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).(2)列式由于点(,)M x y 为椭圆上任意一点,则由定义不难得出椭圆集合为: {}122P M MF MF a =+= (称此式为几何条件)即2a (实现集合条件代数化) ① (4)化简为化简①这个方程,将等号左边的一个根式移到右边,得2a =将这个方程两边平方,得()222 44x c y a ++=-22()x c y +-+,整理得2a cx -=上式两边再平方,得4222222222222a a cx c x a x a cx a c a y -+=-++,整理得22222222()()a c x a y a a c -+=- ②方程②结构较复杂,不便记忆,继续化简. 由椭圆的定义可知22a c >,即a c >,所以220a c ->, 将方程②两边同除以222()a a c -,得222221x y a a c +=-. 令222a c b -=,那么所得的椭圆方程可化为:22221x y a b +=,(0)a b >>.因此,方程22221(0)x y a b a b+=>>即为焦点在x 轴上的椭圆的标准方程.要点三:求椭圆的标准方程求椭圆的标准方程主要用到以下两种方法: (1)待定系数法:①若能够根据题目中条件确定焦点位置,可先设出标准方程,再由题设确定方程中的参数a ,b ,即:“先定型,再定量”.②由题目中条件不能确定焦点位置,一般需分类讨论;有时也可设其方程的一般式:221(,0)mx ny m n m n +=>≠且.(2)定义法:先分析题设条件,判断出动点的轨迹,然后根据椭圆的定义确定方程,即“先定型,再定量”.利用该方法求标准方程时,要注意是否需先建立平面直角坐标系再解题.【典型例题】 类型一:椭圆的定义例1. 若一个动点P (x ,y )到两个定点A (-1,0)、A '(1,0)的距离的和为定值m (m >0),试求P 点的轨迹方程.【解析】∵|PA|+|PA '|=m ,|AA '|=2,|PA|+|PA '|≥|AA '|, (1)当0<m<2时,P 点的轨迹不存在; (2)当m=2时,P 点的轨迹就是线段AA ' ∴其方程为y=0(-1≤x≤1);(3)当m >2时,由椭圆的定义知,点P 的轨迹是以A 、A '为焦点的椭圆 ∵2c=2,2a=m ,∴2m a =,1c =,222214m b a c =-=-∴点P 的轨迹方程为22221144x y m m-=-.【总结升华】平面内一动点到两定点的距离和等于常数时,动点的轨迹不一定是椭圆..当动点到两点的距离和小于两定点之间的距离时,动点的轨迹不存在;当动点到两点的距离和等于两定点之间的距离时,动点的轨迹是线段;当动点到两定点的距离和(常数)大于两定点之间的距离时,动点的轨迹是椭圆.举一反三:【变式1】已知圆22:(2)36A x y ++=,圆A 内一定点()20B ,,圆P 过B 点且与圆A 内切,求圆心P 的轨迹方程.【答案】设圆P 的半径为r ,则|PB|=r , ∵圆P 与圆A 内切,圆A 的半径为6,∴两圆的圆心距|PA|=6-r ,即|PA|+|PB|=6(大于|AB|). ∴点P 的轨迹是以A 、B 两点为焦点的椭圆. ∴2a=6,2c=|AB|=4.∴a=3,c=2,b 2=a 2-c 2=32-22=5.∴点P 的轨迹方程为22195x y +=【高清课堂:椭圆的方程356766 例2】【变式2】设动圆P 与圆22:(3)4M x y -+=外切,与22:(3)100N x y ++=内切,求动圆圆心P 的轨迹方程.【答案】2213627x y +=类型二:椭圆的标准方程例2. 椭圆22110036x y +=的焦距是 ,焦点坐标是 ;若AB 为过椭圆的一个焦点F 1的一条弦,F 2为另一个焦点,则2ABF ∆的周长是 .【答案】1216(8,0),(8,0)40F F -【解析】由椭圆方程知22100,36a b ==∴22264c a b =-=, ∴8,216c c ==.∴两焦点为12(8,0),(8,0)F F - 又因为三角形的周长为为22||||||AB AF BF ++=22440a a a +==【总结升华】有椭圆的标准方程可以读出有关信息,如a ,b 的值和焦点的位置,进而可以解决有关问题,因此我们应该准确把握椭圆的标准方程,并从中读出有关信息.举一反三:【变式1】椭圆221x y m n+=--(m <n <0)的焦点坐标是________.【答案】,(【变式2】方程2212516x y m m+=-+表示焦点在y 轴上的椭圆,则m 的取值范围是________.【答案】92<m <25【解析】因为焦点在y 轴上,所以16+m >25-m ,即m >92,又因为b 2=25-m >0,故m <25,所以m 的取值范围为9252m <<.【变式3】已知椭圆的标准方程是222125x y a +=(a >5),它的两焦点分别是F 1,F 2,且|F 1F 2|=8,弦AB 过点F 1,则△ABF 2的周长为________.【答案】【解析】因为F 1F 2=8,即即所以2c =8,即c =4,所以a 2=25+16=41,即a =,所以△ABF 2的周长为4a =例3. 当39k <<时,指出方程22193x y k k +=--所表示的曲线.【解析】∵39k <<∴90-3>0k k ->且(1) 若9-k>k-3,即36k <<时,则方程表示焦点在x 轴上的椭圆; (2) 若9-k=k-3,即k=6时,方程表示圆221x y +=;(3) 若9-k<k-3, 即69k <<时,则方程表示焦点在y 轴上的椭圆.【总结升华】一方面确定椭圆标准方程需要知道定形条和定位条件,反过来,给出了椭圆的标准方程后,也可以从中读出相关信息.举一反三:【变式】如果方程222(0)x ky k+=>表示焦点在y轴上的椭圆,则k的取值范围是.【答案】01k<<类型三:求椭圆标准方程【高清课堂:椭圆的方程356766 例1】例4.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和是10;(2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点35(,)22-.【解析】(1)∵椭圆的焦点在x轴上,∴设它的标准方程为22221(0)x ya ba b+=>>.∵2a=10,2c=8,∴a=5,c=4 ∴b2=a2-c2=52-42=9∴所求椭圆的标准方程为221 259x y+=;(2)∵椭圆的焦点在y轴上,∴设它的标准方程为22221(0) y xa ba b+=>>由椭圆的定义知,2a==,∴a=又c=2,∴b2=a2-c2=10-4=6∴所求椭圆的标准方程为221 106y x+=【总结升华】求椭圆的标准方程就是求a2及b2(a>b>0),并且判断焦点所在的坐标轴.当焦点在x轴上时,椭圆的标准方程为22221x ya b+=;当焦点在y轴上时,椭圆的标准方程为22221y xa b+=.举一反三:【变式1】已知椭圆的焦点是F1(0,-1)、F2(0,1),P是椭圆上一点,并且|PF1|+|PF2|=2|F1F2|,则椭圆的标准方程是________.【答案】221 43y x+=【变式2】已知一椭圆的对称轴为坐标轴且与椭圆22194x y+=有相同的焦点,并且经过点(3,-2),求此椭圆的方程.【答案】221 1510x y+=.例5.求经过点P(-3,0),Q(0,2)的椭圆的标准方程.【解析】设椭圆的标准方程为mx2+ny2=1(m>0,n>0,m≠n).∵椭圆经过点P(-3,0)和Q(0,2),∴91,4 1.mn=⎧⎨=⎩∴1,91.4mn⎧=⎪⎪⎨⎪=⎪⎩∴所求椭圆方程为221 94x y+=.【总结升华】在求椭圆的标准方程时必须先判断焦点的位置,然后再设出方程.在无法判断焦点的位置时可设mx2+ny2=1(m>0,n>0,m≠n),而不规定m与n的大小关系,从而避免讨论焦点的位置.举一反三:【变式1】过点(-3,2)且与椭圆22194x y+=有相同焦点的椭圆的标准方程是________.【答案】221 1510x y+=【变式2】已知椭圆的中心在原点,经过点P(3,0)且a=3b,求椭圆的标准方程.【答案】2219xy+=或221819y x+=.类型四:椭圆的综合问题例6.设F1、F2是椭圆22194x y+=的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于________.【答案】4【解析】由椭圆方程,得a=3,b=2,c=PF1+PF2=2a=6.又PF1∶PF2=2∶1,∴PF1=4,PF2=2,由22+42=2可知△PF 1F 2是直角三角形, 故△PF 1F 2的面积为12PF 1·PF 2=12×2×4=4.【总结升华】解决椭圆焦点三角形有关问题的关键在于充分利用椭圆的定义以及余弦定理、正弦定理.举一反三:【变式1】已知P 为椭圆221169x y +=上的一点,12,F F 是两个焦点,1260O F PF ∠=,求12F PF ∆的面积.【答案】【变式2】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么椭圆C 的方程为______.【答案】221168x y += 类型五:坐标法的应用例7.△ABC 的两个顶点坐标分别是B (0,6)和C (0,-6),另两边AB 、AC 的斜率的乘积是49-,求顶点A 的轨迹方程.【解析】设顶点A 的坐标为(x ,y ) 由题意得664(0)9y y x x x -+⋅=-≠, ∴顶点A 的轨迹方程为221(0)8136x y x +=≠.【总结升华】求出曲线方程后,要注意检查一下方程的曲线上的点是否都符合题意,如有不符合题意的点,应在所得方程后注明限制条件.举一反三:【变式1】已知A 、B 两点的坐标分别为(0,-5)和(0,5),直线MA 与MB 的斜率之积为49-,则M 的轨迹方程是( )A .221100259x y += B .221(5)100259x y x +=≠±C .221225254x y += D .221(0)225254x y x +=≠ 【答案】D【变式2】△ABC 两顶点的坐标分别是B (6,0)和C (-6,0),另两边AB 、AC 的斜率的积是49-,则顶点A 的轨迹方程是( )A .221(6)8136x y y +=≠±B .221(6)8116y x y +=≠±C .221(6)1636x y x +=≠±D .221(6)3616x y x +=≠±【答案】D【高清课堂:椭圆的方程356766 例3】【变式3】如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,求线段PP ′中点M 的轨迹.【答案】设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y则00,2y x x y ==因为00(,)P x y 在圆224x y +=上,所以22004x y += 将00,2x x y y ==代入上方程得2244x y +=即2214x y +=所以点M 的轨迹是一个椭圆【巩固练习】 一、选择题1.