2.2.1椭圆及其标准方程
- 格式:ppt
- 大小:1.02 MB
- 文档页数:1
2.2 椭圆2.2.1椭圆及其标准方程[提出问题]取一条定长的细绳,把它的两端分别固定在图板的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖.问题1:若绳长等于两点F1,F2的距离,画出的轨迹是什么曲线?提示:线段F1F2.问题2:若绳长大于两点F1,F2的距离,画出的轨迹还是线段吗?其图形又是什么?提示:不是线段,椭圆.[导入新知]椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,即|MF1|+|MF2|=2a(2a>|F1F2|).[注意]椭圆的定义要特别注意:(1)若2a>2c,则点P的轨迹是椭圆(点P是动点);(2)若2a=2c,则点P的轨迹是线段F1F2;(3)若2a<2c,则点P的轨迹不表示任何图形.[提出问题]在平面直角坐标系中,设A(-4,0),B(4,0),C(0,4),D(0,-4).问题1:若|PA|+|PB|=10,则点P的轨迹方程是什么?提示:轨迹方程为x225+y29=1.问题2:若|PC|+|PD|=10,则点P的轨迹方程是什么?提示:y225+x29=1.[导入新知][注意]1.标准方程的几何特征:椭圆的中心在坐标原点,焦点在x轴或y轴上,对称轴是坐标轴.2.标准方程的代数特征:方程右边是1,左边是关于x,y的平方和,并且分母不相等.>b>0)焦点在x轴上,椭圆x2b2轴上,分母下谁大焦点就在谁的坐标轴上,这叫“大小定焦点”.[例1]当3<k<9时,指出方程x9-k+yk-3=1表示的曲线.[解]∵3<k<9,∴9-k>0,k-3>0.(1)当9-k>k-3,即3<k<6时,方程表示焦点在x轴上的椭圆;(2)当9-k=k-3,即k=6时,方程表示圆x2+y2=3;(3)当9-k<k-3,即6<k<9时,方程表示焦点在y轴上的椭圆.[类题通法]根据椭圆标准方程的两种形式可知,焦点在哪一坐标轴上,哪一变量对应的分母大,即x2对应的分母大,焦点就在x轴上;y2对应的分母大,焦点就在y 轴上.[活学活用]已知椭圆x210-m+y2m-2=1的焦点在y轴上,若焦距为4,则m等于________.解析:由题意得m-2>10-m>0,解得6<m<10.又a2=m-2,b2=10-m,则c2=a2-b2=2m-12=4,解得m=8.答案:8[例2](1)两个焦点的坐标分别是(-4,0)和(4,0),且椭圆经过点(5,0);(2)焦点在y轴上,且经过两个点(0,2)和(1,0).[解](1)因为椭圆的焦点在x轴上,所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0). 将点(5,0)代入上式解得a =5,又c =4,所以b 2=a 2-c 2=25-16=9.故所求椭圆的标准方程为x 225+y 29=1. (2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). 因为椭圆经过点(0,2)和(1,0),所以⎩⎪⎨⎪⎧ 4a 2+0b 2=1,0a 2+1b 2=1,⇒⎩⎪⎨⎪⎧ a 2=4,b 2=1. 故所求椭圆的标准方程为y 24+x 2=1. [类题通法]确定椭圆的方程包括“定位”和“定量”两个方面(1)“定位”是指确定与坐标系的相对位置,在中心为原点的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;(2)“定量”是指确定a 2,b 2的具体数值,常根据条件列方程求解.[活学活用]求适合下列条件的椭圆的标准方程:(1)经过两点(2,-2),⎝⎛⎭⎪⎫-1,142; (2)过点(3,-5),且与椭圆y 225+x 29=1有相同的焦点. 解:(1)法一:若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0). 由已知条件得⎩⎪⎨⎪⎧ 4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎪⎨⎪⎧ 1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1. 若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0). 由已知条件得⎩⎪⎨⎪⎧ 4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎪⎨⎪⎧ 1b 2=18,1a 2=14.即a 2=4,b 2=8,则a 2<b 2,与题设中a >b >0矛盾,舍去.综上,所求椭圆的标准方程为x 28+y 24=1. 法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).将两点(2,-2),⎝ ⎛⎭⎪⎫-1,142代入,得⎩⎨⎧ 4A +2B =1,A +144B =1,解得⎩⎪⎨⎪⎧ A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1. (2)因为所求椭圆与椭圆y 225+x 29=1的焦点相同, 所以其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0). 因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b 2=1.② 由①②得b 2=4,a 2=20,所以所求椭圆的标准方程为y 220+x 24=1.[例3] 已知P 为椭圆x 12+y 3=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.[解] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,即36=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.①由椭圆的定义得|PF 1|+|PF 2|=43,即48=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.