2014年高考数学函数与导数
- 格式:doc
- 大小:1.46 MB
- 文档页数:16
2014年全国高考试卷导数部分汇编(上)1. (2014安徽理18文20)设函数23()1(1)f x a x x x =++--,其中0a >.⑴讨论()f x 在其定义域上的单调性;⑵当[01]x ∈,时,求()f x 取得最大值和最小值时的x 的值. 【解析】 ⑴ ()f x 的定义域为2()'()123f x a x x -∞+∞=+--,,.令'()0f x =,得1212x x x x ==<, 所以12'()3()()f x x x x x =---.当1x x <或2x x >时,'()0f x <;当12x x x <<时,'()0f x >. 故()f x 在1()x -∞,和2()x +∞,内单调递减,在12()x x ,内单调递增. ⑵ 因为0a >,所以1200x x <>,. ①当4a ≥时,21x ≥.由⑴知,()f x 在[01],上单调递增. 所以()f x 在0x =和1x =处分别取得最小值和最大值. ②当04a <<时,21x <由⑴知,()f x 在2[0]x ,上单调递增,在2[1]x ,上单调递减.所以()f x 在2x x ==又(0)1(1)f f a ==,,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =处和1x =处同时取得最小值; 当14a <<时,()f x 在0x =处取得最小值.评析 本题考查利用导数求函数的单调区间和最大(小)值,同时考查分类讨论的思想,分为讨论的关键是确定分类的标准.2. (2014安徽理21)设实数0c >,整数1p >,*n N ∈.⑴证明:当1x >-且0x ≠时,(1)1p x px +>+; ⑵数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+.证明:11p n n a a c +>>. 【解析】 ⑴ 用数学归纳法证明:①当2p =时,22(1)1212x x x x +=++>+,原不等式成立. ②假设(2*)p k k k =N ≥,∈时,不等式(1)1k x kx +>+成立. 当1p k =+时,12(1)(1)(1)(1)(1)1(1)1(1)k k x x x x kx k x kx k x ++=++>++=+++>++所以1p k =+时,原不等式也成立.综合①②可得,当10x x >-,≠,对一切整数1p >,不等式(1)1p x px +>+均成立. ⑵ 证法一:先用数学归纳法证明1pn a c >. ①当1n =时,由题设11pa c >知1pn a c >成立. ②假设(1*)n k k k =N ≥,∈时,不等式1pn a c >成立. 由111pn n n p c a a a p p-+-=+易知0*n a n >N ,∈. 当1n k =+时,11111p k k p k k a p c ca a p p p a -+⎛⎫-=+=+- ⎪⎝⎭. 当10pk a c >>得11110p k cp p a ⎛⎫-<-<-< ⎪⎝⎭. 由⑴中的结论得11111ppk p k k a c p a p a +⎡⎤⎛⎫⎛⎫=+->+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.11p p k kcc p a a ⎛⎫-= ⎪⎝⎭. 因此1pk ac +>,即11pk a c +>.所以1n k =+时,不等式1rn a c >也成立.综合①②可得,对一切正整数n ,不等式1pn a c >均成立. 再由1111n p n n a ca p a +⎛⎫=+- ⎪⎝⎭可得11n n a a +<,即1n n a a +<.综上所述,11pn n a a c +>>,*n N ∈.证法二:设111()p p p cf x x x x c p p --=+,≥,则p x c ≥, 并且11()(1)10p p p c p c f x p x p p p x ---⎛⎫'=+-=-> ⎪⎝⎭,1p x c >. 由此可得,()f x 在1p c ⎡⎫+∞⎪⎢⎪⎢⎣⎭,上单调递增.因而,当1px c >时,11()()p pf x f c c >=, ①当1n =时,由110pa c >>,即1p a c >可知12111111111p p p c c a a a a a p p p a -⎡⎤⎛⎫-=+=+-<⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,并且121()pa f a c =>,从而112p a a c >>.故当1n =时,不等式11pn n a a c +>>成立.②假设(1*)n k k k =N ≥,∈时,不等式11pk k a a c +>>成立,则当1n k =+时,11()()()p k k f a f a f c +>>,即有112pk k a a c ++>>. 所以1n k =+时,原不等式也成立.综合①②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.3. (2014安徽文15)若直线l 与曲线C 满足下列两个条件:⑴直线l 在点()00P x y ,处与曲线C 相切; ⑵曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线:0l y =在点()00P ,处“切过”曲线C :2y x = ②直线:1l x =-在点()10P -,处“切过”曲线C :2(1)y x =+ ③直线:l y x =在点()00P ,处“切过”曲线C :sin y x = ④直线:l y x =在点()00P ,处“切过”曲线C :tan y x = ⑤直线:1l y x =-在点()10P ,处“切过”曲线C :ln y x = 【解析】 ①③④①直线0l y =:在()00P ,处与曲线3C y x =:相切,且曲线C 位于直线l 的两侧,①对; ②直线1l x =-:不是曲线()21C y x =+:在()10P -,处的切线,②错; ③中cos y x '=,cos 01=,因此曲线sin C y x =:在()00P ,处的切线为l y x =:,设()s i n f x x x =-,则()1cos 0f x x '=-≥,即()f x 是增函数,又()00f =,从而当0x <时,()0sin f x x x ⇒<<,当0x >时,()0sin f x x x ⇒>>,即曲线sin C y x =:在()00P ,附近位于直线l 的两侧,③正确;④中22sin 111cos cos cos 0x y x x ⎛⎫'='== ⎪⎝⎭,,因此曲线tan C y x =:在()00P ,处的切线为l y x =:,设()tan g x x x =-,则()21ππ10cos 22g x x x ⎛⎫'=-- ⎪⎝⎭<<≤,即()g x 在ππ22⎛⎫- ⎪⎝⎭,上是减函数,且()00g =,同③得④正确;⑤中1111y x '==,,因此曲线ln C y x =:在()10P ,处的切线为1l y x =-:,设()()1l n 0h x x x x =-->,则()111x h x x x-'=-=,当01x <<时,()0h x '<,当1x >时,()0h x '>,因此当1x =时,()()min 10h x h ==,因此曲线C 在()10P ,附近位于直线l 的一侧,故⑤错误.因此答案为①③④评析 本题考查导数的几何意义及导数在函数中的应用,解题时结合图象可简化运算和推理的过程.4. (2014北京理18)已知函数()πcos sin 02f x x x x x ⎡⎤=-,∈,⎢⎥⎣⎦,⑴求证:()0f x ≤;⑵若sin x a b x <<对π02x ⎛⎫∈, ⎪⎝⎭恒成立,求a 的最大值与b 的最小值. 【解析】 ⑴ ()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减, 所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤. ⑵ 法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”, 令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1.