椭圆及其标准方程-第二课时
- 格式:pptx
- 大小:431.12 KB
- 文档页数:14
第二课时椭圆的定义及标准方程的应用考点一利用椭圆的定义求轨迹方程如图,圆C:(x+1)2+y2=16及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,求点M的轨迹方程.[自主解答]由垂直平分线性质可知|MQ|=|MA|,∴|CM|+|MA|=|CM|+|MQ|=|CQ|.∴|CM|+|MA|=4.又|AC|=2,∴M点轨迹为椭圆.由椭圆的定义知:a=2,c=1,∴b2=a2-c2=3.∴所求轨迹方程为:x24+y23=1.——————————————————用定义法求椭圆方程的基本思路是:首先分析几何图形所揭示的几何关系,判断动点的轨迹是椭圆,然后根据题中条件求出a,b的值,直接由椭圆标准方程写出即可.——————————————————————————————————————1.已知B、C是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形顶点A的轨迹方程.解:以过B、C两点的连线为x轴,线段BC的垂直平分线为y轴,建立直角坐标系xOy,如图.由|BC|=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,得|AB |+|AC |=10,因此,点A 的轨迹是以B 、C 为焦点的椭圆,但点A 不在x 轴上,由a =5,c =4,得b 2=a 2-c 2=25-16=9,所以点A 的轨迹方程为x 225+y 29=1(y ≠0).考点二用相关点法求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM ―→=2MP ′―→,求点M 的轨迹方程.[自主解答] 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . 因为P (x 0,y 0)在圆x 2+y 2=9上,所以x 20+y 20=9.将x 0=x ,y 0=3y 代入,得x 2+9y 2=9,即M 的轨迹方程为x 29+y 2=1.若将“点M 在PP ′上,并且PM ―→=2MP ′―→”改为“点M 在直线PP ′上,并且P ′M ―→=λP ′P ―→ (λ>0)”,则M 点的轨迹是什么?解:设M (x ,y ),P (x 0,y 0),∵PP ′⊥x 轴,且P ′M ―→=λP ′P ―→,∴x =x 0,y =λy 0,即x 0=x ,y 0=1λy .∵点P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.把x 0=x ,y 0=1λy 代入上式得,x 29+y 29λ2=1.当0<λ<1时,点M 的轨迹是焦点在x 轴上的椭圆; 当λ=1时,点M 的轨迹是圆;当λ>1时,点M 的轨迹是焦点在y 轴上的椭圆.——————————————————已知P 的轨迹方程,求M 的轨迹方程的步骤是先设出点P 和M 的坐标,根据条件写出P 点与M 点的坐标之间的关系,然后用M 点的坐标表示P 点的坐标,并代入P 点的坐标所满足的方程,整理即得M 的轨迹方程.动点M 与曲线上的点P 称为相关点(有关系的两点),这种求轨迹方程的方法称为相关点法(代入法).——————————————————————————————————————2.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ ―→=OM ―→+ON ―→,求动点Q 的轨迹方程.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0). 因为OQ ―→=OM ―→+ON ―→, 即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y2.又点M 在圆C 上,所以x 20+y 20=4,即x 2+y 24=4(y ≠0).所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).考点三与焦点有关的三角形问题如图所示,P 是椭圆x 24+y 23=1上的一点,F 1、F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[自主解答] 由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ②②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335. 即△PF 1F 2的面积是335.若将“∠PF 1F 2=120°”改为“∠F 1PF 2=60°”,其它条件不变,如何求解? 解:由已知a =2,b =3, ∴c =a 2-b 2=4-3=1.∴|F 1F 2|=2c =2,在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos 60°,∴4=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1|·|PF 2|cos 60°. ∴4=16-3|PF 1||PF 2|. ∴|PF 1||PF 2|=4.∴S △PF 1F 2=12|PF 1||PF 2|·sin 60°=12×4×32= 3.—————————————————— 在解焦点三角形的有关问题时,一般地利用两个关系式: (1)由椭圆的定义可得|PF 1|,|PF 2|的关系式;(2)利用正余弦定理或勾股定理可得|PF 1|,|PF 2|的关系式,然后求解得|PF 1|,|PF 2|,有时也根据需要,把|PF 1|+|PF 2|,|PF 1|-|PF 2|,|PF 1|·|PF 2|等看成一个整体来处理.——————————————————————————————————————3.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点,已知△PF 1F 2为直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.解:由已知|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 根据直角位置不同,分两种情况:①若∠PF 2F 1=90°,则⎩⎪⎨⎪⎧ |PF 1|2=|PF 2|2+20,|PF 1|+|PF 2|=6,∴有⎩⎨⎧|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72. ②若∠F 1PF 2=90°,则⎩⎪⎨⎪⎧20=|PF 1|2+|PF 2|2,|PF 1|+|PF 2|=6,解得|PF 1|=4,|PF 2|=2. ∴|PF 1||PF 2|=2. 综上所述,|PF 1||PF 2|的值为72或2.解题高手 妙解题 同样的结果,不一样的过程,节省解题时间,也是得分!已知椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴的交点为A 1,A 2,P 是椭圆上任一点,F 是它的一个焦点,证明:以线段PF 为直径的圆与以线段A 1A 2为直径的圆相切.[巧思] 判断两圆的位置关系,即判断两圆的圆心距与两圆的半径之间的关系.若M 为PF 的中点,则圆心距为|OM |.[妙解] 由椭圆方程x 2a 2+y 2b2=1(a >b >0)知,以线段A 1A 2为直径的圆为x 2+y 2=a 2.设F 1是椭圆的另外一个焦点,点M 是线段PF 的中点,则|MO |=12|PF 1|=12(2a -|PF |)=a -12|PF |.