椭圆及其标准方程-第二课时
- 格式:pptx
- 大小:431.12 KB
- 文档页数:14
第二课时椭圆的定义及标准方程的应用考点一利用椭圆的定义求轨迹方程如图,圆C:(x+1)2+y2=16及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,求点M的轨迹方程.[自主解答]由垂直平分线性质可知|MQ|=|MA|,∴|CM|+|MA|=|CM|+|MQ|=|CQ|.∴|CM|+|MA|=4.又|AC|=2,∴M点轨迹为椭圆.由椭圆的定义知:a=2,c=1,∴b2=a2-c2=3.∴所求轨迹方程为:x24+y23=1.——————————————————用定义法求椭圆方程的基本思路是:首先分析几何图形所揭示的几何关系,判断动点的轨迹是椭圆,然后根据题中条件求出a,b的值,直接由椭圆标准方程写出即可.——————————————————————————————————————1.已知B、C是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形顶点A的轨迹方程.解:以过B、C两点的连线为x轴,线段BC的垂直平分线为y轴,建立直角坐标系xOy,如图.由|BC|=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,得|AB |+|AC |=10,因此,点A 的轨迹是以B 、C 为焦点的椭圆,但点A 不在x 轴上,由a =5,c =4,得b 2=a 2-c 2=25-16=9,所以点A 的轨迹方程为x 225+y 29=1(y ≠0).考点二用相关点法求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM ―→=2MP ′―→,求点M 的轨迹方程.[自主解答] 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . 因为P (x 0,y 0)在圆x 2+y 2=9上,所以x 20+y 20=9.将x 0=x ,y 0=3y 代入,得x 2+9y 2=9,即M 的轨迹方程为x 29+y 2=1.若将“点M 在PP ′上,并且PM ―→=2MP ′―→”改为“点M 在直线PP ′上,并且P ′M ―→=λP ′P ―→ (λ>0)”,则M 点的轨迹是什么?解:设M (x ,y ),P (x 0,y 0),∵PP ′⊥x 轴,且P ′M ―→=λP ′P ―→,∴x =x 0,y =λy 0,即x 0=x ,y 0=1λy .∵点P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.把x 0=x ,y 0=1λy 代入上式得,x 29+y 29λ2=1.当0<λ<1时,点M 的轨迹是焦点在x 轴上的椭圆; 当λ=1时,点M 的轨迹是圆;当λ>1时,点M 的轨迹是焦点在y 轴上的椭圆.——————————————————已知P 的轨迹方程,求M 的轨迹方程的步骤是先设出点P 和M 的坐标,根据条件写出P 点与M 点的坐标之间的关系,然后用M 点的坐标表示P 点的坐标,并代入P 点的坐标所满足的方程,整理即得M 的轨迹方程.动点M 与曲线上的点P 称为相关点(有关系的两点),这种求轨迹方程的方法称为相关点法(代入法).——————————————————————————————————————2.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ ―→=OM ―→+ON ―→,求动点Q 的轨迹方程.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0). 因为OQ ―→=OM ―→+ON ―→, 即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y2.又点M 在圆C 上,所以x 20+y 20=4,即x 2+y 24=4(y ≠0).所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).考点三与焦点有关的三角形问题如图所示,P 是椭圆x 24+y 23=1上的一点,F 1、F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[自主解答] 由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ②②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335. 即△PF 1F 2的面积是335.若将“∠PF 1F 2=120°”改为“∠F 1PF 2=60°”,其它条件不变,如何求解? 解:由已知a =2,b =3, ∴c =a 2-b 2=4-3=1.