满足条件13,5a c ==的椭圆的标准方程为( )A .221169144x y +=B .221169144y x +=C .222211169144169144x y y x +=+=或 D .不确定2.如果方程22216x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围是( ) A .3a > B .2a <-C . 3a >或2a <-D .3a >或62a -<<-3.直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的取值范围是( ) A .1m > B .1m ≥或01m <<C . 1m ≥且5m ≠D .05m <<且1m ≠4.设P 是椭圆2212516x y +=上的点,若12,F F 是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5C .8D .105.0m n >>是方程221mx ny +=表示焦点在y 轴上的椭圆的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. .若椭圆的2221kx ky +=的一个焦点为(0,-4),则k 的值为( )A. 132 B .18C .8D .32 二、填空题7.过点(-3,2)且与椭圆22194x y +=有相同焦点的椭圆的标准方程是________. 8.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为________.9.已知椭圆221169x y +=的左、右焦点分别为F 1、F 2,P 是椭圆上的一点,Q 是|PF 1|的中点,若|OQ|=1,则|PF 1|=________.10.设F 1、F 2是椭圆22194x y +=的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于________.11.椭圆221x y m n+=--(m <n <0)的焦点坐标是________. 三、解答题12.ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.13.已知圆C :(x -3)2+y 2=100及点A (-3,0),P 是圆C 上任意一点,线段P A 的垂直平分线l 与PC 相交于点Q ,求点Q 的轨迹方程.14. 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.15.已知F 1、F 2是椭圆22110064x y +=的两个焦点,P 是椭圆上任意一点. (1)若∠F 1PF 2=3π,求△F 1PF 2的面积; (2)求12||||PF PF ⋅的最大值.【答案与解析】1.【答案】C【解析】∵13,5,a c == ∴2222169,144,a b a c ==-=∴当焦点在x 轴上时,椭圆的标准方程为221169144x y +=; 当焦点在y 轴上时,椭圆的标准方程为221169144y x +=,故选C . 2.【答案】D【解析】焦点在x 轴上,则标准方程中2x 项的分母应大于2y 项的分母,即26,a a >+解得选D .3.【答案】C【解析】直线过定点(0,1),只需该点落在椭圆内或椭圆上.4.【答案】D【解析】由椭圆定义知12||||210PF PF a +==,所以选D5.【答案】C【解析】将方程221mx ny +=转化为22111x y m n +=,根据椭圆的定义,要使焦点在y轴上,必须满足101011m nm n ⎧>⎪⎪⎪>⎨⎪⎪<⎪⎩解得0m n >>;故选C6.【答案】A ; 【解析】方程变形为221(0)112y x k k k+=>,∴11116,232k k k -== 7.【答案】2211510x y += 【解析】因为c 2=9-4=5,所以设所求椭圆的标准方程为222215x y a a +=-. 由点(-3,2)在椭圆上知229415a a +=-,所以a 2=15.所以所求椭圆的标准方程为2211510x y +=. 8.【答案】()2210259x y y +=≠ 【解析】顶点C 到两个定点A ,B 的距离之和为定值10,且大于两定点间的距离,因此顶点C 的轨迹为椭圆,并且2a =10,所以a =5,2c =8,所以c =4,所以b 2=a 2-c 2=9,故顶点C 的轨迹方程为221259x y +=.又A 、B 、C 三点构成三角形,所以y ≠0.所以顶点C 的轨迹方程为()2210259x y y +=≠.9.【答案】6【解析】如图所示,连结PF 2,由于Q 是PF 1的中点,所以OQ 是△PF 1F 2的中位线,所以PF 2=2OQ =2,根据椭圆的定义知,PF 1+PF 2=2a =8,所以PF 1=6.10.【答案】4【解析】由椭圆方程,得a =3,b =2,c =5, ∴PF 1+PF 2=2a =6.又PF 1∶PF 2=2∶1,∴PF 1=4,PF 2=2,由22+42=(25)2可知△PF 1F 2是直角三角形,故△PF 1F 2的面积为12PF 1·PF 2=12×2×4=4.11.【答案】(n m -,0),(-n m -,0)【解析】因为m <n <0,所以-m >-n >0,故焦点在x 轴上,所以c =()m n ---=n m -, 故焦点坐标为(n m -,0),(-n m -,0).12.【解析】(1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).13.【解析】∵l 是线段P A 的垂直平分线,∴AQ =PQ .∴AQ +CQ =PQ +CQ =CP =10,且10>6.∴点Q 的轨迹是以A 、C 为焦点的椭圆,且2a =10,c =3,即a =5,b =4.∴点Q 的轨迹方程为2212516x y +=. 14.【解析】设两焦点为1F 、2F ,且3541=PF ,3522=PF . 从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos 21=⋅=πPF c ,从而310222=-=c a b . ∴所求椭圆方程为1103522=+y x 或1510322=+y x . 15. 【解析】。
椭圆讲解+性质+习题 (一)定义部分(重点掌握)一.椭圆基本定义(必须掌握)1.定义:①平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|,即21212F F a PF PF >=+),这个动点的轨迹叫椭圆(这两个定点叫焦点).②点M 与一个定点的距离和它到一条定直线的距离的比是常数e (0<e<1),则P 点的轨迹是椭圆2.椭圆参数的几何意义,如下图所示:(1)|PF 1|+|PF 2|=2a ,|PM 2|+|PM 1|=c a 22,||||11PM PF =||||22PM PF =e ;(2)=11F A c a F A -=22,=21F A c a F A +=12;c a PF c a +≤≤-1 (3)|BF 2|=|BF 1|=a ,|OF 1|=|OF 2|=c ;(4)|F 1K 1|=|F 2K 2|=p =cb 2,21A B A B ==3.标准方程:椭圆标准方程的两种形式12222=+b y a x 和12222=+bx a y )0(>>b a 其中222b a c -=椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a c e =a b 22焦准距(焦点到准线的距离)c b p 2=,焦参数2b a(通径长的一半)范围:}{a x a x ≤≤-,}{b y b x ≤≤-,长轴长=a 2,短轴长=2b ,焦距=2c ,焦半径:21()a PF e x a ex c =+=+,22()a PF e x a ex c=-=-.4.21F PF ∆中经常利用余.弦定理...、三角形面积公式.......12212tan2PF F F PF S b ∆∠=将有关线段1PF 、2PF 、2c ,有关角21PF F ∠(1212F PF F BF ∠≤∠)结合起来,建立1PF +2PF 、1PF ∙2PF 等关系.二. 第二定义(拓展掌握,有些题目用第二定义做会有事半功倍的效果):平面内与一个定点的距离和它到一条定直线的距离之比是常数e ca e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为椭圆的准线,常数e 是椭圆的离心率。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业九椭圆及其标准方程一、选择题(每小题5分,共25分)1.(2016·青岛高二检测)已知椭圆+=1上一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为( )A.2B.3C.5D.7【解析】选D.设该椭圆的两个焦点分别为F1,F2,利用椭圆的定义可知|PF1|+|PF2|=10.不妨令|PF1|=3,则|PF2|=7.2.(2016·日照高二检测)已知椭圆+=1上的点M到该椭圆一个焦点F的距离为2,N是MF的中点,O为坐标原点,那么线段ON的长是( )A.2B.4C.8D.【解析】选B.设椭圆的另一个焦点为E,如图,则|MF|+|ME|=10,所以|ME|=8.又ON为△MEF的中位线,所以|ON|=|ME|=4.3.椭圆+=1的焦距是2,则m的值是( )A.5B.3或8C.3或5D.20【解析】选C.由题意得2c=2,c=1,故有m-4=1或4-m=1,所以m=5或m=3.4.(2016·淄博高二检测)若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上点的最短距离为,则这个椭圆的方程为( )A.+=1B.+=1C.+=1或+=1D.以上都不对【解析】选C.设短轴的一个端点为P,焦点分别为F1,F2,因为△PF1F2为正三角形,所以|OP|=|F1F2|,可得b=c,即= c.①又因为椭圆的焦点到椭圆上点的最短距离为,所以a-c=,②联立①②,可得a=2,c=,b==3.因此a2=12且b2=9,可得椭圆的标准方程为+=1或+=1.5.已知椭圆+y2=1的焦点为F1,F2,点M在该椭圆上,且·=0,则点M到x轴的距离为( )A. B. C. D.【解题指南】由·=0知△MF1F2为直角三角形,可根据面积求M到x轴的距离. 【解析】选C.由·=0,得MF1⊥MF2,可设|=m,|=n,在△F1MF2中,由m2+n2=4c2得(m+n)2-2mn=4c2,根据椭圆的定义有m+n=2a,所以2mn=4a2-4c2,故mn=2b2,即mn=2, 所以=·mn=1,设点M到x轴的距离为h,则×|F1F2|×h=1,又|F1F2|=2,故h=.二、填空题 (每小题5分,共15分)6.已知椭圆中心在坐标原点,焦点在x轴上,椭圆与x轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为.【解析】由题意可得所以故b2=a2-c2=3,所以椭圆方程为+=1.