法二: 令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦, 则()2cos sin x x xg x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 的最大值为2π.b 的最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥, 综上知:b 的最小值为1.5. (2014北京文20)已知函数3()23f x x x =-.⑴求()f x 在区间[]21-,上的最大值;⑵若过点(1)P t ,存在3条直线与曲线()y f x =相切,求t 的取值范围;⑶问过点(12)(210)(02)A B C -,,,,,分别存在几条直线与曲线()y f x =相切?(只需写出结论)【解析】 ⑴ 由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛ ⎝⎭()11f f ==-⎝⎭所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝⎭⑵ 设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -, 因此()()2000631t y x x -=--.整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.()()21212121g x x x x x '=-=-. ()g x 与()g x '的情况如下:当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点. 当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,, 所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点. 由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--,. ⑶ 过点()12A -, 存在3条直线与曲线()y f x =相切; 过点()210B , 存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:6. (2014大纲理7)曲线1e x y x -=在点()11,处切线的斜率等于( ) A .2e B .eC .2D .1【解析】 C7. (2014大纲理16)若函数()cos2sin f x x a x =+在区间ππ62⎛⎫⎪⎝⎭,上是减函数,则a 的取值范围是____________.【解析】 (]2-∞, 8. (2014大纲理22)函数()()()ln 11axf x x a x a=+->+. ⑴讨论()f x 的单调性;⑵设11a =,1ln(1)n n a a +=+,证明:2322n a n n <++≤. 【解析】 ⑴ ()f x 的定义域为()1-+∞,,()()()()222'1x x a a f x x x a ⎡⎤--⎣⎦=++(i )当12a <<时,若()212x a a ∈--,,则()'0f x >,()f x 在()212a a --,是增函数;若()220x a a ∈-,,则()'0f x <,()f x 在()220a a -,是减函数;若()0x ∈+∞,,则()'0f x >,()f x 在()0+∞,上增函数. (ii )当2a =时,()'0f x ≥,()'0f x =成立当且仅当0x =,()f x 在()1-+∞,是增函数. (iii )当2a >时,若()10x ∈-,,则()'0f x >,()f x 在()10-,是增函数; 若()202x a a ∈-,,则()'0f x <,()f x 在()202a a -,是减函数;若()22x aa ∈-+∞,,则()'0f x >,()f x 在()22a a -+∞,是增函数.⑵ 由⑴知,当2a =时,()f x 在()1-+∞,是增函数 当()0x ∈+∞,时,()()00f x f >=,即()()2ln 102xx x x +>>+ 又由⑴知,当3a =时,()f x 在[)03,是减函数.当()03x ∈,时,()()00f x f <=,即()()3ln 1033xx x x +<<<+. 下面用数学归纳法证明2322n a n n <++…(i )当1n =时,由已知1213a <=,故结论成立;(ii )设当n k =时结论成立,即12322a k k <++≤. 当1n k =+时.()122222ln 1ln 1=2322k k k a a k k k +⨯⎛⎫+=+>+>⎪++⎝⎭++. ()133332ln 1ln 12332k k k a a k k k +⨯⎛⎫+=++<= ⎪++⎝⎭++≤ 即当1n k =+时有12333k a k k +<++≤,结论成立 根据(i )(ii )知对任何*n ∈N 结论都成立.9. (2014大纲文21)函数()()32330f x ax x x a =++≠.⑴讨论()f x 的单调性;⑵若()f x 在区间()12,是增函数,求a 的取值范围. 【解析】 ⑴ ()2363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a ≥,则()0f x '≥,且()0f x '=当且仅当1a =,1x =-,故此时()f x 在R 上是增函数.(ii )由于0a ≠,故当1a <,()0f x '=有两个根;1x =2x =若01a <<,则当()2x x ∈-∞,或()1x x ∈+∞,时()0f x '>, 故()f x 分别在()2x -∞,,()1x +∞,上是增函数; 当()21x x x ∈,时,()0f x '<,故()f x 在()21x x ,上是减函数; 若0a <,则当()1x x ∈-∞,或()2x +∞,时,()0f x '<, 故()f x 分别在()1x -∞,,()2x +∞,上是减函数; 当()12x x x ∈,时,()0f x '>,故()f x 在()12x x ,上是增函数.⑵ 当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()12,上是增函数. 当0a <时,()f x 在区间()12,上是增函数当且仅当()10f '≥且()20f '≥,解得504a -<≤.综上,a 的取值范围是()5004⎡⎫-+∞⎪⎢⎣⎭∪,,. 10. (2014福建理14)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.【解析】 22e11. (2014福建理20文22)已知函数()e x f x ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.⑴求a 的值及函数()f x 的极值; ⑵证明:当0x >时,2e x x <;⑶证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有2e x x c <. 【解析】 本小题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词与存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想、分类与整合思想、特殊与一般思想. ⑴ 由()x f x e ax =-,()x f x e a '=- 又'(0)11f a =-=-,得2a =. 所以()e 2'()e 2x x f x x f x =-=-,, 令'()0f x =,得ln 2x =.当ln 2x <时,'()0()f x f x <,单调递减; 当ln 2x >时,'()0()f x f x >,单调递增. 所以当ln 2x =时,()f x 取得极小值, 且极小值为ln 2(ln 2)e 2ln 22ln 4f =-=-, ()f x 无极大值.⑵ 令2()e x f x x =-,则'()e 2x g x x =-, 由⑴得'()()(ln 2)0g x f x f =>≥, 故()g x 在R 上单调递增,又(0)10g =>,x因此,当0x >时,()(0)0g x g >>,即2e x x <. ⑶ 理科解法一:①若1c ≥,则e e x x c ≤.又由⑵知,当0x >时,2e x x <. 所以当0x >时,2e x x c <.