∴|F 1F 2|=2c =2,在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos 60°,∴4=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1|·|PF 2|cos 60°. ∴4=16-3|PF 1||PF 2|. ∴|PF 1||PF 2|=4.∴S △PF 1F 2=12|PF 1||PF 2|·sin 60°=12×4×32= 3.—————————————————— 在解焦点三角形的有关问题时,一般地利用两个关系式: (1)由椭圆的定义可得|PF 1|,|PF 2|的关系式;(2)利用正余弦定理或勾股定理可得|PF 1|,|PF 2|的关系式,然后求解得|PF 1|,|PF 2|,有时也根据需要,把|PF 1|+|PF 2|,|PF 1|-|PF 2|,|PF 1|·|PF 2|等看成一个整体来处理.——————————————————————————————————————3.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点,已知△PF 1F 2为直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.解:由已知|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 根据直角位置不同,分两种情况:①若∠PF 2F 1=90°,则⎩⎪⎨⎪⎧ |PF 1|2=|PF 2|2+20,|PF 1|+|PF 2|=6,∴有⎩⎨⎧|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72. ②若∠F 1PF 2=90°,则⎩⎪⎨⎪⎧20=|PF 1|2+|PF 2|2,|PF 1|+|PF 2|=6,解得|PF 1|=4,|PF 2|=2. ∴|PF 1||PF 2|=2. 综上所述,|PF 1||PF 2|的值为72或2.解题高手 妙解题 同样的结果,不一样的过程,节省解题时间,也是得分!已知椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴的交点为A 1,A 2,P 是椭圆上任一点,F 是它的一个焦点,证明:以线段PF 为直径的圆与以线段A 1A 2为直径的圆相切.[巧思] 判断两圆的位置关系,即判断两圆的圆心距与两圆的半径之间的关系.若M 为PF 的中点,则圆心距为|OM |.[妙解] 由椭圆方程x 2a 2+y 2b2=1(a >b >0)知,以线段A 1A 2为直径的圆为x 2+y 2=a 2.设F 1是椭圆的另外一个焦点,点M 是线段PF 的中点,则|MO |=12|PF 1|=12(2a -|PF |)=a -12|PF |.即以线段A 1A 2为直径的圆(圆心为O )与以线段PF 为直径的圆(圆心为M )的圆心距等于两圆的半径之差,于是两圆相切.1.到两定点F 1(-4,0),F 2(4,0)的距离之和为8的点的轨迹是( )A .椭圆B .线段C .圆D .直线解析:到两定点距离之和恰好等于两定点间的距离,故为线段. 答案:B2.“m >0且n >0”是“方程mx 2+ny 2=1表示椭圆”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:当m >0且n >0时,方程mx 2+ny 2=1,也可能表示圆;当方程mx 2+ny 2=1表示椭圆时一定有m >0,n >0.答案:B3.已知椭圆x 210-m +y 2m -2=1,焦点在y 轴上,若焦距为4,则m 等于 ( )A .4B .5C .7D .8解析:∵焦距为4,∴2c =4,c =2, ∴m -2-(10-m )=c 2=4,∴2m -12=4,m =8. 答案:D4.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.解析:由|PF 1|+|PF 2|=6,且|PF 1|=4知|PF 2|=2, 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.答案:2 120°5.若P 为椭圆x 29+y 25=1上任意一点,F 1,F 2的坐标分别为F 1(-2,0),F 2(2,0),则|PF 1|·|PF 2|的最大值为________.解析:由题意知F 1,F 2是椭圆的两个焦点,于是|PF 1|+|PF 2|=6,|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=9∴当且仅当|PF 1|=|PF 2|=3时,|PF 1|·|PF 2|取最大值9.答案:96.已知动圆M 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,求动圆圆心M 的轨迹方程.解:设动圆M 和定圆B 内切于点C ,动圆圆心M 到两定点A (-3,0),B (3,0)的距离之和恰好又等于定圆的半径,即|MA |+|MB |=|MC |+|MB |=|BC |=8,∴动圆圆心M 的轨迹是以A 、B 为焦点的椭圆, 且2a =8,2c =6,b =a 2-c 2=7. ∴动圆圆心的轨迹方程是x 216+y 27=1.