即以线段A 1A 2为直径的圆(圆心为O )与以线段PF 为直径的圆(圆心为M )的圆心距等于两圆的半径之差,于是两圆相切.1.到两定点F 1(-4,0),F 2(4,0)的距离之和为8的点的轨迹是( )A .椭圆B .线段C .圆D .直线解析:到两定点距离之和恰好等于两定点间的距离,故为线段. 答案:B2.“m >0且n >0”是“方程mx 2+ny 2=1表示椭圆”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:当m >0且n >0时,方程mx 2+ny 2=1,也可能表示圆;当方程mx 2+ny 2=1表示椭圆时一定有m >0,n >0.答案:B3.已知椭圆x 210-m +y 2m -2=1,焦点在y 轴上,若焦距为4,则m 等于 ( )A .4B .5C .7D .8解析:∵焦距为4,∴2c =4,c =2, ∴m -2-(10-m )=c 2=4,∴2m -12=4,m =8. 答案:D4.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.解析:由|PF 1|+|PF 2|=6,且|PF 1|=4知|PF 2|=2, 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.答案:2 120°5.若P 为椭圆x 29+y 25=1上任意一点,F 1,F 2的坐标分别为F 1(-2,0),F 2(2,0),则|PF 1|·|PF 2|的最大值为________.解析:由题意知F 1,F 2是椭圆的两个焦点,于是|PF 1|+|PF 2|=6,|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=9∴当且仅当|PF 1|=|PF 2|=3时,|PF 1|·|PF 2|取最大值9.答案:96.已知动圆M 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,求动圆圆心M 的轨迹方程.解:设动圆M 和定圆B 内切于点C ,动圆圆心M 到两定点A (-3,0),B (3,0)的距离之和恰好又等于定圆的半径,即|MA |+|MB |=|MC |+|MB |=|BC |=8,∴动圆圆心M 的轨迹是以A 、B 为焦点的椭圆, 且2a =8,2c =6,b =a 2-c 2=7. ∴动圆圆心的轨迹方程是x 216+y 27=1.一、选择题1.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 解析:由已知2c =|F 1F 2|=23, ∴c = 3.又2a =|PF 1|+|PF 2|=2|F 1F 2|=43,∴a =2 3.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.答案:B2.设集合A ={1,2,3,4},m ,n ∈A ,则方程x 2m +y 2n=1表示焦点在x 轴上的椭圆的个数是 ( )A .6B .8C .12D .16解析:由题意知m >n . 当m =2时,n =1, 当m =3时,n =1,2, 当m =4时,n =1,2,3, ∴共有6个.答案:A3.若椭圆x 216+y 2m=1的焦距为6,则m的值为( )A .7B .7或25C .25 D.7或5解析:①设a 2=16,b 2=m ,∴c 2=16-m ,∴16-m =9,∴m =7;②设a 2=m ,b 2=16,则c 2=m -16,∴m -16=9,∴m =25.答案:B4.已知圆x 2+y 2=1,从这个圆上任意一点P 向y 轴作垂线,垂足为P ′,则PP ′的中点M 的轨迹方程是 ( )A .4x 2+y 2=1B .x 2+y 214=1C.x 24+y 2=1 D .x 2+y 24=1解析:设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 02,y =y 0.∵P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1.①将x 0=2x ,y 0=y 代入方程①,得4x 2+y 2=1. 答案:A 二、填空题5.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=________. 解析:由椭圆方程x 225+y 29=1知,a =5,b =3,∴c =4,即点A (-4,0)和C (4,0)是椭圆的焦点.又点B 在椭圆上,∴|BA |+|BC |=2a =10,且|AC |=8.于是,在△ABC 中,由正弦定理,得sin A +sin C sin B =|BC |+|BA ||AC |=54.答案:546.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.解析:如图,当P 在y 轴上时△PF 1F 2面积最大, ∴12×8b =12,∴b =3, 又∵c =4, ∴a 2=b 2+c 2=25.∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=17.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.解析:如图,设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知|MF 2|=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点,所以|ON |=12|MF 2|=4.答案:48.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=________.解析:由椭圆的方程可知F 1的坐标为(-3,0), 设P (-3,y ),把P (-3,y )代入椭圆的方程中,得|y |=12,即|PF 1|=12.根据椭圆的定义,得|PF 1|+|PF 2|=4,故|PF 2|=4-|PF 1|=4-12=72.答案:72三、解答题 9.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,求点M 的轨迹C 的方程,并判断此曲线的类型.解:设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上, ∴x 2+⎝⎛⎭⎫54y 2=25,即C 的方程为x 225+y 216=1.该曲线表示椭圆.10.在直线l :x -y +9=0上取一点P ,过点P 以椭圆x 212+y 23=1的焦点为焦点作椭圆.(1)P 点在何处时,所求椭圆长轴最短; (2)求长轴最短时的椭圆方程.解:(1)由题意知椭圆两焦点坐标分别为F 1(-3,0)、F 2(3,0).设点F 1(-3,0)关于直线l 的对称点F ′1的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0+3=-1,x 0-32-y 02+9=0,解得⎩⎪⎨⎪⎧x 0=-9,y 0=6,∴F ′1(-9,6).则过F ′1和F 2的直线方程为y -6-6=x +93+9,整理得x +2y -3=0联立⎩⎪⎨⎪⎧ x +2y -3=0,x -y +9=0,解得⎩⎪⎨⎪⎧x =-5,y =4,即P 点坐标为(-5,4)(2)由(1)知2a =|F ′1F |=180, ∴a 2=45. ∵c =3, ∴b 2=a 2-c 2=36.∴所求椭圆的方程为x 245+y 236=1.。
3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。