取00x =,当0()x x +∞∈,时,恒有2e x x c <. ②若01c <<,令11k c=>,要使不等式2e x x c <成立,只要2e x kx >成立. 而要使2e x kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立. 令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时,'()0h x >,()h x 在(2)+∞,内单调递增. 取01616x k =>,所以()h x 在0()x +∞,内单调递增, 又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+, 易知ln ln 250k k k k >>>,,,所以0()0h x >.即存在016x c=,当0()x x +∞∈,时,恒有2e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有2e x x c <. 理科解法二:对任意给定的正数c ,取0x =,由⑵知,当0x >时,2e xx >,所以2222e e e 22x x xx x ⎛⎫⎛⎫=⋅> ⎪ ⎪⎝⎭⎝⎭.当0x x >时,222241e 222xx x x x c c ⎛⎫⎛⎫⎛⎫>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此,对任意给定的正数c ,总存()0x ∈+∞,时,恒有313x x e < 理科解法三:首先证明当(0)x +∞∈,时,恒有21e 3x x <.证明如下:令31()e 3x h x x =-,则2'()e x h x x =-.由⑵知,当0x >时,3e x x <,从而'()0()h x h x <,在(0)+∞,上单调递减, 所以()(0)10h x h <=-<,即31e 3x x <.取03x c =,当0x x >时,有2311e 3x x x c <<. 因此,对任意给定的正数c ,总存在0x ,当()x x ∞∈,+时,恒有2e x x c <. 文科解法一:对任意给定正数c ,取01x c=所以当0x x >时,21e x x x c>> ,即e x x c <.因此,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法二:令1(0)k k c=>,要使不等式e x x c <成立,只要e x kx >成立.而要使e x kx >成立,则只需要ln()x kx >,即ln ln x x k >+成立. ①若01k <≤,则ln 0k ≤,易知当0x >时,ln ln ln x x x k >+≥成立.即对任意[)1c ∈+∞,,取00x =,当0()x x ∈+∞,时,恒有e x x c <. ②若1k >,令()ln ln h x x x k =--,则11'()1x h x x x-=-=, 所以当1x >时,'()0()h x h x >,在(1)+∞,内单调递增, 取04x k =.0()4ln(4)ln 2(ln )2(ln 2)h x k k k k k k =--=-+-.易知ln ln 2k k k >>,,所以0()0h x >. 因此对任意(01)c ∈,,取04x c=,当0()x x ∈+∞,时,恒有e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法三: ①若1c ≥,取00x =,由⑵的证明过程知,e 2x x >,所以当0()x x +∞∈,时,有e e 2x x c x x >>≥,即e x x c <. ②若01x <<,令()e x h x c x =-,则'()e 1x h x c =-. 令'()0h x =得1ln x c=.当1ln x c>时,'()0()h x h x >,单调递增.取022ln x c=, 22ln0222()e2ln2ln ch x c c cc ⎛⎫=-=- ⎪⎝⎭, 易知22ln 0c c->,又()h x 在()0x +∞,内单调递增. 所以当0()x x ∈+∞,时,恒有0()()0h x h x >>,即e x x c <.综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 注:对c 的分类可有不同的方式,只要解法正确,均相应给分.12. (2014广东理10)曲线5e 2x y -=+在点(0,3)处的切线方程为____________. 【解析】530x y +-=. 55e x xy -'=-,05y '=-,切线过点(0,3),由点斜式写出直线方程53y x =-+. 13. (2014广东文11)曲线5e 3x y =-+在(02)-,处的切线方程为____________. 【解析】520x y ++= 14. (2014广东文21)已知函数321()1()3f x x x ax a =+++∈R⑴求函数()f x 的单调区间;⑵当0a <时,试讨论是否存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,∪,,使得01()2f x f ⎛⎫= ⎪⎝⎭. 【解析】 ⑴ 函数的定义域为R ,()22f x x x a '=++.①当1a <时,令()0f x '>,则2201x x a x ++>⇒>-或1x <-,所以()f x 的单调递增区间为(1-∞-,和()1-+∞;令()0f x '<,可得11x -<-+所以()f x 的单调递减区间为(11--+.②当1a ≥时,()0f x '≥在R 上恒成立,所以()f x 在R 上是增函数.⑵ 0a <时,10-.由⑴知,()f x在()1-++∞上是增函数. ①()1111701172244212551211442f f a a a a a ⎧⎛⎫⎧⎧+++- ⎪⎪⎪⎪⎪⎪⎪⎝⎭⇒⇒⇒-⎨⎨⎨⎪⎪⎪>->--⎪⎪⎪⎩⎩⎩,≤≤≥≤, 则7012a -<≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012fx f ⎛⎫= ⎪⎝⎭; ②()1705721254121142f f a a a ⎧⎛⎫⎧><- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪>--⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ③15124a -⇒=-, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ④()1251252123512131142f f a a a ⎧⎛⎫⎧- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<--⎪⎪⎩⎩,≤≤≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ⑤()12512552125124131142f f a a a ⎧⎛⎫⎧>>- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<-<-+⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ⑥113a -⇒-≤,()f x 在()01,上是单调函数, 故不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 综上所述,当25557124412a ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭,,时, 存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 当2557012412a ⎛⎫⎧⎫⎡⎫∈-∞---⎨⎬ ⎪⎪⎢⎝⎭⎩⎭⎣⎭,,时,不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,, 使得()012f x f ⎛⎫= ⎪⎝⎭.15. (2014湖北理6)函数()(),f x g x 满足()()110f x g x dx -=⎰,则称()(),f x g x 为区间[]11-,上的一组正交函数,给出三组函数:①()()11sin cos 22f x x g x x ==,;②()()11f x x g x x =+=-,; ③()()2f x x g x x ==,其中为区间[]11-,的正交函数的组数是( ) A .0B .1C .2D .3【解析】 C由①得111()()sin cos sin 222f xg x x x x ==,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数;由②得2()()1f xg x x =-,∴131121114()()d (1)33x f x g x x x dx x ---⎛⎫=-=-=- ⎪⎝⎭⎰⎰,所以②不是区间[]11-,上的正交函数;由③得3()()f x g x x =,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数.