一、选择题1.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 解析:由已知2c =|F 1F 2|=23, ∴c = 3.又2a =|PF 1|+|PF 2|=2|F 1F 2|=43,∴a =2 3.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.答案:B2.设集合A ={1,2,3,4},m ,n ∈A ,则方程x 2m +y 2n=1表示焦点在x 轴上的椭圆的个数是 ( )A .6B .8C .12D .16解析:由题意知m >n . 当m =2时,n =1, 当m =3时,n =1,2, 当m =4时,n =1,2,3, ∴共有6个.答案:A3.若椭圆x 216+y 2m=1的焦距为6,则m的值为( )A .7B .7或25C .25 D.7或5解析:①设a 2=16,b 2=m ,∴c 2=16-m ,∴16-m =9,∴m =7;②设a 2=m ,b 2=16,则c 2=m -16,∴m -16=9,∴m =25.答案:B4.已知圆x 2+y 2=1,从这个圆上任意一点P 向y 轴作垂线,垂足为P ′,则PP ′的中点M 的轨迹方程是 ( )A .4x 2+y 2=1B .x 2+y 214=1C.x 24+y 2=1 D .x 2+y 24=1解析:设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 02,y =y 0.∵P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1.①将x 0=2x ,y 0=y 代入方程①,得4x 2+y 2=1. 答案:A 二、填空题5.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=________. 解析:由椭圆方程x 225+y 29=1知,a =5,b =3,∴c =4,即点A (-4,0)和C (4,0)是椭圆的焦点.又点B 在椭圆上,∴|BA |+|BC |=2a =10,且|AC |=8.于是,在△ABC 中,由正弦定理,得sin A +sin C sin B =|BC |+|BA ||AC |=54.答案:546.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.解析:如图,当P 在y 轴上时△PF 1F 2面积最大, ∴12×8b =12,∴b =3, 又∵c =4, ∴a 2=b 2+c 2=25.∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=17.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.解析:如图,设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知|MF 2|=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点,所以|ON |=12|MF 2|=4.答案:48.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=________.解析:由椭圆的方程可知F 1的坐标为(-3,0), 设P (-3,y ),把P (-3,y )代入椭圆的方程中,得|y |=12,即|PF 1|=12.根据椭圆的定义,得|PF 1|+|PF 2|=4,故|PF 2|=4-|PF 1|=4-12=72.答案:72三、解答题 9.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,求点M 的轨迹C 的方程,并判断此曲线的类型.解:设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上, ∴x 2+⎝⎛⎭⎫54y 2=25,即C 的方程为x 225+y 216=1.该曲线表示椭圆.10.在直线l :x -y +9=0上取一点P ,过点P 以椭圆x 212+y 23=1的焦点为焦点作椭圆.(1)P 点在何处时,所求椭圆长轴最短; (2)求长轴最短时的椭圆方程.解:(1)由题意知椭圆两焦点坐标分别为F 1(-3,0)、F 2(3,0).设点F 1(-3,0)关于直线l 的对称点F ′1的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0+3=-1,x 0-32-y 02+9=0,解得⎩⎪⎨⎪⎧x 0=-9,y 0=6,∴F ′1(-9,6).则过F ′1和F 2的直线方程为y -6-6=x +93+9,整理得x +2y -3=0联立⎩⎪⎨⎪⎧ x +2y -3=0,x -y +9=0,解得⎩⎪⎨⎪⎧x =-5,y =4,即P 点坐标为(-5,4)(2)由(1)知2a =|F ′1F |=180, ∴a 2=45. ∵c =3, ∴b 2=a 2-c 2=36.∴所求椭圆的方程为x 245+y 236=1.。