②由①②得|PF 1|·|PF 2|=4.∴S 12V F PF =12|PF 1|·|PF 2|·sin 60°= 3. [类题通法](1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解.[活学活用]已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2是它的焦点.过F 1的直线AB 与椭圆交于A ,B 两点,求△ABF 2的周长.解:∵|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,则△ABF 2的周长=|AB |+|BF 2|+|AF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a ,∴△ABF 2的周长为4a .2.定义法求解轨迹方程定义法是求轨迹方程的一种常用方法.求解时,若能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.下面利用椭圆的定义求轨迹方程.1.求三角形顶点的轨迹方程[例] 已知B ,C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.[解] 以过B ,C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0),c =4.由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0,且y ≠0),这个椭圆上的点与两焦点的距离之和2a =10,但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0). [类题通法]利用椭圆的定义求动点的轨迹方程,应先根据动点具有的条件,验证是否符合椭圆的定义,即动点到两定点距离之和是否是一常数,且该常数(定值)大于两点的距离,若符合,则动点的轨迹为椭圆,然后确定椭圆的方程.这就是用定义法求椭圆标准方程的方法,要注意检验.[活学活用]1.若本题中“且△ABC 周长等于18”变为“且△ABC 周长等于24”,试求此时顶点A 的轨迹方程.解:由题可知,此时2a =24-8=16,则a =8,c =4,得b 2=a 2-c 2=48,64482.求动圆圆心的轨迹方程[例] 已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.[解] 设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0),且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1. [类题通法]巧妙地应用几何知识(两圆内切时圆心距与半径之间的关系),寻求到|MA |+|MB |=8,而且8>|AB |=6,从而判断动点M 的轨迹是椭圆.[活学活用]2.已知动圆M 和定圆C 1:x 2+(y -3)2=64相内切,并且外切于定圆C 2:x 2+(y +3)2=4,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r ,圆心M (x ,y ),两定圆圆心C 1(0,3),C 2(0,-3),半径r 1=8,r 2=2.则|MC 1|=8-r ,|MC 2|=r +2.故|MC 1|+|MC 2|=(8-r )+(r +2)=10.又|C 1C 2|=6,则动圆圆心M 的轨迹是椭圆,设其方程为y 2a 2+x 2b 2=1(a >b >0), 且焦点为C 1(0,3),C 2(0,-3),2a =10,即a =5,c =3,则b 2=a 2-c 2=25-9=16.2516。
§2.2.1椭圆及其标准方程(2)编写:英德市第二中学,叶加修;审核:英西中学,刘东【学习目标】熟练椭圆方程的求解【知识回顾】1. 椭圆221259x y +=上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.102.椭圆 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)3.小结:【新知构建】用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上.(2)设方程:①依据上述判断设方程为 或 .②在不能确定焦点位置的情况下也可设 .(3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组.(4)解方程组,代入所设方程即为所求.例1 已知圆A :(x +3)+y =100,圆A 内一定点B(3,0),圆P 过B 点且与圆A 内切,求圆心P 的轨迹方程.例2 已知两圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部和圆C 1相内切,和圆C 2相外切,求动圆圆心的轨迹.小结: 22125169x y +=【当堂练习】1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是( )A .圆B .直线C .椭圆D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x 26=1 C.y 24+x 28=1 D.y 26+x 210=1 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.小结:【课后作业】1.椭圆x 2m +y 24=1的焦距是2,则m 的值为( ) A .5或3 B .8 C .5 D .32. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,2)B .(0,+∞)C .(-∞,1)D .(0,1)3.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为( )A .20B .22C .24D .284. 一动圆过定点A (1,0),且与定圆(x +1)2+y 2=16相切,则动圆圆心轨迹方程是__________.5. 与椭圆x 2+4y 2=4有公共的焦点,且经过点A (2,1)的椭圆的方程为 .6.△ABC 的三边a >b >c 且成等差数列,A 、C 两点的坐标分别是(-1,0)、(1,0),求顶点B 的轨迹方程。