故选C .16. (2014湖北理22)π为圆周率,e 2.71828= 为自然对数的底数.⑴求函数ln ()=xf x x的单调区间⑵求3e πe π3e ,3,e ,π,3,π这6个数中的最大数与最小数;⑶将3e πe π3e ,3,e ,π,3,π这6个数从小到大的顺序排列,证明你的结论.【解析】 ⑴ 函数()f x 的定义域为(0)+∞,. 因为ln ()x f x x =,所以2l ln ()xf x x-'=. 当()0f x '>,即0e x <<,函数()f x 单调递增; 当()0f x '<,即e x <,函数()f x 单调递减. 故函数()f x 的单调递增区间为(0e ,),单调递减区间为(e +∞,). ⑵ 因为e <3π<,所以eln3eln ππlne πln3<,<,即e e ππln3ln πln e ln3<,<. 于是根据函数ln e πx x y x y y ===,,在定义域上单调递增,可得e e 33ππ3ππe e 3<<,<<. 故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln 3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e 3e <,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.⑶ 由⑵知,e e 3πe 33ππ33e <<<,<. 又由⑵知,ln πlneπe<得e ππe <. 故只需比较3e 与e π和πe 与3π的大小.由⑴知,当0e x <<时,1()(e)=e f x f <,即ln 1ex x <.在上式中,令2e πx =,又2e e π<,则2e e ln ππ<,从而e 2ln ππ-<,即得eln π2π->.由①得,e 2.72e ln πe 2 2.72 2.7(20.88)π 3.1⎛⎫⎛⎫-⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭>>> 3.0243>,即e ln π>3,亦即e 3ln πln e >,所以3e e π<.又由①得,3e 3ln π66e ππ-->>>,即3ln ππ>,所以π3e π>. 综上可得,e 3e π3π3e πe π3<<<<<. 即6个数从小到大的顺序为e 3e π3π3e πe π3,,,,,. 评析 本题考查了函数和导数的结合应用;考查了不等式求解的能力;考查了分析问题、解决问题的综合能力.充分考查了考生的综合素质在平时的学习过程中应充分培养综合解决问题的能力.17. (2014湖北文21)π为圆周率,e 2.71828=为自然对数的底数.⑴求函数ln ()xf x x=的单调区间; ⑵求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.【解析】 ⑴ 函数()f x 的定义域为()0+∞,.因为ln ()x f x x =,所以21ln ()xf x x -'=.当()0f x '>,即0e x <<时,函数()f x 单调递增;当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为()0e ,,单调递减区间为()e +∞,. ⑵ 因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<. 于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33>π; 由ln 3ln e 3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.18. (2014湖南理9)已知函数()()sin f x x ϕ=-,且()2π300f x dx =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x =【解析】 A函数()f x 的对称轴为ππ2x k ϕ-=+ππ2x k ϕ⇒=++,因为()2π32πsin d 0cos cos 03x x ϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰πsin 03ϕ⎛⎫⇒-= ⎪⎝⎭, 所以π2π3k ϕ=+或4π2π3k +,则5π6x =是其中一条对称轴,故选A . 19. (2014湖南理22)已知常数0a >,函数()()2ln 12xf x ax x =+-+.⑴讨论()f x 在区间()0+∞,上的单调性; ⑵若()f x 存在两个极值点1x ,2x ,且()()120f x f x +>,求a 的取值范围.【解析】 ⑴ 对函数()f x 求导可得()()2412a f x ax x '=-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()0f x '≥恒成立,则函数()f x 在()0+∞,上单调递增;当1a ≤时,()0f x x '=⇒=则函数()f x在区间0⎛ ,⎝⎭上单调递减,在⎫⎪,+∞⎪⎝⎭上单调递增的. ⑵ 由⑴可知,当1a ≥时,()f x 不存在极值点,因而01a <<. 又()f x的极值点只可能是12x x ==-,且由()f x 的定义可知,1x a>-且2x ≠-,所以1a ->-,2--,解得12a ≠,此时12x x ,分别是()f x 的极小值点和极大值点.而()()()()1212121222ln 1ln 122x x f x f x ax ax x x +=+-++-++ ()2122212121212444ln 1224x x x x ax ax a x x x x x x ++=+++-+++=()()()22412ln 21ln 2122121a a a a a ---=-+--- 令21a x -=,由01a <<且12a ≠知, 当102a <<时,10x -<<;当112a <<时,01x <<.记()22ln 2g x x x=+-①当10x -<<时,()()22ln 2g x x x =-+-,所以()2222220x g x x x x -'=-=<,因此()g x 在区间()10-,上单调减,从而()()140g x g <-=-<, 故当102a <<时,()()120f x f x +<. ②当01x <<时,()22ln 2g x x x =+-,()2222220x g x x x x -'=-=<,因此()g x 在区间()01,上单调递减,从而()()10g x g >=, 故当112a <<时,()()120f x f x +>. 综上,满足条件的a 的取值范围为112⎛⎫⎪⎝⎭,. 20. (2014湖南文9)若1201x x <<<,则( )A .2121e e ln ln x x x x ->-B .2121e e ln ln x x x x -<-C .1221e e x x x x >D .1221e e x x x x <【解析】 C21. (2014湖南文21)已知函数()cos sin 1(0)f x x x x x =-+>.⑴求()f x 的单调区间;⑵记i x 为()f x 的从小到大的第()i i *∈N 个零点,证明:对一切*n ∈N ,有2221211123n x x x +++<. 【解析】 ⑴ ()cos sin cos sin f x x x x x x x '=--=-令()0f x '=,得()*πx k k =∈N .当()()()2π,21πx k k k ∈+∈N 时,sin 0x >,此时()0f x '<; 当()()()()21π,22πx k k k ∈++∈N 时,sin 0x <,此时()0f x '>, 故()f x 的单调递减区间为()()()2π,21πk k k +∈N ,单调递增区间为()()()()21π,22πk k k ++∈N .