答案:+=17.设P是椭圆+=1上的点,F1,F2分别为椭圆的左、右焦点,则|PF1|·|PF2|的最大值是.【解析】由题意知:|PF1|+|PF2|=2a=8,所以|PF1|·|PF2|≤==16,当且仅当|PF1|=|PF2|时取“=”,故|PF1|·|PF2|的最大值是16.答案:168.如图所示,F1,F2分别为椭圆+=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2= .【解析】由题意=c2=,所以c=2,所以a2=b2+4.由题意得点P坐标为(1,),把x=1,y=代入椭圆方程+=1中得+=1,解得b2=2.答案:2三、解答题(每小题10分,共20分)9.已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.【解析】当焦点在x轴上时,设其方程为+=1(a>b>0).由椭圆过点P(3,0),知+=1,又a=3b,解得b2=1,a2=9,故椭圆的方程为+y2=1.当焦点在y轴上时,设其方程为+=1(a>b>0).由椭圆过点P(3,0),知+=1,又a=3b,联立解得a2=81,b2=9,故椭圆的方程为+=1.故椭圆的标准方程为+=1或+y2=1.10.(2016·郑州高二检测)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.当P在圆上运动时,求点M的轨迹C的方程.【解题指南】设M(x,y),由等式|MD|=|PD|坐标化,即得轨迹方程.【解析】设点M的坐标是(x,y),P的坐标是(x P,y P),因为点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,所以x P=x,且y P=y.因为P在圆x2+y2=25上,所以x2+=25,整理得+=1,即点M的轨迹C的方程是+=1.一、选择题(每小题5分,共10分)1.(2016·郑州高二检测)已知方程+=1表示焦点在y轴上的椭圆,则m的取值范围是( )A.m<2B.1<m<2C.m<-1或1<m<2D.m<-1或1<m<【解析】选D.由题意得即所以1<m<或m<-1.2.(2016·临沂高二检测)设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点P(a,b)满足|F1F2|=|PF2|,设直线PF2与椭圆交于M,N两点,若|MN|=16,则椭圆的方程为( )A.+=1B.+=1C.+=1D.+=1【解析】选 B.因为点P(a,b)满足|F1F2|=|PF2|,所以=2c,整理得2+-1=0,所以=.所以a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线PF2的方程为y=(x-c),代入椭圆方程,消去y并整理,得5x2-8cx=0,解得x=0或c,得M(0,-c),N,所以|MN|=c=16,所以c=5,所以椭圆方程为+=1.二、填空题(每小题5分,共10分)3.(2016·温州高二检测)已知椭圆+=1的两个焦点是F1,F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是.【解析】由已知得|F1F2|=2c=2,|PF1|+|PF2|=4,又|PF1|-|PF2|=2,所以得|PF1|=3,|PF2|=1,因此|PF2|2+|F1F2|2=|PF1|2,所以△PF1F2是直角三角形,所以=·|F1F2|·|PF2|=.答案:4.(2016·唐山高二检测)已知椭圆C:+y2=1的焦点F(1,0),直线l:x=2,点A∈l,线段AF 交C于点B,若=3,则||=【解题指南】设出A点的坐标,利用=3求出A点坐标,即可求出||的大小.【解析】设A(2,y0),B(x1,y1),=(1,y0),=(x1-1,y1),由=3,得(1,y0)=3(x1-1,y1),所以又点B在椭圆C上,所以+=1,解得y0=±1,所以A点坐标为(2,±1),所以||==.答案:三、解答题(每小题10分,共20分)5.(2016·烟台高二检测)已知椭圆+=1(a>b>0)的焦点分别为F1(0,-1),F2(0,1),且3a2=4b2.(1)求椭圆的方程.(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.【解析】(1)由题意得椭圆焦点在y轴上,且c=1.又因为3a2=4b2,所以a2-b2=a2=c2=1,所以a2=4,b2=3,所以椭圆标准方程为+=1.(2)如图所示,|PF1|-|PF2|=1.又由椭圆定义知,|PF1|+|PF2|=4,所以|PF1|=,|PF2|=,|F1F2|=2,cos∠F1PF2==.6.(2016·连云港高二检测)设F1,F2分别是椭圆+y2=1的左、右焦点,B为椭圆上的点且坐标为(0,-1).(1)若P是该椭圆上的一个动点,求|PF1|·|PF2|的最大值.(2)若C为椭圆上异于B的一点,且=λ,求λ的值.(3)设P是该椭圆上的一个动点,求△PBF1的周长的最大值.【解析】(1)因为椭圆的方程为+y2=1,所以a=2,b=1,c=,即|F1F2|=2,又因为|PF1|+|PF2|=2a=4,所以|PF1|·|PF2|≤==4,当且仅当|PF1|=|PF2|=2时取“=”,所以|PF1|·|PF2|的最大值为4.(2)设C(x0,y0),B(0,-1),F1(-,0),由=λ得x0=,y0=-.又+=1,所以有λ2+6λ-7=0,解得λ=-7或λ=1,C异于B点,故λ=1舍去.所以λ=-7.(3)因为|PF1|+|PB|=4-|PF2|+|PB|≤4+|BF2|,所以△PBF1的周长≤4+|BF2|+|BF1|=8,所以当P点位于直线BF2与椭圆的交点处时,△PBF1周长最大,最大值为8.关闭Word文档返回原板块小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
3.1.1 椭圆及其标准方程(精练)【题组一 椭圆的定义】1.(2020·北京五十五中高二月考)若椭圆22110036x y +=上一点P 到其焦点1F 的距离为6,则P 到另一焦点2F 的距离为A .4B .194C .94D .142.(2021·江西新余四中高三其他模拟(文))椭圆22137x y +=上一点到两个焦点的距离之和为( )A .B .4C .D . 3.(2021·四川川大附中高二月考)椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( )A .2B .4C .8D .324.(2021·陕西高二期末(文))已知椭圆221716x y +=的上下焦点为1F ,2F ,点P 在椭圆上,则12PF PF ⋅的最大值是( )A .9B .16C .25D .275.(2021·广西南宁二中高二期中(理))在椭圆22143x y +=内有一点()1,1P -,F 为椭圆右焦点,在椭圆上有一点M ,使MP MF +的值最大,则这一最大值是A .4B .4C .4D .46.(2021·六安市裕安区新安中学高二期末(理))命题p :“35m <<”是命题q :“曲线22135x y m m +=--表示椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【题组二 椭圆定义的应用】1.(2021·广西田东中学高二期末(理))设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,122.(2021·四川高二期中(文))已知12,F F 分别是椭圆22143x y +=的焦点,过点1F 的直线交椭圆E 于,A B 两点,则2ABF ∆的周长是A .B .4C .6D .83.(2021·广东高二期末)记ABC 的面积为S ,若10AC BC +=,6AB =,则S 的最大值为( )A .4B .6C .12D .244.(2021·四川省乐山沫若中学高二开学考试(理))已知12,F F 为椭圆22:1369x y C +=的左、右焦点,点P 在椭圆C 上,213PF PF =,则12cos F PF ∠等于( )A .34B .13-C .35D .455.(2021·宾县第一中学校高二月考)在平面直角坐标系xOy 中,已知ABC 顶点()2,0A -和()2,0C ,顶点B 在椭圆22173x y +=上,则sin sin sin A C B += ( )A B C .2 D .126.(2020·浙江高二期中)已知点F 为椭圆221:+184x y C =的右焦点,点P 为椭圆1C 与圆()222:218C x y ++=的一个交点,则PF =( )A .1BC .2D .7.(2021·山东宁阳县一中高二期中)已知点M ,直线(y k x =与2214x y +=椭圆相交于A B 、两点,则ABM ∆的周长为( )A .2B .8C .12D .168.(2021·卓尼县第一中学高二期末(理))已知ABC ∆的顶点A 是椭圆2213x y +=的一个焦点,顶点B 、C 在椭圆上,且BC 经过椭圆的另一个焦点,则ABC 的周长为( )A .B .6C .D .12【题组三 椭圆的标准方程】1.(2021·黑龙江哈尔滨市第六中学校高二开学考试(文))“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.(2021·上海高二期中)对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2021·科尔沁左翼后旗甘旗卡第二高级中学高二开学考试(文))求适合下列条件的椭圆的标准方程:(1)4a =,c y 轴上;(2)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(3)经过(2,(A B 两点4.(2021·全国高二课时练习)求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,4a =,3b =;(2)焦点在x 轴上,经过点(,⎝(3)焦点为(0,6)-,(0,6),且经过点(2,5)-.5.(2021·定远县育才学校高二月考(文))求适合下列条件的椭圆的标准方程:(1)经过点(,且与椭圆221259x y +=有共同的焦点.(2)以坐标轴为对称轴,并且经过两点()0,2A ,12B ⎛ ⎝;【题组四 轨迹方程】1.(【新东方】高中数学20210323-005【高二下】)10等价的方程是( )A .221259x y += B .221259y x += C .2212516x y+= D .2212516y x +=2.(2021·安徽高二期末(文))设(,)P x y 8,则点P 的轨迹方程为( )A .22+1164x y = B .22+1416x y = C .22148x y -= D .22184x y -= 3.(2021·元氏县第四中学高二期末)已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .2213620x y +=(x ≠0) B .2212036x y +=(x ≠0) C .221620x y +=(x ≠0) D .221206x y +=(x ≠0)4.(专题2.1圆锥曲线-2020-2021学年高二数学课时同步练(苏教版选修2-1))已知A 、B 为坐标平面上的两个定点,且|AB |=2,动点P 到A 、B 两点距离之和为常数2,则点P 的轨迹是____.5.(2021·全国高三月考(理))在复平面内,复数z 满足:||||6z z -++=,则复数z 对应的点的轨迹方程是__________.6.(2021·安徽六安一中高二开学考试(理))一动圆过定点(2,0)A ,且与定圆22:4320B x x y ++-=内切,则动圆圆心M 的轨迹方程是_____________.。