2.2.1 椭圆及其标准方程(二)一、基础过关1.设F 1,F 2为定点,|F 1F 2|=10,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( )A .椭圆B .不存在C .圆D .线段 答案 B解析 由于动点M 到两定点的距离之和等于8且小于|F 1F 2|,所以动点M 的轨迹不存在.2.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10答案 D解析 由椭圆的标准方程得a 2=25,a =5.由椭圆的定义知|PF 1|+|PF 2|=2a =10.3.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( ) A.32B. 3C.72D .4答案 C解析 不妨设F 1的坐标为(3,0),P 点坐标为(x 0,y 0),∵PF 1与x 轴垂直,∴x 0= 3.把x 0=3代入椭圆方程x 24+y 2=1,得y 20=14, ∴|PF 1|=12,∴|PF 2|=4-|PF 1|=72. 4.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线答案 B解析 由题意知|PO |=12|MF 2|,|PF 1|=12|MF 1|, 又|MF 1|+|MF 2|=2a ,所以|PO |+|PF 1|=a >|F 1O |=c ,故由椭圆的定义知P 点的轨迹是椭圆.5.曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( ) A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对答案 B解析 对于方程x 225+y 29=1,其焦点在x 轴上,且c =4.对于方程x 29-k +y 225-k=1, ∵0<k <9,∴0<9-k <9,16<25-k <25.∴25-k >9-k ,且25-k -(9-k )=16.由此可知,方程x 29-k +y 225-k=1的焦点在y 轴上,且c =4. 故曲线x 225+y 29=1与x 29-k +y 225-k=1有相等的焦距,不同的焦点. 6.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .双曲线的一支D .抛物线答案 A解析 如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数).又∵|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A.7.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.解 利用中垂线的性质,我们知道|P A |=|PB |,|PB |+|PF |=2,∴|P A |+|PF |=2>1,结合椭圆的定义,我们知道点P 的轨迹是以A ,F 为焦点的椭圆.a =1,c =12,∴b 2=34. ∴动点P 的轨迹方程为x 2+43y 2=1. 二、能力提升8.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34] B .[38,34] C .[12,1] D .[34,1] 答案 B 解析 由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫2619,2419,此时直线P A 1的斜率k =38. 同理,当直线P A 2的斜率为-1时,直线P A 2的方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫27,127,此时直线P A 1的斜率k =34. 数形结合可知,直线P A 1斜率的取值范围是⎣⎡⎦⎤38,34.9.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.答案 6解析 由PF 1→·PF 2→=0,得PF 1⊥PF 2,∴|PF 1→+PF 2→|=2|PO →|=|F 1F 2|=6.10.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2 (a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2. 其中,所有正确结论的序号是__________.答案 ②③解析 设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得(x +1)2+y 2·(x -1)2+y 2=a 2 (a >1),将原点(0,0)代入等式不成立,故①不正确.∵点P (x ,y )在曲线C 上,∴点P 关于原点的对称点为P ′(-x ,-y ),将P ′代入曲线C 的方程等式成立,故②正确.设∠F 1PF 2=θ,则S △F 1PF 2=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.11.已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上, ∴x 2036+y 209=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧x 0=x ,y 0=y 2. 把⎩⎪⎨⎪⎧x 0=x ,y 0=y 2代入x 2036+y 209=1, 得x 236+y 236=1, 即x 2+y 2=36,∴P 点的轨迹方程为x 2+y 2=36.12.P 是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,求动点Q 的轨迹方程.