⑵ 由⑴知,()f x 在区间()0,π上单调递减,又π02f ⎛⎫= ⎪⎝⎭,故1π2x =,当*n ∈N 时,因为()()()()()()1π1π1π11110nn f n fn n n n +⎡⎤⎡⎤+=-+-++<⎣⎦⎣⎦,且函数()f x 的图象是连续不断的,所以()f x 在区间()()π,1πn n +内至少有一个零点. 又()f x 在区间()()π,1πn n +上是单调的,故()1π1πn n x n +<<+. 因此当1n =时,221142π3x =<; 当2n =时,()22212111241π3x x +<+<; 当3n ≥时,()2222221211111141π21n x x x n ⎡⎤+++<++++⎢⎥-⎢⎥⎣⎦()()21115π1221n n ⎡⎤<+++⎢⎥⨯--⎢⎥⎣⎦211111151π22321n n ⎡⎤⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦2211626π1π3n ⎛⎫=-<< ⎪-⎝⎭. 综上所述,对一切*n ∈N ,2221211123n x x x +++<.22. (2014江苏理11)在平面直角坐标系xOy 中,若曲线()2by ax a b x=+,为常数过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是_______.【解析】3- 由已知,452b a +=-,又∵22b y ax x '=-,∴7442b a -=-,解得2b =-,1a =- ∴3a b +=-23. (2014江苏理19)已知函数()e e x x f x -=+,其中e 是自然对数的底数⑴证明:()f x 是R 上的偶函数;⑵若关于x 的不等式()e 1x mf x m -+-≤在(0,)+∞上恒成立,求实数m 的取值范围;⑶已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立,试比较1e a -与e 1a -的大小,并证明你的结论.【解析】 ⑴ x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数⑵ 由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0,)x ∈+∞,∴e e 10xx-+->,即e 1e e 1x x x m ---+-≤对(0,)x ∈+∞恒成立令e x t =(1)t >,则211tm t t --+≤对任意(1,)t ∈+∞恒成立.∵22111111(1)(1)131+11t t t t t t t t --=-=---+-+-+-+-≥,当且仅当2t =时等号成立 ∴实数m 的取值范围为1,3⎛⎤-∞- ⎥⎝⎦⑶ ()e e x x f x -'=-,当1x >时()0f x '>,∴()f x 在(1,)+∞上单调增 令3()(3)h x a x x =-+,()3(1)h x ax x '=--∵0a >,1x >,∴()0h x '<,即()h x 在(1,)x ∈+∞上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即11(e )2ea >+ ∵e 1e 111ln ln lne (e 1)ln 1ea a a a a a ----=-=--+设()(e 1)ln 1m a a a =--+,则e 1e 1()1a m a a a ---'=-=,11(e )2ea >+ 当11(e )e 12ea +<<-时()0m a '>,()m a 单调增;当e 1a >-时()0m a '<,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m ==∴当e a >时()0m a <,当11(e )e 2ea +<<时()0m a >,当e a =时()0m a =∵e 11()0e a m a a --<⇔<,e 11()0e a m a a -->⇔>,e 11()0e a m a a --=⇔=综上所述,当11(e e )e 2a -+<<时e 11e a a -->;当e a =时e 11e a a --=;当e a >时e 11e a a --<24. (2014江苏理23)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,*n ∈N⑴求12πππ2()()222f f +的值⑵证明:对任意*n ∈N,等式1πππ()()444n n nf f -+=都成立.【解析】 ⑴ 0()sin xf x x =,两边求导得01()()cos f x xf x x +=两边再同时求导得122()()sin f x xf x x +=- (*)将π2x =代入(*)式得12πππ2()()1222f f +=-⑵ 下证命题:1sin ,4cos ,41()()sin ,42cos ,43n n x n kx n k nf x xf x x n k x n k -=⎧⎪=+⎪+=⎨-=+⎪⎪-=+⎩,*k ∈N 恒成立当0n =时,0()sin xf x x =成立当1n =时,10()()cos xf x f x x +=,由(1)知成立 当2n =时,21()2()sin xf x f x x +=-,由(1)知成立当3n =时,上式两边求导322()()2()cos xf x f x f x x ++=-,即32()3()cos xf x f x x +=- 假设当n m =(3)m ≥时命题成立,下面证明当1n m =+时命题也成立 若14m k +=,*k ∈N ,则41m k =-,*k ∈N由1()()cos m m mf x xf x x -+=-两边同时求导得1()()()sin m m m xf x f x mf x x +++= 即1(1)()()sin m m m f x xf x x +++=,命题成立同理,若141m k +=+,*k ∈N ,则4m k =,*k ∈N由1()()sin m m mf x xf x x -+=两边同时求导得1(1)()()cos m m m f x xf x x +++=,命题成立 若142m k +=+,*k ∈N ,则41m k =+,*k ∈N由1()()cos m m mf x xf x x -+=两边同时求导得1(1)()()sin m m m f x xf x x +++=-,命题成立 若143m k +=+,*k ∈N ,则42m k =+,*k ∈N由1()()sin m m mf x xf x x -+=-两边同时求导得1(1)()()cos m m m f x xf x x +++=-,命题成立 综上所述,命题对*n ∀∈N 恒成立 代入π4x =得1πππ()()444n n nf f -+=两边同时取绝对值得1πππ()()444n n nf f -+=25. (2014江西理8)若()()1202d ,f x x f x x =+⎰则()1d f x x =⎰( )A .1-B .13-C .13D .1【解析】 B令()10d f x x m =⎰,则()22f x x m =+,所以()()111230011d 2d 2233f x x x m x x mx m m ⎛⎫=+=+=+= ⎪⎝⎭⎰⎰,解得13m =-,故选B .26. (2014江西理13)若曲线e x y -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 【解析】 ()ln 2,2-令()e x f x -=,则()'e x f x -=-,令()00P x y ,,则()00'e 2x f x -=-=-,解得0ln 2x =-,所以0ln 20e e 2x y -===,所以点P 的坐标为()ln 2,2-.27. (2014江西理18)已知函数()()2f x x bx bb =++∈R .⑴当4b =时,求()f x 的极值;⑵若()f x 在区间103⎛⎫ ⎪⎝⎭,上单调递增,求b 的取值范围.【解析】 ⑴ 当4b =时,()52'x x f x -+=,由()'0f x =得2x =-或0x =.