3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。
椭圆及其标准方程〔二〕●教学目标〔一〕教学知识点1.求椭圆的标准方程.2.求符合某种条件的点的轨迹方程.〔二〕能力训练要求1.使学生掌握确定椭圆标准方程中的参数a 、b 的方法.2.使学生在坐标法的基础上掌握点的轨迹条件满足某曲线的定义时,用待定系数法求其方程.〔三〕德育渗透目标使学生通过求曲线的方程,学会分析问题,从具体问题中寻求关系建立数学模型,为解决问题的能力提高奠定基础.●教学重点求椭圆的方程.●教学难点待定系数法的应用.●教学方法指导学生自学法这部分内容,在学生准确掌握了定义,标准方程,思考过上节课后预习提纲中的问题的基础上,教师再帮助学生排除障碍后学生完全可以自学掌握,通过这种自学过程,逐步提高学生的自学能力.●教具准备投影片三X第一X :P 93例1〔记作§8.1.2 A 〕第二X :P 94例2〔记作§8.1.2 B 〕第三X :本课时教案后面的预习内容及预习提纲.〔记作§8.1.2 C 〕●教学过程Ⅰ.课题导入[师]上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的? [生]平面内与两个定点 F 1、F 2的距离和等于常数〔大于|F 1F 2|〕的点的轨迹叫做椭圆. [师]这两个定点叫做椭圆的〔教师拉长语气,等待学生作答〕[生]焦点[师]两个焦点的距离叫做椭圆的——[生]焦距[师]椭圆的标准方程是怎样的?它的图形有什么特点? [生])0(1),0(122222222>>=+>>=+b a bx a y b a b y a x 〔教师板书,学生作答〕[生]方程所表示的椭圆,其对称轴合于坐标轴.[师]参数a 、b 、c 的关系是怎样的?[生]c 2=a 2-b 2[师]关系式中的三个数都是正数,知道两个可求出第三个,要注意关系式的活用.[师]现在我们来求椭圆的标准方程,还需要用坐标法吗?[生]不需要.[师]那怎样求呢?[生]设标准方程,确定a、b的值.[师]怎样确定呢?[生]根据题设条件及c2=a2-b2确定[师]好,下面我们来看几个例子.Ⅱ.讲授新课[师]〔打出投影片8.1.2 A,读题〕分析指导:请看题中给了我们什么信息?这些信息有什么作用?又怎样应用这些信息呢?一般地,数学题中不会有干扰信息〔或无用信息〕如果题目做完了,还有余下的信息〔或条件〕没有被用,那么,这题做得一般是错误的.对于①小题,实质上是给了我们焦距及动点到两个定点的距离和.对于②小题,为了解决问题,同样我们需要知道a、b、c中三者中的两个,题中告诉了我们2c〔焦距〕,未明确告给我们2a,但告诉我们椭圆上一个点的坐标,因为椭圆是动点与两个定点的距离和为常数的点的轨迹,就是说椭圆上任意一个点与给定的两个点的距离和是定值,因为这个点既然在椭圆上,那么它与两个定点的距离和就是2a,这样问题得以解决.[师]下面请同学们看课本,进一步熟悉此题的求解过程,并思考求椭圆的标准方程的关键是什么?怎样表述?〔给学生留出一些时间看书并讨论这两个问题〕[师]好,同学们看了解题过程并进行了讨论,那么谁来谈一下,求椭圆标准方程的方法和步骤.[生]首先,根据题意设出标准方程,其次根据条件确定a、b的值,第三写出椭圆的标准方程.[师]既然是求标准方程,那么设出标准方程不就行了吗?为什么还要根据题意设出标准方程呢?[生]椭圆的标准方程有两种形式,焦点位置不同,其标准方程形式也不一样,根据题意设出标准方程,其实质就是根据焦点的位置,设出标准方程.[师]如果题中未告诉焦点的位置,应该如何去设标准方程呢?[生]如果题中未告诉焦点的位置,那么要根据题意判断能否确定椭圆的焦点位置,假设能,那么设出相应的标准方程即可,假设不能,那么椭圆的焦点既可能在x轴上,也可能在y轴上,这种情况下,椭圆的标准方程就有两种形式,哪一种也不能丢.[师]很好,下面我们再来看一个例子.〔打出投影片8.1.2 B,请一名同学读题〕分析指导:这是一道求动点的轨迹方程的题目,一般地,要用坐标法“三步曲〞:建系、设点;写出代数关系式;化简,但据题意给出的信息,由于△ABC的周长等于16,|BC|=6,可知点A到B、C两点的距离和是常数10,即|AB+BC|=16-6=10,因此点A的轨迹是以B、C 为焦点的椭圆,据此可建立适当的坐标系,求出椭圆的标准方程,所谓“适当〞是指:求出的方程形式结构简单明了,既然我们清楚了轨迹类型,建系之后,就没有必要再用坐标法求动点轨迹方程了,尽可设出方程再依据题设条件确定方程中待定的系数a、b就行了,下面请同学们自己看课本.(给学生几分钟时间,让他们看课本)[师]题解过程中,BC、AB、AC的长度都加了绝对值号,这是不是必要的,为什么?[生]完全有必要,因为解析几何中的线段都是有向线段,表示其长度必须加绝对值号.注意①:解析几何中表示线段长度或两点间距离时,必须在字母的两边加绝对值号. 〔教师板书:注意①〕[师]在求出的方程后面附加了一个条件y ≠0,不附加此条件不行吗?