解 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y ) =⎝⎛⎭⎫-x 2,-y 2, 即P 点坐标为⎝⎛⎭⎫-x 2,-y 2, 又P 点在椭圆上,∴⎝⎛⎭⎫-x 22a 2+⎝⎛⎭⎫-y 22b 2=1, 即x 24a 2+y 24b 2=1, ∴动点Q 的轨迹方程为x 24a 2+y 24b 2=1 (a >b >0). 三、探究与拓展13.如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解 由题意知点M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |.又点M 在AQ 的垂直平分线上,则|MA |=|MQ |,∴|MA |+|MC |=|CQ |=5.∵A (1,0),C (-1,0),∴点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214. 故点M 的轨迹方程为x 2254+y 2214=1.。
2.2.1椭圆及其标准方程(二)【教学目标】1.理解椭圆的定义及标准方程;2.掌握用定义法和待定系数法求椭圆的标准方程;3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学科素养】数学抽象、逻辑推理,数学运算.【教学重点】椭圆的定义及标准方程的推导.【教学难点】理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学法指导】教师启发讲授,学生探究学习.复习回顾问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?新知探究例2:如图,在圆422=+y x 上任意取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么? 点评:相关点法(代入法)(设计意图:利用直线中点坐标公式,探求动点轨迹)变式训练2:教材第50页B 组第一题例3:如图所示,设A ,B 的坐标分别是()()0,5,0,5-,直线BM AM ,相交于点M ,且它们的斜率之积是94-,求M点得轨迹方程。
(设计意图:把直线相关知识与椭圆结合到一起,加强知识之间的联系,以此培养学生 的知识串联能力)点评:参数法变式训练3:(教材第42页练习第4题)小结:求解与椭圆相关的轨迹问题的方法1、写出适合下列条件的椭圆的标准方程:(1)1,4==b a ,焦点在x 轴上;(2)15,4==c a ,焦点在y 轴上;(3)52,10==+c b a2、椭圆2211625x y +=的焦点坐标为( )A (0, ±3)B (±3, 0)C (0, ±5)D (±4, 0)3、在方程22110064x y +=中,下列a, b, c 全部正确的一项是( ) A a=100, b=64, c=36 B a=10, b=6, c=8C a=10, b=8, c=6D a=100, c=64, b=36 教材第42页练习第1题、第3题.课堂小结1.椭圆的概念及标准方程;2.求椭圆方程的方法.作业布置 习题2.2A 组5 、7板书设计椭圆及其标准方程1、椭圆的定义 例2: 例32、椭圆的标准方程课后感悟。
P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。
◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。
教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。
教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。
课题:2.2.1椭圆及其标准方程重难点突破预设方案一、联系生活实际,突破重难点。
《数学课程标准》指出:“教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值”。
数学起源于生活,又作用于生活,运用所学数学知识,解决生活中的许多实际问题,能使学生进一步对数学产生亲切感,增强学生对数学知识的应用意识,从而培养学生的自主创新能力。
在《椭圆及其标准方程》一课中,1、取一条定长的细绳,把它的两端都固定在图板的同一处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个什么图形?2.如果把细绳两端拉开一段距离,分别固定在图板上的两点F1、F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?3.在问题2中,移动的笔尖始终满足怎样的几何条件?教师轻而易举地突破了重点。
二、采到“自主探究”的学习方式,突破重难点。
“自主探究”地学习更有利于知识的掌握和能力的培养。
在教学中当学生已经理解椭圆定义的情况下解决问题情境中提出的实际问题时,教师趁热打铁地让学生自主探究:1.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点的轨迹是() A.椭圆B.线段C.圆D.以上都不对2.若焦点在x轴上的椭圆的方程是x26+y2m2=1,则该椭圆焦距的取值范围是()A.(0,6) B.(0,6) C.(0,26) D.(0, 12)3.若椭圆x225+y29=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6 C.4D.1学生掌握了知识,并体会到了自己的自主作用,同时教学的重难点也迎刃而解。
三、通过有效的学生活动进一步巩固知识,使重难点化于无形。
当学生已经对知识有一定的掌握后。
若方程x25-k+y2k-3=1表示椭圆,求k的取值范围.(易错辨析:忽略椭圆标准方程的隐含条件致误)教师安排让学生用使本节的知识在学生的脑袋里相当牢固。