专题10.1 椭圆试题 文【三年高考】1. 【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B2. 【2016高考新课标Ⅲ文数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =时,证明:32k <<.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π,又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=,解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故2212121||1|2|34k AM k x k +=++=+.由题设,直线AN 的方程为1(2)y x k =-+,故同理可得22121||43k k AN k +=+.由2||||AM AN =得2223443kk k =++,即3246380k k k -+-=.设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又(3)153260,(2)60f f =-<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)内,所以32k <<.4.【2016高考北京文数】已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.5.【2016高考天津文数】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率. 【解析】(1)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.6. 【2015高考广东,文8】已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .7.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4 C .32 D .3[,1)4【答案】A【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设(0,)M b ,则4455b ≥,故1b ≥,从而221a c -≥,203c <≤, 03c <≤,所以椭圆E 的离心率的取值范围是3(0,]2,故选A .8.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q在椭圆上,则椭圆的离心率是 . 【答案】229. 【2015高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 5(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 【解析】(Ⅰ)由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b ac b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a NM .又()b a ,-=,从而有()22225616561a b b a -=+-=⋅,由(Ⅰ)得计算结果可知,522b a =所以0=⋅,故AB MN ⊥.10. 【2014大纲,文9】已知椭圆C:22221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A. 22132x y +=B. 2213x y += C. 221128x y += D. 221124x y +=【答案】A11.【2014辽宁,文15】 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 【答案】12【解析】设MN 的中点为G ,则点G 在椭圆C 上,设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12·|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.12.【2014新课标2,文20】设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a ,b【解析】(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34, ∴2324b ac =,又222a b c =+,解之:12c e a ==或2-(舍), 故:直线MN 的斜率为34时,C 的离心率为12;(Ⅱ)由题意知:点M 在第一象限,1(,0)F c -,2(,)b M c a,∴直线MN 的斜率为:22b ac ,则MN :222b y x ac =+;∵1(,0)F c -在直线MN 上,∴20()22b c ac=⨯-+,得24b a =……①∵15MN F N =,∴114MF F N =,且21(2,)b MF c a =--,∴21(,)24c b F N a =--,∴23(,)24c b N a--,又∵23(,)24c b N a --在椭圆C 上,∴4222291641b c a a b+=……② 联立①、②解得:7a =,27b =. 【三年高考命题回顾】纵观前三年各地高考试题, 对椭圆的考查,重点考查椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系,高考中以选择题、填空、解答题的第一小题的形式考查椭圆的定义、标准方程及椭圆的几何性质,为容易题或中档题,以解答题的第二问的形式考查直线与椭圆的位置关系,一般是难题,分值一般为5-12分.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出 , 椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系是高考考试的热点,考查方面离心率是重点,其它利用性质求椭圆方程,求焦点三角形的周长与面积,求弦长,求椭圆的最值或范围问题,过定点问题,定值问题等.预测2017年高考,对椭圆的考查,仍重点考查椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系,仍以选择题、填空、解答题的第一小题的形式考查椭圆的定义、标准方程及椭圆的几何性质,难度仍为容易题或中档题,以解答题的第二问的形式考查直线与椭圆的位置关系,难度仍难题,分值保持在5-12分.在备战2017年高考中,要熟记椭圆的定义,会利用定义解决椭圆上一点与椭圆的焦点构成的三角形问题,会根据题中的条件用待定系数法、定义法等方法求椭圆的标准方程,会根据条件研究椭圆的几何性质,会用设而不求思想处理直线与椭圆的位置关系,重点掌握与椭圆有关的最值问题、定点与定值问题、范围问题的处理方法,注意题中向量条件的转化与向量方法应用.【2017年高考考点定位】高考对椭圆的考查有三种主要形式:一是直接考查椭圆的定义与标准方程;二是考查椭圆的几何性质;三是考查直线与椭圆的位置关系,从涉及的知识上讲,常平面几何、直线方程与两直线的位置关系、圆、平面向量、函数最值、方程、不等式等知识相联系,字母运算能力和逻辑推理能力是考查是的重点. 【考点1】椭圆的定义与标准方程【备考知识梳理】1.椭圆的定义:把平面内与两定点12,F F 的距离之和等于常数(大于12||F F )的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点之间的距离叫焦距,符号表述为:12||||2PF PF a +=(122||a F F >). 注意:(1)当122||a F F =时,轨迹是线段12F F .(2)当122||a F F <时,轨迹不存在.2.椭圆的标准方程:(1) 焦点在x 轴上的椭圆的标准方程为22221(0)x y a b a b +=>>;焦点在y 轴上的椭圆的标准方程为22221(0)y x a b a b +=>>.给定椭圆22221(0,0)x y m n m n+=>>,要根据,m n 的大小判定焦点在那个坐标轴上,焦点在分母大的那个坐标轴上.(2)椭圆中,,a b c 关系为:222a b c =+. 【规律方法技巧】1.利用椭圆的定义可以将椭圆上一点到两焦点的距离进行转化,对椭圆上一点与其两焦点构成的三角形问题,常用椭圆的定义与正余弦定理去处理.2.求椭圆的标准方程方法(1)定义法:若某曲线(或轨迹)上任意一点到两定点的距离之和为常数(常数大于两点之间的距离),符合椭圆的定义,该曲线是以这两定点为焦点,定值为长轴长的椭圆,从而求出椭圆方程中的参数,写出椭圆的标准方程.(2)待定系数法,用待定系数法求椭圆标准方程,一般分三步完成,①定性-确定它是椭圆;②定位判定中心在原点,焦点在哪条坐标轴上;③定量-建立关于基本量,,,a b c e 的关系式,解出参数即可求出椭圆的标准方程.3.若若椭圆的焦点位置不定,应分焦点在x 轴上和焦点在y 轴上,也可设椭圆方程为221(0,0)Ax By A B +=>>,可避免分类讨论和繁琐的计算.【考点针对训练】1. 【2016届淮南市高三第二次模】以双曲线2213x y -=的左右焦点为焦点,离心率为12的椭圆的标准方程为( )A .2211216x y += B .221128x y += C .2211612x y += D .221812x y +=【答案】C【解析】由题意得,双曲线的焦点坐标为12(2,0),(2,0)F F -,即2c =,又离心率为12,即12c a =,解得4a =,所以2223b a c =-=,所以椭圆的方程为2211612x y +=,故选C . 2. 【2016届广西柳州高中高三4月高考模拟】已知12(,0),(,0)F c F c -为椭圆22221(0)x y a b a b+=>>的两个焦点,点P 在椭圆上,且12PF F ∆的面积为222b ,则12cos F PF ∠= . 【答案】13.【考点2】椭圆的几何性质 【备考知识梳理】 1.