当()2x ∈-∞-,时,()'0f x <,()f x 单调递减; 当()20x ∈-,时,()'0f x >,()f x 单调递增; 当102x ⎛⎫∈ ⎪⎝⎭,时,()'0f x <,()f x 单调递减,故()f x 在2x =-处取极小值()20f -=,在0x =处取极大值()04f =.⑵ ()'f x =,因为当103x ⎛⎫∈ ⎪⎝⎭,0<,依题意,当103x ⎛⎫∈ ⎪⎝⎭,时,有()532x b +-≤0,从而()53203b +-≤.所以b 的取值范围为19⎛⎤∞ ⎥⎝⎦-,28. (2014江西文11)若曲线ln y x x =上点P 处的切线平行于直线210x y -+=,则点P 的坐标是_______. 【解析】 ()e e , 29. (2014江西文18)已知函数22()(44f x x ax a =++0a <. ⑴当4a =-时,求()f x 的单调递增区间; ⑵若()f x 在区间[14],上的最小值为8,求a 的值. 【解析】 ⑴ 当4a =-时,由()25220x x f x--'==得25x =或2x =,由()0f x '>得 205x ⎛⎫∈ ⎪⎝⎭,或()2x ∈+∞,,故函数()f x 的单调递增区间为205⎛⎫ ⎪⎝⎭,和()2+∞,.⑵ ()0f x a '=<, 由()0f x '=得10ax =-或2a x =-.当010a x ⎛⎫∈- ⎪⎝⎭,时,()f x 单调递增;当102aa x ⎛⎫∈-- ⎪⎝⎭,时,()f x 单调递减;当2a x ⎛⎫∈-+∞ ⎪⎝⎭,时,()f x 单调递增.易知()()220f x x a =+,且02a f ⎛⎫-= ⎪⎝⎭.①当12a-≤,即20a -<≤时,()f x 在[]14,上的最小值为()1f ,由()21448f a a =++=,得2a =±,均不符合题意.②当142a<-≤,即82a -<-≤时,()f x 在[]14,上的最小值为02a f ⎛⎫-= ⎪⎝⎭,不符合题意.③当42a ->,即8a <-时,()f x 在[]14,上的最小值可能在1x =或4x =处取得,而()18f ≠,由()()24264168f a a =++=得10a =-或6a =-(舍去),当10a =-时()f x 在()14,上单调递减,()f x 在[]14,上的最小值为()48f =,符合题意.综上,10a =-.30. (2014辽宁理11文12)当[]21x ∈-,时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是()A .[]53--,B .968⎡⎤--⎢⎥⎣⎦,C .[]62--,D .[]43--,【解析】 C31. (2014辽宁理14)正方形的四个顶点()11A --,,()11B -,,()11C ,,()11D -,分别在抛物线2y x =-和2y x =上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是.【解析】 2332. (2014辽宁理21)已知函数()()()()8cos π2sin 13f x x x x x =-+-+, ()()()23πcos 41sin ln 3πx g x x x x ⎛⎫=--+- ⎪⎝⎭证明:⑴存在唯一0π02x ⎛⎫∈ ⎪⎝⎭,,使()00f x =;⑵存在唯一1ππ2x ⎛⎫∈ ⎪⎝⎭,,使()10g x =,且对⑴中的0x ,有01πx x +<.在0(0)x ,上()u t 是增函数,又(0)0u =,从而当0(0]t x ∈,时,()0u t >,所以()u t 在0(0]x ,上无零点在0π2x ⎛⎫ ⎪⎝⎭,上()u t 为减函数,由()00u x >,π4ln 202u ⎛⎫=-< ⎪⎝⎭,知存在唯一10π,2t x ⎛⎫∈ ⎪⎝⎭使1()0u t =.所以存在唯一的1π02t ⎛⎫∈ ⎪⎝⎭,,使1()0u t =. 因此存在唯一的11πππ2x t ⎛⎫=-∈ ⎪⎝⎭,,使1()h x h =11(π)()0t u t -==. 因为当ππ2x ⎛⎫∈ ⎪⎝⎭,时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1ππ2x ⎛⎫∈ ⎪⎝⎭,,使1()0g x =. 因1110πx t t x =->,,所以01πx x +<.33. (2014辽宁文21)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πx g x x =--. 证明:⑴存在唯一0π(0,)2x ∈,使0()0=f x ; ⑵存在唯一1π(,π)2x ∈,使1()0=g x ,且对⑴中的0x ,01πx x +>. 【解析】 ⑴ 当π(0,)2∈x 时,()ππsin 2cos 0f x x x '=+->,所以()f x 在π(0,)2上为增函 数,又(0)f 2πππ20,()4022=--<=->f ,所以存在唯一0π(0,)2x ∈,使0()0=f x . ⑵ 当π,π2x ⎡⎤∈⎢⎥⎣⎦时,化简得cos 2()(π)11sin πx x g x x x =-⋅+-+ 令πt x =-,记()(π)=-u t g t =cos 211sin πt t t t --++,π[0,]2∈t ()().π(1sin )f t u t t '=+ 由⑴得,当0(0,)∈t x 时,()0u t '<当0π(,)2∈t x 时,()0u t '>. 在0π(,)2x 上()u t 为增函数,由π()02=u 知,当0π,2t x ⎡⎫∈⎪⎢⎣⎭时,()0<u t .所以()u t 在0π,2t x ⎡⎫∈⎪⎢⎣⎭上无零点. 在0(0,)x 上()u t 为减函数,由(0)1=u 及0()0u x <知存在唯一00(0,)∈t x ,使0()0=u t . 于是存在唯一0π(0,)2t ∈,使()00u t =. 设10ππ(,π)2x t =-∈,则100()(π)()0g x g t u t =-==,因此存在唯一的1π(,π)2x ∈,使1()0=g x .由于1000π,x t t x =-<,所以01πx x +>.。
2014高考函数与导数解答题汇编1.[2014·江西卷18] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19.2.[2014·安徽卷18] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值.3.[2014·北京卷18] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.18.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.4.[2014·福建卷20] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2. 当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .5.[2014·湖北卷22] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln ee .由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3;由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e ,即ln x x <1e.在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷22] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·江苏卷19] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.8.[2014·辽宁卷] 已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sin x )ln⎝⎛⎭⎫3-2x π.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=-(1+sin x )·(π+2x )-2x -23cos x <0,函数f (x )在⎝⎛⎭⎫0,π2上为减函数.又f (0)=π-83>0,f ⎝⎛⎭⎫π2=-π2-163<0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)记函数h (x )=3(x -π)cos x 1+sin x-4ln ⎝⎛⎭⎫3-2πx ,x ∈⎣⎡⎦⎤π2,π.