[生]不行,没有此条件,点A 的纵坐标就可以是0,点A 的纵坐标为0时,A 、B 、C 三点就在一条直线上了,不能构成三角形.因此,求出方程之后,要注意须附加y ≠0这个条件.[师]很好,请同学们注意求出曲线的方程之后,要检查一下方程曲线上的点是否都符合题意,如果有不合题意的点,就在所得方程后注明限制条件.〔教师板书,注意②〕[师]再一点,由此题可以看出求满足条件的点的轨迹方程时,假设清楚轨迹类型时可设出其方程,确定方程中参数即可;假设不清楚轨迹类型,再用坐标法.〔教师板书:注意③〕[师]下面,我们来做几个练习题.Ⅲ.课堂练习P 96练习2,32.如果椭圆上13610022=+y x 上一点P 到焦点F 1的距离等于6,那么点P 到另一个焦点F 2的距离是.答案:143.写出适合以下条件的椭圆的标准方程:(1)a =4,b =1,焦点在x 轴上.(2)a =4,c =5,焦点在y 轴上.(3)a +b =10,c =25答案:〔1〕11622=+y x (2)11622=+x y (3)11636116362222=+=+x y y x 或 Ⅳ.课时小结本节课我们讨论学习了求椭圆标准方程的方法,应该注意,求出曲线的方程之后,要验证方程的曲线上的点是否都符合题意,如有不符合题意的点,应在所得方程后注明限制条件.另外,求满足条件的点的轨迹方程时,假设不清楚轨迹类型用坐标法,假设清楚轨迹类型那么建立适当的坐标系设出其方程再确定方程中的参数即可.Ⅴ.课后作业〔一〕课本P 96习题8 1、2、3、4、5〔二〕1.预习内容:课本P 95例32.预习提纲:〔1〕点的轨迹方程与点的轨迹有什么不同?〔2〕求满足条件的点的轨迹时需要先干什么?〔3〕点M的轨迹类型清楚吗?此题是如何求点M的轨迹方程的?。
2.2.1 椭圆及其标准方程(第二课时)一、教学目标 (一)学习目标1.掌握椭圆的定义与标准方程;2.会求椭圆的标准方程. (二)学习重点用待定系数法与定义法求椭圆方程 (三)学习难点掌握求椭圆方程的基本方法. 二、教学设计 (一)预习任务设计 1.预习任务(1)读一读:阅读教材第38页至第40页. (2)想一想:如何求椭圆的标准方程?(3)写一写:椭圆的一般方程: . 2.预习自测(1)已知6,1a c ==,则椭圆的标准方程为( )A.2213635x y +=B.2213635y x +=C.221365x y += D.以上都不对 【解题过程】由于条件中只给出,a c 的值,椭圆的焦点位置不确定,有两种可能性,故答案为D.【思路点拨】求椭圆方程时,要先定型后定量. 【答案】D(2)已知椭圆的方程为222116x y m +=,焦点在x 轴上,则m 的取值范围是( )A.44m -≤≤B.44m -<<C.4m >或4m <-D.04m << 【解题过程】由条件可知:216m <可得:44m -<<. 【思路点拨】把握椭圆方程的结构特征解题. 【答案】B(3)若ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为( )A.221259x y +=B.221(0)259y x y +=≠C.221(0)169x y y +=≠D.221(0)259x y y +=≠ 【解题过程】由条件可知:||||10||CA CB AB +=>,故点C 的轨迹是以,A B 为焦点,210a =的椭圆.考虑到,,A B C 三点构成三角形,故0y ≠. 【思路点拨】利用椭圆的定义解题. 【答案】D(4)已知椭圆的方程是2221(5)25x y a a +=>,它的两个焦点分别为12,F F ,且12||8F F =,弦AB 过1F ,则2ABF ∆的周长为( )A.10B.20C.D. 【解题过程】2251641a =+=.由椭圆的定义得:2ABF ∆的周长为:221212||||||(||||)(||||)4AB AF BF AF AF BF BF a ++=+++==. 【思路点拨】利用椭圆定义求解即可. 【答案】D (二)课堂设计 1.知识回顾 (1)椭圆的定义; (2)椭圆的标准方程. 2.新知讲解探究 如何求椭圆标准方程 ●活动① 双基口答练习①方程194522=+y x 表示到焦点1F (-6,0) 和2F __(6,0)_的距离和为常数____的椭圆;②求满足下列条件的椭圆的标准方程:(1)125,(3,0),(3,0)a F F =-,22+12516x y = (2)5,3a c ==2222+1+125161625x y x y ==,③如果方程2214x y m +=表示焦点在x 轴的椭圆,则实数m 的取值范围是(0,4). ●活动② 归纳提炼方法例1 已知椭圆两个焦点的坐标分别是12(2,0),(2,0)F F -,并且经过点53(,)22P -,求它的标准方程. 【知识点】椭圆的定义和标准方程. 【解题过程】 法一:定义法:因为椭圆的焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x由椭圆的定义知,,102232252322522222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=a所以10=a .