2.2.1椭圆及其标准方程(1)教学目标:重点: 椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程.难点:椭圆标准方程的建立和推导.知识点:椭圆定义及标准方程.能力点:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力懂得欣赏数学的“简洁美”,并渗透数形结合和等价转化的数学思想方法.教育点:通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力,培养学生探索数学的兴趣,激发学生的学习热情.自主探究点:1.通过教学情境中具体的学习活动(如动手实验、自主探究、合作交流等),引导学生发现并提出数学问题,并在作出合理推导的基础上,形成椭圆的定义;2.探讨椭圆标准方程的最简形式,并通过对解决问题过程的反思,获得求曲线方程的一般方法.考试点:椭圆定义及标准方程,利用其解决有关的椭圆问题易错易混点:在用椭圆标准方程时,学生一般在“焦点的位置”上容易出错.拓展点:如何利用坐标法探讨其它圆锥曲线的方程.教具准备多媒体课件和三角板课堂模式学案导学一、引入新课【创设情景】材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:20XX 年6月16日下午18时,“神州九号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州九号”飞船的运行轨道是什么?多媒体展示“神州九号”运行轨道图片.【设计意图】利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆.通过“神州九号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想. 思考1:自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?思考2:在圆的学习中我们知道,平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?【设计意图】对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆. 学生分组做试验,教师同时做好指导:按照课本上介绍的方法,学生用一块纸板;两个图钉,一根无弹性的细绳试画椭圆,让学生自己动手画,同桌相互切磋,探讨研究.(提醒学生:作图过程中注意观察椭圆的几何特征,即椭圆上的点要满足怎样的几何条件)思考:点M 运动时,12,F F 移动了吗?点M 按照什么条件运动形成的轨迹是椭圆?1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程, 师生共同总结规律:当1212||||||MF MF F F +> 时,M 点的轨迹为椭圆;当1212||||||MF MF F F +=时,M 点的轨迹为线段1F 2F ; 当1212||||||MF MF F F +<时,M 点的轨迹不存在. 【设计意图】在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.二、探究新知 (一)归纳定义思考:焦点为21,F F 的椭圆上任一点M ,有什么性质?设椭圆上任一点为M ,则有)22(22121F F c a a MF MF =>=+【设计意图】通过学生观察、思考、讨论,概括出椭圆的定义,让学生全程参与概念的探究过程,加深理解,提高概括能力和数学语言的表达能力.(二)椭圆标准方程的推导复习提问求曲线方程的一般步骤:(教师提问,针对对于学生回答情况做一总结) (1)建系、设点;(2)写出点的集合;(3)列式;(4)化简;(5)证明. 思考:如何建系,才能使求出的方程最简呢?由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,把学生分成若干组,分别按不同的建系的方法推导方程,进行比较。
§2.2.1 椭圆及其标准方程一、教学目标1.知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.2.能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.二、重点、难点1.重点:椭圆的定义和椭圆的标准方程.2.难点:椭圆的标准方程的推导.三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题2:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……认识椭圆(幻灯片)在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.,,(三)例题与练习例1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为∵ 2a =10,2c =8,∴ a =5,c =4.∴ b2=a2-c2=52-42=9.所以所求椭圆的标准方程为(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,又c=2,∴ b2=a2-c2=10-4=6.所以所求椭圆的标准方程为练习:求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且a =4,c =2; (2)经过点A (0,2)和B (12,3). 【解】 (1)a 2=16,c 2=4,∴b 2=16-4=12且焦点在x 轴上,故椭圆的标准方程为x 216+y 212=1. (2)设所求椭圆的标准方程为 Mx 2+Ny 2=1(M >0,N >0,M ≠N ).∵椭圆经过A (0,2)和B (12,3)两点, ∴⎩⎪⎨⎪⎧M ·0+N ·4=1M ·14+N ·3=1,解得⎩⎪⎨⎪⎧ M =1N =14. ∴所求椭圆方程为x 2+y 24=1. (四)小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.2.焦点:F1(-c ,0),F2(c ,0).F1(0,-c),F2(0,c).3.讨论了求椭圆标准方程的方法:注意:求出曲线的方程之后,要验证方程的曲线上的点是否都符合题意,如有不符合题意的点应在所得方程后注明限制条件。