椭圆的几何性质 焦点在x 轴上焦点在y 轴上图形标准方程22221(0)x y a b a b +=>> 22221(0)y x a b a b +=>>焦点 (±c,0)(0,±c )焦距 |F 1F 2|=2c (c 2=a 2-b 2) 范围 |x |≤a ;|y |≤b|x |≤b ;|y |≤a顶点长轴顶点(±a,0),短轴顶点(0,±b )长轴顶点(0,±a ),短轴顶点(±b,0)对称性 曲线关于x 轴、y 轴、原点对称曲线关于x 轴、y 轴、原点对称 离心率e =ca∈(0,1),其中c =a 2-b 2 2.点00(,)P x y 与椭圆22221x y a b +=关系(1)点00(,)P x y 在椭圆内⇔2200221x y a b +<;(2)点00(,)P x y 在椭圆上⇔2200221x y a b +=;(3)点00(,)P x y 在椭圆外⇔2200221x y a b+>.【规律方法技巧】1.求解与椭圆性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用.3.求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a -===221b a -⇒21b e a=-. 4.椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].4.椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为22b a,是过椭圆焦点的直线被椭圆所截得弦长的最小值. 【考点针对训练】1. 【2016届湖北省级示范高中联盟高三模拟】椭圆()22211y x b b+=<的左焦点为,F A 为上顶点,B 为长轴上任意一点,且B 在原点O 的右侧,若FAB ∆的外接圆圆心为(),P m n ,且0m n +>,椭圆离心率的范围为( ) A .20,⎛⎫ ⎪ ⎪⎝⎭ B .10,2⎛⎫ ⎪⎝⎭ C .1,12⎛⎫⎪⎝⎭ D .2,1⎛⎫ ⎪ ⎪⎝⎭【答案】A2. 【2016届福建福州三中高三最后模拟】椭圆2222:1x y C a b+=(0)a b >>的左、右焦点为2,1F F ,过2F 作直线l 垂直于x 轴,交椭圆C 于A ,B 两点,若若1F AB ∆为等腰直角三角形,且0190=∠B AF ,则椭圆C 的离心率为( )A 21B .212-C .22.22【答案】A【解析】∵2AF x ⊥ 轴,∴2b A c a ⎛⎫⎪⎝⎭, .∵1F AB 为等腰直角三角形,∴122||F F AF = ,∴222222221b c ac b a c e e a=∴==-∴=-,, ,化为()22100e e e +-=>, .解得22212e -+== .故选:A .【考点3】直线与椭圆的位置关系 【备考知识梳理】直线方程与椭圆方程联立,消元后得到一元二次方程,若判别式Δ>0,则直线与椭圆交;若△=0,则直线与椭圆相切;若△<0,则直线与椭圆相离.【规律方法技巧】1. 直线方程与椭圆方程联立,消元后得到一元二次方程,则一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,常设出交点坐标,用根与系数关系将横坐标之和与之积表示出来,这是进一步解题的基础. 2.直线y =kx +b (k ≠0)与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |= 1+k 2|x 1-x 2|= 1+k 2·x 1+x 22-4x 1x 2=1+1k2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.3.对中点弦问题常用点差法和参数法. 【考点针对训练】1. 【2016届广东省华南师大附中高三5月测试】已知椭圆C:22193x y +=,直线:l 2y kx =-与椭圆C 交于A ,B 两点,点()0,1P ,且PA =PB ,则直线l 的方程为 . 【答案】20x y --=或20x y ++=2. 【2016届湖北省八校高三二联】定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆M :(22212x y -+=及点()2,0A -,动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.k k【应试技巧点拨】1.焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆的焦点为顶点,另一个顶点在椭圆上的三角形.(2)解决此类问题要注意应用三个方面的知识:①椭圆的定义;②勾股定理或余弦定理;③基本不等式与三角形的面积公式.2.离心率的求法椭圆的离心率就是ca的值,有些试题中可以直接求出,a c的值再求离心率,在有些试题中不能直接求出,a c的值,由于离心率是个比值,因此只要能够找到一个关于,a c或,a b的方程,通过这个方程解出ca或b a ,利用公式cea=求出,对双曲线来说,221bea=+,对椭圆来说,221bea=-.3.有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视椭圆定义的运用,以简化运算.①斜率为k 的直线与圆锥曲线交于两点111(,)P x y ,222(,)P x y ,则所得弦长21212||1||PP k x x =+-或122121||1||P P y y k=+-,其中求12||x x -与21||y y -时通常使用根与系数的关系,即作如下变形: ()2121212||4x x x x x x -=+-,()2211212||4y y y y y y -=+-.②当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 4.直线与椭圆的位置关系在直线与椭圆的位置关系问题中,一类是直线和椭圆关系的判断,利用判别式法.另一类常与“弦”相关:“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式.在求解弦长问题中,要注意直线是否过焦点,如果过焦点,一般可采用焦半径公式求解;如果不过,就用一般方法求解.要注意利用椭圆自身的范围来确定自变量的范围,涉及二次方程时一定要注意判别式的限制条件. 5.避免繁复运算的基本方法可以概括为:回避,选择,寻求.所谓回避,就是根据题设的几何特征,灵活运用曲线的有关定义、性质等,从而避免化简方程、求交点、解方程等繁复的运算.所谓选择,就是选择合适的公式,合适的参变量,合适的坐标系等,一般以直接性和间接性为基本原则.因为对普通方程运算复杂的问题,用参数方程可能会简单;在某一直角坐标系下运算复杂的问题,通过移轴可能会简单;在直角坐标系下运算复杂的问题,在极坐标系下可能会简单“所谓寻求”.6.注意椭圆的范围,在设椭圆)0(12222>>=+b a by a x 上点的坐标(),P x y 时,则x a ≤,这往往在求与点P 有关的最值问题中特别有用,也是容易忽略导致求最值错误的原因.7.注意椭圆上点的坐标范围,特别是把椭圆上某一点坐标视为某一函数问题求解,求函数的单调区间,最值有重要意义. 二年模拟1. 【2016届海南省农垦中学高三第九次月考】设斜率为22的直线l 与椭圆)0(12222>>=+b a by a x 交于不同的两点P,Q ,若点P 、Q 在x 轴上的射影恰好为椭圆的两个焦点,则该椭圆的离心率为( ) A 、22 B 、23 C 、21 D 、31【答案】B2. 【2016届河南省新乡卫辉一中高考押题一】已知某椭圆的方程为()22211x y a a+=>,上顶点为A ,左顶点为B ,设P 是椭圆上的任意一点,且PAB ∆21,若已知()3,0M -,)3,0N ,点Q 为椭圆上的任意一点,则14QN QM+的最小值为( ) A .2 B .94C .3D .322+【答案】B【解析】设(cos ,sin ),AB:1xP a y aθθ+=-,因此PAB ∆面积为221|cos sin 1|211221a a aθθ--++=≤+2a =,24QM QN a +==,1414()14149=()(5)(52)4444QM QN QN QM QN QM QN QM QN QM QM QN QM QN +++=++≥+⋅=,当且仅当2QM QN =时取等号,选B.3. 【2016届河北省衡水中学高三下练习五】椭圆()222:106x y C a a +=>6则实数a 为( )A .6555.6555.555【答案】C4. 【2016届福建省厦门市高三5月月考】已知点(1,0)M ,,A B 是椭圆2214x y +=上的动点,且0MA MB ⋅=,则MA BA ⋅的取值范围是( )A .2[,1]3 B .[1,9] C .2[,9]3 D .6[,3]3【答案】B【解析】设),(00y x A ,因22200()(1)MA BA MA BM MA MA x y ⋅=⋅+==-+,且2020411x y -=,故2000322(11)4MA BA x x x ⋅=-+-≤≤,所以min 342()221493MA BA ⋅=⨯-⨯+=, max 3()42(2)294MA BA ⋅=⨯--+=,故应选B.5. 【2016届福建省泉州市高三5月质检】已知椭圆()22122:10x y C a b a b +=>>,其长轴长为4且离心率为32,在椭圆1C 上任取一点P , 过点P 作圆()222:32C x y ++=的两条切线,PM PN ,切点分别为,M N ,则22C M C N ⋅的最小值为( ) A .2- B .32- C .1813- D .0 【答案】B6. 【2016届河南省郑州一中高三考前冲刺四】若P 为椭圆1151622=+y x 上任意一点,EF 为圆4)1(22=+-y x 的任意一条直径,则PE PF ⋅的取值范围是______.【答案】[]215,【解析】因为()()PE PF NE NP NF NP ⋅=-⋅-()2NE NF NP NE NF NP =⋅-⋅++22cos 04NE NF NP NP π=-⋅-+=-+.又因为椭圆2211615x y +=的4,15,1a b c ===,()10N ,为椭圆的右焦点,∴[][],3,5NP a c a c ∈-+=∴[]521PE PF ⋅∈,.故答案为:[]521,. 7. 【2016届河南省禹州市名校高三三模】已知2F 为椭圆()22401mx y m m +=<<的右焦点, 点()0,2A ,点P 为椭圆上任意一点, 且2PA PF -的最小值为43-,则m = . 【答案】29【解析】由224mx y m +=,得22144x y m+=,由于01m <<,所以椭圆的焦点在x 轴上.设椭圆的左焦点为1F ,则()1214,44,0PF PF F m +=--,那么21144PA PF PA PF AF -=+-≥-42243m =-=-,解得29m =.8. 【2016届四川南充高中高三4月模拟三】如图,12,A A 为椭圆22195x y +=的长轴的左、右端点,O 为坐标原点,,,S Q T 为椭圆上不同于12,A A 的三点,直线12,Q ,,QA A OS OT 围成一个平行四边形OPQR ,则22OS OT+= .【答案】149. 