令t =π-x ,则当x ∈⎣⎡⎦⎤π2,π时,t ∈⎣⎡⎦⎤0,π2.记u (t )=h (π-t )=3t cos t 1+sin t -4 ln ⎝⎛⎭⎫1+2πt ,则u ′(t )=3f (t )(π+2t )(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )>0,当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )<0.故在(0,x 0)上u (t )是增函数,又u (0)=0,从而可知当t ∈(0,x 0]时,u (t )>0,所以u (t )在(0,x 0]上无零点.在⎝⎛⎭⎫x 0,π2上u (t )为减函数,由u (x 0)>0,u ⎝⎛⎭⎫π2=-4ln 2<0,知存在唯一t 1∈⎝⎛⎭⎫x 0,π2,使u (t 1)=0,故存在唯一的t 1∈⎝⎛⎭⎫0,π2,使u (t 1)=0.因此存在唯一的x 1=π-t 1∈⎝⎛⎭⎫π2,π,使h (x 1)=h (π-t 1)=u (t 1)=0.因为当x ∈⎝⎛⎭⎫π2,π时,1+sin x >0,故g (x )=(1+sin x )h (x )与h (x )有相同的零点,所以存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.因为x 1=π-t 1,t 1>x 0,所以x 0+x 1<π.9.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e.设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.10.、[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.11.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a (a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈N *结论都成立.12.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 13.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立. 方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x,x >0.令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n xx +1d x =⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1),结论得证.14.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1. 当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).15.、[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大.20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a .当x 变化时,f ′(x )这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2.又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1,所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x (x -1)2. 令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.16.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.17.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立. 下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).。
数 学B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516、 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x | 2.B 、 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) 3.CB2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( )A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R ) 5.DB3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x | 2.B 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 4.A19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1. 综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 15.①③④ 21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x 4.D 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.5165.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x 5.A 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 9.D 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 4.A 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-3219.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立. 因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1. 综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .1 12.D 15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 5.C 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 13.1B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝⎛⎭⎫-22,0 14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________. 14.32B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b5.B 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 3.D15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] 5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x7.B 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.12.10 7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )C .c =adD .d =a +c 7.B 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 9.B4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a 4.CB7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________. 