2.2椭圆2.2.1椭圆及其标准方程1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?[提示](1)点的轨迹是线段F1F2.(2)当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆的标准方程1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8 D.10D[由椭圆方程知a2=25,则a=5,|PF1|+|PF2|=2a=10.]2.椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为()A.x2100+y236=1 B.y2400+x2336=1C.y2100+x236=1 D.y220+x212=1C[由题意知c=8,2a=20,∴a=10,∴b2=a2-c2=36,故椭圆的方程为y2100+x236=1.]3.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A.x24+y23=1 B.x24+y2=1C.y24+x23=1 D.y24+x2=1A[由题意知c=1,椭圆的焦点在x轴上,设椭圆方程为x2a2+y2b2=1,又点P(2,0)在椭圆上,∴4a2+b2=1,∴a2=4,b2=a2-c2=3,故椭圆方程为x24+y23=1.]4.椭圆8k2x2-ky2=8的一个焦点坐标为(0,7),则k的值为________.-1或-17[原方程可化为x21k2+y2-8k=1.依题意,得⎩⎪⎨⎪⎧-8k >0,-8k >1k 2,-8k -1k 2=7,即⎩⎪⎨⎪⎧k <0,k <-18,k =-1或k =-17.所以k 的值为-1或-17.](1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). [解] (1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0). ∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1. (2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). ∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1. (3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(3)2a 2+(-2)2b 2=1,(-23)2a 2+1b 2=1,解得⎩⎨⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1. ②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b 2=1,1a 2+(-23)2b 2=1,解得⎩⎨⎧a 2=5,b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎨⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1[答案] B【例2】 (1)椭圆x 9+y 2=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.思路探究:(1)求|PF 2|→求cos ∠F 1PF 2→求∠F 1PF 2的大小 (2)椭圆定义和余弦定理→建立关于|PF 1|,|PF 2|的方程→联立求解|PF 1|→求三角形的面积(1)120° (2)335 [(1)由x 29+y 22=1,知a =3,b =2, ∴c =7.∴|PF 2|=2a -|PF 1|=2,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=-12,∴∠F 1PF 2=120°.(2)由x 24+y 23=1,可知a =2,b =3,所以c =a 2-b 2=1,从而|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2,即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义得|PF 1|+|PF 2|=2a =4. ② 由①②联立可得|PF 1|=65.所以S △PF 1F 2=12|PF 1||F 1F 2|sin ∠PF 1F 2=12×65×2×32=335.]1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.在处理椭圆中的焦点三角形问题时,可结合椭圆的定义|MF 1|+|MF 2|=2a 及三角形中的有关定理和公式(如正弦定理、余弦定理、三角形面积公式等)来求解.2.(1)已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=30°,则△F 1PF 2的面积是__________________.8-43 [由椭圆的标准方程,知a =5,b =2, ∴c =a 2-b 2=1,∴|F 1F 2|=2. 又由椭圆的定义,知 |PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=16(2-3).∴S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×16(2-3)×12=8-4 3.] (2)设P 是椭圆x 24+y 23=1上一点,F 1,F 2是椭圆的焦点,若∠PF 1F 2=90°,则△F 1PF 2的面积是________.32 [由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.]1.如图所示,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.[提示] 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.2.如图所示,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?