又因为2c =,所以.6410222=-=-=c a b因此,所求椭圆的标准方程为.161022=+y x 法二:待定系数法:由题意,椭圆的两个焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x 由已知,2c =,所以.422=-b a ①又由已知,得123252222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛b a ②联立①②解方程组,得6,1022==b a .因此,所求椭圆的标准方程为.161022=+y x【思路点拨】先确定标准方程的形式,用椭圆的定义或待定系数法求解. 求椭圆标准方程的解题步骤: (1)确定焦点的位置; (2)设出椭圆的标准方程;(3)用椭圆的定义或待定系数法确定a 、b 的值,写出椭圆的标准方程.【答案】.161022=+y x同类训练 求适合下列条件的椭圆的标准方程. (1)焦距为8,经过点(0,P ;(2)与椭圆22194x y +=有相同焦点,且过点(3,2)M -.【知识点】椭圆的定义和标准方程.【解题过程】(1)∵焦距是8,即28,4c c =∴=①若焦点在x轴上,则b =,222241640,a b c ∴=+=+=∴椭圆方程为2214024x y +=; ②若焦点在y轴上,则a =,22224168,b a c ∴=-=-=∴椭圆方程为221248y x +=.(2)由题意设所求方程为222215x y a a +=-,∵过点(3,2)M -∴229415a a +=-,解得215a =或23a =(舍) ∴椭圆方程为2211510x y +=.【思路点拨】牢记椭圆的标准方程【答案】(1)2214024x y +=;(2)2211510x y +=.例2.如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段'PP ,求线段'PP 的中点M 的轨迹. 【知识点】椭圆的定义和标准方程.【解题过程】设动点M 的坐标为),(y x ,则P 的坐标为)2,(y x 因为点P 在圆心为坐标原点半径为2的圆上,所以有 4)2(22=+y x .即2214x y +=. 所以点M 的轨迹是椭圆,方程是1422=+y x【思路点拨】这种利用未知点表示一个或几个与之相关的已知点,从而求解未知点轨迹方程的方法,即为相关点法,是解析几何中常用的求轨迹的方法.【答案】1422=+y x ●活动③ 强化提升 灵活应用例3. 等腰直角三角形ABC 中,斜边BC长为,一个椭圆以C为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点,A B ,求该椭圆方程.【知识点】椭圆的定义和标准方程.【解题过程】由题意知24=BC ,设椭圆的另一个焦点为D . 以直线DC 为x 轴,线段DC 的中点为原点建立直角坐标系。
《椭圆及其标准方程》第二课时教学设计作者:高宽宁来源:《新课程·上旬》2020年第03期一、教学背景1.教材分析《椭圆及其标准方程》是继学习“圆及其标准方程”之后运用“曲线与方程”的思想解决二次曲线问题的又一实例。
从知识体系上讲,本节课是对用坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础。
从教材安排上讲,椭圆是三种圆锥曲线当中最重要的一种,教材中以椭圆为例,求椭圆方程,利用方程讨论几何性质,以及探究轨迹方程和符合椭圆标准方程的动点的轨迹的方法。
从方法上说为我们后面研究双曲线、抛物线提供了基本模式和理论基础,起着承上启下的重要作用。
2.学情分析二、教学目标1.知识目标:求椭圆的标准方程;求符合条件的点的轨迹方程。
2.能力目标:使学生掌握确定椭圆标准方程中参数a,b的方法;掌握求动点轨迹方程的一些方法(如直接法、相关点法等)。
3.情感目标:激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
通过主动探索、合作交流,感受探索的乐趣和成功的经验,体会数学的理性和严谨。
三、教学重点、难点重点:椭圆的标准方程,求动点的轨迹方程。
难点:求动点的轨迹方程。
四、教法和学法教法:设疑诱思、问题导学、合作探究。
学法:动手练习、主动探索、共同交流。
五、教学准备1.学生准备:复习椭圆及其标准方程,预习教材第41、42页例题。
2.教师准备:教学设计,多媒体课件制作。
3.教学手段:利用计算机多媒体教学。
六、设计思路运用“启发—探究”教学模式来完成本节课的教学。
课堂教学程序:问题→探究→结论→应用。
学生(主體性):提出问题→自主探究→归纳概括→达标训练。
教师(主导性):创设情景→搭建平台→组织交流→提供习题。
七、教学过程1.复习引入:复习椭圆的定义复习椭圆的标准方程,比较两种方程的异同点。
再现基础知识,体会分类与整合。
设问1:椭圆定义需要注意什么?最容易遗漏什么条件?设问2:a,b,c三者之间的关系怎样?设问3:如何根据标准方程判断焦点位置?2.自我检测(巩固用定义法与待定系数法求椭圆的标准方程)自测题:求适合下列条件椭圆的标准方程。