【2016届湖北省黄冈中学高三5月一模】已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,离心率为12,直线l 与椭圆相交于,A B 两点,当AB x ⊥轴时,ABF ∆的周长最大值为8. (1)求椭圆的方程;(2)若直线l 过点(4,0)M -,求当ABF ∆面积最大时直线AB 的方程.【解析】(1)设椭圆的右焦点为'F ,由椭圆的定义,得''||||||||2AF AF BF BF a +=+=,而ABF ∆的周长为''||||||||||||||4AF BF AB AF BF AF BF a ++≤+++=,当且仅当AB 过点'F 时,等号成立,所以48a =,即2a =,又离心率为12,所以1,3c b ==22143x y +=. (2)设直线AB 的方程为4x my =-,与椭圆方程联立得22(34)24360m y my +-+=.设1122(,),(,)A x y B x y ,则222576436(34)144(4)0m m m ∆=-⨯+=->,且1222434my y m +=+,1223634y y m =+,所以212211843||234ABF m S y y m ∆-=⋅-=+②,令24(0)t m t =->,则②式可化为21818331631616323ABF t S t t t t t∆==≤=++⋅.当且仅当163t t =,即221m =±时,等号成立. 所以直线AB 的方程为22143x y =-或22143x y =--. 10. 【2016届天津市和平区高三第四次模拟】椭圆()2222:10x y C a b a b +=>>的上顶点为()40,,,33b A b P ⎛⎫⎪⎝⎭是椭圆C 上一点,以AP 为直径的圆经过椭圆C 的右焦点F .(Ⅰ)求椭圆C 的方程;(Ⅱ)若动直线l 与椭圆C 只有一个公共点,且x 轴上存在着两个定点,它们到直线l 的距离之积等于1,求出这两个定点的坐标.(Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,消去y ,整理,得()222214220kx kmx m +++-=.由2216880k m ∆=-+=,得2221m k =+.假设存在着定点()()1122,0,,0M M λλ满足题设条件.1M 、2M 到直线l 的距离分别为1d 、2d ,则由()()()()2121212122221111k km k m k m d d k k λλλλλλ++++++⋅===++,对于k R ∀∈恒成立,可得121221,0,λλλλ+=⎧⎨+=⎩解得121,1,λλ=⎧⎨=-⎩或121,1.λλ=-⎧⎨=⎩故()()121,0,1,0M M -满足条件.当直线l 的斜率不存在时,经检验,12,M M 仍符合题意.11.【2015届湖北省襄阳市第五中学高三第一学期11月质检】若椭圆的中心在原点,一个焦点为(0,2),直线y=3x+7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( )A .2211220x y += B.221412x y += C .221128x y += D .221812x y += 【答案】D【解析】椭圆的中心在原点,一个焦点为(0,2),所以椭圆的焦点在y 轴上,且422=-b a ,故能排除A ,B ,C 答案为D.12.【2015届黑龙江省哈尔滨市三中高三第四次模拟】设1F 、2F 是椭圆)10(1222<<=+b b y x 的左、右焦点,过1F 的直线l 交椭圆于B A ,两点,若||3||11B F AF =,且x AF ⊥2轴,则=2b ( ) A .41 B .31 C .32 D .43 【答案】C13. 【江苏省启东中学2015届高三下学期期初调研】已知点(,4)P m 是椭圆22221+=x y a b (0)>>a b 上的一点,12,F F 是椭圆的两个焦点,若12∆PF F 的内切圆的半径为32,则此椭圆的离心率为 .1F 2F yxP【答案】35;【解析】一方面12∆PF F的面积为1(22)2a c r+⋅;另一方面12∆PF F的面积为122⋅py c,11(22)222+⋅=⋅pa c r y c,∴()+⋅=⋅pa c r y c,∴+=pya cc r,∴(1)+=pyac r,又4=py ∴4511332pyac r=-=-=,∴椭圆的离心率为35==cea.14.【2015届黑龙江省哈尔滨市三中高三第四次模拟】如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,2),且离心率等于32,过点M(0,2)的直线l与椭圆相交于P,Q不同两点,点N在线段PQ上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设||||=||||PM MQPN NQλ=,试求λ的取值范围.(Ⅱ)设11(,)P x y,22(,)Q x y,00(,)N x y,若直线l与y轴重合,则00||||22||||22PM MQPN NQ y y===-+,得1y=,得2λ=l与y轴不重合,则设直线l的方程为2y kx=+,与椭圆方程联立消去y得22(14)1680k x kx+++=,得1221614kx xk+=-+①,122814x xk=+②,由|||| |||| PM MQ PN NQ=得12100200x xx x x x--=--,整理得120122()x x x x x=+,将①②代入得1xk=-,又点00(,)N x y在直线l上,所以1()21y kk=⨯-+=,于是有112y<<,因此1111121111111y yy y yλ--+===----,由112y<<得11211y>+-,所以2λ>,综上所述,有2λ≥.15.【2015届清华附中考前适应性练习】已知椭圆C:)0(12222>>=+babyax的上顶点为A,两个焦点为1F、2F,21FAF∆为正三角形且周长为6.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知圆O:222Ryx=+,若直线l与椭圆C只有一个公共点M,且直线l与圆O相切于点N;求||MN的最大值.拓展试题以及解析1. 已知椭圆22221(0)x yC a ba b+=>>:的离心率为e,直线2y x=与以C的长轴为直径的圆交于A B、两点,且曲线C恰好将线段AB三等分,则2e的值为( )A.12B.18C.1011D.34【答案】C【入选理由】本题考查椭圆的方程、直线和椭圆的位置关系、椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力.以及运算求解能力,直线与椭圆的位置关系,是高考考查的热点,故选此题.2.如图,已知椭圆22 221(0)x ya ba b上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF BF⊥,当π12ABF∠=时,椭圆的离心率为___________.xyOAFB【答案】6【入选理由】本题考查椭圆的方程,椭圆的定义,解直角三角形,三角恒等变形,椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,椭圆的简单几何性质,是高考考查的热点,故选此题.3.已知椭圆22221(0)yx a ba b+=>>2,长轴AB上2016个等分点从左到右依次为点122015,,,M M M,过1M点作斜率为(0)k k≠的直线,交椭圆C于12,P P两点,1P点在x轴上方;过2M点作斜率为(0)k k≠的直线,交椭圆C于34,P P两点,3P点在x轴上方;以此类推,过2015M点作斜率为(0)k k≠的直线,交椭圆C于40294030,P P两点,4029P点在x轴上方,则4030条直线124030,AP AP AP,,的斜率乘积为_______.【答案】20151.2-【解析】因为椭圆的离心率为22,所以22=2a c ,又222=a b c +,所以22=2a b ,设1P ),(11P P y x ,由椭圆对称性知22111222140301111112P P P AP AP AP BP P P P y y y b k k k k x a x a x a a⋅⋅⋅==-=-+--==,从而4030条直线124030,AP AP AP ,,的斜率乘积配成2015组,每组乘积皆为12-,因此结果为20151.2-【入选理由】本题考查椭圆的方程,直线的斜率,椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题初看似乎很难,细细分析,利用椭圆的对称性很容易解出,本题构思巧妙,是一个好题,故选此题.4.设椭圆2222:1(0)x y C a b a b +=>>,定义椭圆C 的“隐圆”方程为222222a b x y a b+=+,若抛物线214x y =-的准线恰好过椭圆C 的一个焦点,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形. (Ⅰ)求椭圆C 的方程和“隐圆”E 的方程;(Ⅱ)过“隐圆”E 上任意一点P 作“隐圆”E 的切线l 与椭圆C 交于,A B 两点,O 为坐标原点. (i)证明:AOB ∠为定值;(ii)连接PO 并延长交“隐圆”E 于点Q ,求ABQ 面积的取值范围.(Ⅱ)(i )当直线l 的斜率不存在时,不妨设直线AB 方程为63x =,则6666,,3333A B ⎛⎛- ⎝⎭⎝⎭,所以2AOB π∠=,当直线l 的斜率存在时,设其方程设为y kx m =+,设()()1122,,,A x y B x y ,联立方程组2212y kx m x y ++==⎧⎪⎨⎪⎩得222()2x kx m ++=,即222(12)4220k x kmx m +++-=,△=222222164(12)(22)8(21)0k m k m k m -+-=-+>,即22210(*)k m -+>,12221224122212km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,因为直线与隐圆相切,所以2222131m m d k k ===++22322m k ∴=+ ,22222221212121222(1)(22)4(1)()1212k m k m x x y y k x x km x x m m k k+-∴+=++++=-+++222322012m k k --==+OA OB ∴⊥2AOB π∴∠=为定值 ; 【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,新定义,圆的性质,焦三角等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题构思巧妙,是一个好题,故选此题.5.已知椭圆C :22221(0)x y a b a b+=>>的右焦点到直线320x y -+=的距离为5,且椭圆的一个长轴端10 (1)求椭圆C 的方程;M N,与以椭圆短轴为直径的圆分别交于(2)如图,连接椭圆短轴端点A与椭圆上不同于A的两点,P恰好经过圆心O,求AMN,P Q两点,且Q∆面积的最大值.