[提示] 当题目中所求动点和已知动点存在明显关系时,一般利用代入法(相关点法)求解.用代入法(相关点法)求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为M (x ,y ),已知曲线上动点坐标为P (x 1,y 1).(2)求关系式:用点M 的坐标表示出点P 的坐标,即得关系式⎩⎨⎧x 1=g (x ,y ),y 1=h (x ,y ). (3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.【例3】 (1)已知P 是椭圆x 24+y 28=1上一动点;O 为坐标原点,则线段OP 中点Q 的轨迹方程为______________.(2)一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.思路探究:(1)点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.(2)由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.(1)x2+y22=1[设Q(x,y),P(x0,y0),由点Q是线段OP的中点知x0=2x,y0=2y,又x204+y208=1.所以(2x)24+(2y)28=1,即x2+y22=1.](2)解:由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=1;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R,如图.由题设有|MQ1|=1+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=10>|Q1Q2|=6.由椭圆的定义,知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3.所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法为代入法.例(2)所用方法为定义法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P(x,y)与另一个已知曲线C:F(x,y)=0上的动点Q(x1,y1)存在着某种联系,可以把点Q的坐标用点P的坐标表示出来,然后代入已知曲线C的方程F(x,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.(1)已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任一点,求线段AQ 中点M 的轨迹方程.[解] 设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0). 利用中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,∴⎩⎨⎧x 0=2x -1,y 0=2y .∵Q (x 0,y 0)在椭圆x 24+y 2=1上, ∴x 204+y 20=1.将x 0=2x -1,y 0=2y 代入上式, 得(2x -1)24+(2y )2=1.故所求AQ 的中点M 的轨迹方程是 ⎝ ⎛⎭⎪⎫x -122+4y 2=1. (2)在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=32,曲线E 过C 点,动点P 在曲线E 上运动,且|P A |+|PB |是定值.建立适当的平面直角坐标系,求曲线E 的方程.[解] 以AB 的中点O 为原点,建立如图所示的平面直角坐标系.由题意可知,曲线E 是以A ,B 为焦点,且过点C 的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0).则2a =|AC |+|BC |=32+52=4,2c =|AB |=2,所以a =2,c =1,所以b 2=a 2-c 2=3.所以曲线E 的方程为x 24+y 23=1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x 2a 2+y 2b 2=1与y 2a 2+x 2b 2=1这两个标准方程中,都有a >b >0的要求,如方程x 2m +y 2n =1(m >0,n >0,m ≠n )就不能确定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式x a +y b =1类比,如x 2a 2+y 2b 2=1中,由于a >b ,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看x 2,y 2分母的大小).3.对于求解椭圆的标准方程一般有两种方法:一是通过待定系数法求解,二是通过椭圆的定义进行求解.1.已知A (-5,0),B (5,0).动点C 满足|AC |+|BC |=10,则点C 的轨迹是( )A .椭圆B .直线C .线段D .点 C [由|AC |+|BC |=10=|AB |知点C 的轨迹是线段AB .]2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A .1 B .2 C .3 D .4B[椭圆方程可化为x 2+y24k =1,由题意知⎩⎪⎨⎪⎧4k >1,4k -1=1,解得k =2.]3.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.48 [由题意知⎩⎨⎧|PF 1|+|PF 2|=14, ①|PF 1|2+|PF 2|2=100, ② ①2-②得2|PF 1||PF 2|=96.所以|PF 1||PF 2|=48.]4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.[解] 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32=10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.。