【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,基本不等式等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,直线与椭圆的位置关系,是高考考查的热点,故选此题. 6.已知椭圆)0(1:2222>>=+b a by ax C 的离心率为e ,直线:l y ex a =+与,x y 轴分别交于B A 、点.(Ⅰ)求证:直线l 与椭圆C 有且仅有一个交点; (Ⅱ)设T 为直线l 与椭圆C 的交点,若AT eAB =,求椭圆C 的离心率;(Ⅲ)求证:直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质, 函数最值基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,第二问出题形式新颖,故选此题.7.已知1F 、2F 分别是离心率为21的椭圆E :)0(12222>>=+b a by a x 的左、右焦点,M 是椭圆E 上一点,线段M F 1的中点为N ,△O NF 1(O 为坐标原点)的周长为3. (Ⅰ)求椭圆E 的标准方程;(Ⅱ)过1F 作与x 轴不垂直的直线l 交椭圆E 于B A ,两点,)0,(m Q ,若||||QB QA =,求实数m 的取值范围.【入选理由】本题考查椭圆的方程,椭圆的定义,直线和椭圆的位置关系,椭圆的简单几何性质基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,求参数范围是高考考试的重点,故选此题.8.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 为椭圆C 上任意一点,12||||PF PF -的最大值4,离心率为22. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过M (0,1)作一条直线l 与椭圆C 相交于两点B A ,,求△AOB 面积的取值范围.【解析】(Ⅰ)由题知⎪⎩⎪⎨⎧==2242a c c ,解得2,22==c a ,所以222c a b -==4,所以椭圆C 的方程为14822=+y x . (Ⅱ)可设直线AB 的方程为1+=kx y ,代入方程8222=+y x 整理得,064)21(22=-++kx x k ,设直【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,三角形的面积,函数与导数,函数的单调性,函数的最值基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,但综合性比较强,特别是与导数结合出题,是一个好题,故选此题.。
第三章 3.1.1椭圆及其标准方程A 级——基础过关练1.已知a =13,c =23,则该椭圆的标准方程为( ) A .x 213+y 212=1B .x 213+y 225=1或x 225+y 213=1C .x 213+y 2=1D .x 213+y 2=1或x 2+y 213=1【答案】D 【解析】由a 2=b 2+c 2,得b 2=13-12=1,分焦点在x 轴和y 轴上写标准方程,可知选D .2.椭圆x 216+y 225=1的焦点坐标为( )A .(0,±3)B .(±3,0)C .(0,±5)D .(±4,0)【答案】A 【解析】根据椭圆方程可知焦点在y 轴上,且c 2=25-16=9,所以焦点坐标是(0,±3).3.已知椭圆x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( )A .x 24+y 22=1B .x 23+y 22=1C .x 2+y 22=1 D .x 26+y 22=1【答案】D 【解析】由题意知a 2-2=4,所以a 2=6,所以所求椭圆的方程为x 26+y 22=1.4.已知椭圆x 2a 2+y 225=1(a >5)的两个焦点为F 1,F 2,且|F 1F 2|=8,弦AB 过点F 1,则△ABF 2的周长为( )A .10B .20C .241D .441【答案】D 【解析】因为a >5,所以焦点在x 轴上.因为|F 1F 2|=8,所以a 2=b 2+c 2=41.故△ABF 2的周长为4a =441.5.如图,椭圆x 225+y 29=1上的点M 到焦点F 1的距离为2,N 为MF 1的中点,则|ON |(O 为坐标原点)的值为________.【答案】4 【解析】由|MF 1|=2,得|MF 2|=8,又因为ON 是△F 1MF 2的中位线,所以|ON |=4.6.方程x 2|m |-1+y 22=1表示焦点在y 轴上的椭圆,实数m 的取值范围是________.【答案】(1,3)∪(-3,-1) 【解析】根据题意得0<|m |-1<2,所以1<|m |<3,所以m ∈(1,3)∪(-3,-1).7.方程x 23-a +y 24=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.【答案】(-∞,-1) 【解析】根据题意得3-a >4,所以a <-1,所以a ∈(-∞,-1). 8.已知椭圆的方程为x 225+y 216=1,若C 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,并且|CF 1|=2,则|CF 2|=________.【答案】8 【解析】根据椭圆的定义,椭圆上的点到两焦点的距离之和为10,因为|CF 1|=2,所以|CF 2|=8.9.已知中心在坐标原点O 的椭圆C 经过点A (32,4),点B (10,25),求椭圆C 的方程.解:依题意,可设椭圆C 的方程为mx 2+ny 2=1,从而⎩⎪⎨⎪⎧18m +16n =1,10m +20n =1,解得⎩⎨⎧m =150,n =125.故椭圆C 的方程为x 250+y 225=1.10.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积. 解:(1)由已知得|F 1F 2|=2,所以|PF 1|+|PF 2|=4=2a , 所以a =2,所以b 2=a 2-c 2=4-1=3, 所以椭圆的标准方程为x 24+y 23=1.(2)在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 120°,即4=(|PF 1|+|PF 2|)2-|PF 1||PF 2|, 所以4=(2a )2-|PF 1||PF 2|=16-|PF 1||PF 2|, 所以|PF 1||PF 2|=12,所以S △F 1PF 2=12|PF 1||PF 2|sin 120°=12×12×32=3 3.B 级——能力提升练11.在△ABC 中,B (-2,0),C (2,0),A (x ,y ),给出△ABC 满足的条件,就能得到动点A 的轨迹方程,下表给出了一些条件及方程:则满足条件A .C 3,C 1,C 2 B .C 2,C 1,C 3 C .C 1,C 3,C 2D .C 3,C 2,C 1【答案】A 【解析】如图,在平面直角坐标系中,因为B (-2,0),C (2,0),若①△ABC 周长为10,则|AB |+|AC |=6>4=|BC |,所以点A 的轨迹为以B ,C 为焦点,长轴长为6的椭圆(去除与x 轴的交点),方程为x 29+y 25=1(y ≠0);若②△ABC 的面积为10,设A 到BC 所在直线的距离为d ,则12×|BC |×d =10,即12×4d =10,d =5,所以|y |=5,y 2=25,所以点A 的轨迹方程为y 2=25;若③△ABC 中,∠A =90°,则|OA |=2,即x 2+y 2=2,x 2+y 2=4(y ≠0).所以满足条件①②③的点A 的轨迹方程按顺序分别是C 3,C 1,C 2.12.(多选)已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2一定不是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】ACD 【解析】由椭圆定义知|MF 1|+|MF 2|=2a =4,且|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32,又|F 1F 2|=2c =2,所以有|MF 1|2=|MF 2|2+|F 1F 2|2,因此∠MF 2F 1=90°,△MF 1F 2为直角三角形.13.直线l :2x -3y +12=0与x 轴、y 轴分别交于A ,B 两点,则以A 为焦点,经过B 点的椭圆的标准方程是______________.【答案】x 252+y 216=1 【解析】由题意可知A (-6,0),B (0,4),因为椭圆以A 为焦点,所以c =6,且焦点在x 轴上,所以b 2=a 2-36.设椭圆方程为x 2a 2+y 2a 2-36=1,把B 点坐标代入,得02a 2+42a 2-36=1,所以a 2=52,b 2=16,所以椭圆方程为x 252+y 216=1.14.在平面直角坐标系Oxy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=____________. 【答案】54 【解析】由题意知|AC |=8,|AB |+|BC |=10.所以sin A +sin C sin B =|BC |+|AB ||AC |=108=54. 15.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解:设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0). 因为F 1A ⊥F 2A ,所以F 1A →·F 2A →=0. 而F 1A →=(-4+c,3),F 2A →=(-4-c,3),所以(-4+c )·(-4-c )+32=0,所以c 2=25,即c =5, 所以F 1(-5,0),F 2(5,0). 所以2a =|AF 1|+|AF 2|=-4+52+32+-4-52+32=10+90=410,所以a =210,所以b 2=a 2-c 2=(210)2-52=15, 所以所求椭圆的标准方程为x 240+y 215=1.16.已知P 是椭圆x 24+y 2=1上的任意一点,F 1,F 2为椭圆的两焦点.(1)求|PF 1|·|PF 2|的最大值; (2)求|PF 1|2+|PF 2|2的最小值. 解:(1)因为椭圆方程为x 24+y 2=1,所以a =2,b =1,所以c =3,即|F 1F 2|=2 3. 又因为|PF 1|+|PF 2|=2a =4,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=⎝⎛⎭⎫422=4,当且仅当|PF 1|=|PF 2|=2时取“=”,此时点P 是短轴顶点,所以|PF 1|·|PF 2|的最大值为4. (2)因为|PF 1|2+|PF 2|2≥2|PF 1|·|PF 2|,所以2(|PF 1|2+|PF 2|2)≥|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2, 所以|PF 1|2+|PF 2|2≥12(|PF 1|+|PF 2|)2=12×16=8,当且仅当|PF 1|=|PF 2|=2时取“=”. 所以|PF 1|2+|PF 2|2的最小值为8.C 级——探究创新练17.已知点P (6,8)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2为椭圆的两焦点,若PF 1→·PF 2→=0,则椭圆的方程是________;sin ∠PF 1F 2的值为________.【答案】x 2180+y 280=1 55 【解析】因为PF 1→·PF 2→=0,所以-(c +6)(c -6)+64=0,所以c =10,所以F 1(-10,0),F 2(10,0),所以2a =|PF 1|+|PF 2|=6+102+82+6-102+82=125,所以a =65,b 2=80.所以椭圆方程为x 2180+y 280=1.如图,过点P 作PM ⊥x 轴,垂足为M ,则|PM |=8,|F 1M |=10+6=16,所以|PF 1|=|PM |2+|F 1M |2=82+162=85,所以sin ∠PF 1F 2=|PM ||PF 1|=885=55.18.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,B 为椭圆上的点且坐标为(0,-1).(1)若C 为椭圆上异于B 的一点,且BF 1→=λCF 1→,求λ的值; (2)设P 是该椭圆上的一个动点,求△PBF 1的周长的最大值. 解:(1)设C (x 0,y 0),B (0,-1),F 1(-3,0), 由BF 1→=λCF 1→得x 0=31-λλ,y 0=-1λ.又x 204+y 20=1,所以⎣⎢⎡⎦⎥⎤31-λλ24+⎝⎛⎭⎫-1λ2=1, 化简得λ2+6λ-7=0,解得λ=-7或λ=1.因为点C 异于B 点,所以λ=-7.(2)因为|PF1|+|PB|=4-|PF2|+|PB|≤4+|BF2|,所以△PBF1的周长≤4+|BF2|+|BF1|=8,所以当P点位于直线BF2与椭圆的交点处时,△PBF1的周长最大,最大值为8.。
一、课前练习:1.判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。
(1)14322=+y x (2)1422=+y x (3)1422=+y x 2.求适合下列条件的椭圆标准方程:两个焦点的坐标分别为)0,4(),0,4(-,椭圆上一点P 到两焦点距离的和等于10。
3.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 二、典例:例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.变式练习1:与椭圆x 2+4y 2=16有相同焦点,且过点()6,5-的椭圆方程是 . 例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.变式练习2:已知定圆x 2+y 2-6x -55=0,动圆M 和已知圆内切且过点P (-3,0),求圆心M 的轨迹及其方程.三、巩固练习:1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( B ) A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件2.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( A )A. 1-B. 1C. 5D. 53.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为4.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)。
可编辑修改精选全文完整版学生姓名 性别 男 年级 高二 学科 数学 授课教师 上课时间2014年12月13日 第( )次课 共( )次课课时: 课时教学课题椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义ﻫ 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.ﻫ 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为知识点二:椭圆的标准方程ﻫ 1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:ﻫ 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;ﻫ 2.在椭圆的两种标准方程中,都有和;ﻫ 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。
4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
讲练结合三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。
2.2.1椭圆及其标准方程
考点一:椭圆的定义
我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .
椭圆的定义用集合语言表示为:集合P={M ||MF 1|+|MF 2|=2a,2a>|F 1F 2|>0}。
设|F 1F 2|=2c>0,则当集合P 为_______.当a=c 时,集合P 为_________.当a<c 时,集合P 为________. 例1:平面内一动点M 到两定点12,F F 的距离之和为常数2a, 则点M 的轨迹是_________. 变式1:①下面说法中正确的是( ).
A 已知F 1(-4,O),F 2(4,0),到12,F F 两点的距离之和等于8的点的轨迹是椭圆 B.已知F 1(-4,0),F 2(4,0),到12,F F 两点的距离之和等于6的点的轨迹是椭圆
C.已知到F 1(-4,0),F 2(4,0)两点的距离之和等于M(5,3)到12,F F 的距离之和的点的轨迹是椭圆
D.到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆
②平面内到点F 1(-2,0),F 2(2,0)距离之和为4的点M 的轨迹是__________.
③设P 是椭圆
116
252
2=+y x 上的点,若12,F F 是椭圆的两个焦点,则|PF 1|+|PF 2|=_______. A 、4 B 、5 C 、8 D 、10
④在△ABC 中,点B(-6,0),C(0,8),且B sin 、A sin 、C sin 成等差数列.求证:顶点A 在椭圆上运动。
⑤已知B 、C 是两个定点,|BC|=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程。
考点二:椭圆的标准方程
焦点在x 轴上的椭圆的标准方程()22
2210x y a b a b
+=>> 其中222b a c =-此时焦点坐标为_________
焦点在y 轴上的椭圆的标准方程122
22=+b x a y (a >b>0) 此时焦点坐标为_________.
巧计:判断焦点在哪条坐标轴上,要看标准方程谁的分母大,哪个分母大,焦点就在哪条坐标轴上。
有时为了计算上的简便,椭圆的方程也可设为:12
2
=+ny mx (m >0,n>0,m ≠n).
一般地,与椭圆12
222=+b y a x (a >b>0)有共同焦点的椭圆可设为1222=++λ
λy c x (其中λ>0,c 2=a 2-b 2
).
例2:求适合下列条件的椭圆的标准方程
①已知两个焦点坐标F 1(0,-4),F 2(0,4),并且椭圆经过点(-3,5) ②椭圆经过点P 1(2,-2),P 2(-1,
2
14).
变式2:求适合下列条件的椭圆的标准方程。
①焦距为8,且a c =5
4
; ②已知,3b a =且经过点(3,0). ③经过两点)2,3(),1,6(--.
例3:求经过点(2,-3)且与椭圆36492
2
=+y x 有共同焦点的椭圆的方程。
变式3:①求中心在原点,焦点在坐标轴上,且经过两点P(31,31),Q(0,-2
1
)的椭圆的标准方程。
②已知椭圆过点A(2
3
,1),两个焦点为(-1,0),(1,0),求椭圆的标准方程。
考点三、根据椭圆的标准方程求参数的值或取值范围
例4:求适合下列条件的参数的值或取值范围
①若方程22
2
=+ky x 表示焦点在y 轴上的椭圆,求k 的取值范围。
②若椭圆882
22=-ky x k 的一个焦点为(0,7),求k 的值。
变式4:①若α∈(0,
2
π),方程1cos sin 2
2=+ααy x 表示焦点在y 轴上的椭圆,则α的取值范围为_______. ②已知椭圆12102
2=-+-m y m x 的焦点在y 轴上,焦距为4,则m 的值为________.
③若方程1532
2=-+-k y k x 表示椭圆,则k 的范围为_______.
④若椭圆19
82
2=++y k x 中a=2c,则k=________.
⑤椭圆552
2
=+ky x 的一个焦点是(0,2),那么k=_______.
⑥已知方程
11
252
2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数m 的范围为_______. ⑦根据下列椭圆的方程确定a,b,c 的值,并判断焦点在哪个轴上。
(i )33
2532
2=+y x (ii )192522=+y x
考点四、椭圆定义的运用
例5:已知动圆P 过定点A(-3,0)并且在定圆B :64)3(2
2
=+-y x 的内部与其内切,求动圆圆心P 的轨迹方程。
变式5:①已知圆A :100)3(2
2=++y x ,圆A 内一定点B(3,0),圆P 过点B 且与圆A 内切,求圆心P 的轨迹方程。
②在△ABC 中,BC=24,AC,AB 边上的中线长之和等于39,求△ABC 的重心的轨迹方程。
③已知P 为椭圆175
4252
2=+y x 上的一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°
,求△F 1PF 2的面积。
考点五、用待定系数法求椭圆的标准方程
①如果明确焦点在x 轴上,那么可设椭圆方程为:)0(122
22 b a b y a x =+;
②如果明确焦点在y 轴上,那么可设椭圆方程为:)0(122
22 b a b
x a y =+;
③如果中心在原点,但焦点不能明确在x 轴还是y 轴上,那么可设椭圆方程为:),0,0(12
2
n m n m ny mx ≠=+ 例6:求中心在原点,焦点在坐标轴上,且经过两点M(2,3--),N(1,32-)的椭圆的标准方程。
变式6:求合适下列条件的椭圆的标准方程。
①两个焦点为:F 1(-3,0),F 2(3,0),椭圆经过点(5,0); ②两个焦点坐标分别为(0,5)、(0,-5),椭圆上一点P 到两焦点的距离之和为26.。