12.(-∞,0)11.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.2788.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B 13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.53.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 3.D 6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 6.D 7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 7.B 9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3 9.DB8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B 15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.⎝⎛⎭⎫0,1613.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,1215.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x 1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] 6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 6.DB9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 6.C7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9 7.C10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 10.A15.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.29.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 9.D 13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,124.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2 4.A15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.15.221.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). 14.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2)B10 函数模型及其应用 8.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 8.B 10.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.AB11 导数及其运算21.、、[2014·陕西卷] 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c.当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________. 11.5x +y +2=011.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-323.、[2014·江苏卷] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立.23.解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin xx3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3.故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2.类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *),所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <a a -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).20.,[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.20.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12. 又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .因为x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43,所以,S n =(3n -1)4n +1+49.19.、[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.所以,f (x )的单调递增区间是⎝⎛⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭⎫1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2.(2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32.B12 导数的应用 21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.15.[2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x . 15.①③④ 20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x .(1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.。
理科数学高考解答题基本题型——函数与导数一、考试大纲1.了解函数的三要素,理解函数的定义,会用解析法、表格法、图象法表示函数。
2.会求简单函数的定义域、值域,会探究函数的奇偶性、单调性、对称性、最值与极值问题。
3.理解分段函数的定义,会作简单分段函数的图象,会处理分段函数与方程、不等式的综合问题。
4.会运用平移、翻折、对称等方法作图,会用函数性质探究图象特征,会用函数图象处理数量关系。
5.了解初等函数(一次、二次,幂、指、对)的定义,会运用初等函数的图象与性质分析处理问题。
6.理解函数零点的概念,了解函数零点与方程根的关系,会判断函数零点的存在性及其范围或个数,7.掌握基本初等函数的导数公式和导数运算法则,会用导数研究切线、单调性、最值(极值)等问题。
二、考情分析导数作为研究函数的重要工具引入到中学数学之后,一直是高考数学命题的热点。
广东理科数学2010、2011连续两年在函数与导数部分没有大题,多以小题为主,2012、2013连续两年均在第21题考查函数与导数的综合应用,命题常规,估计这一趋势会在2014年的高考命题中延续。
考查以导数为工具,探究曲线的切线方程、函数的单调区间、零点问题和最值(极值)问题。
三、高考原题1.(2012广东) 设1a <,集合{|0}A x x =∈>R ,2{|23(1)60}B x x a x a =∈-++>R ,D A B = .(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点. 解:(1)令2()23(1)6g x x a x a =-++229(1)4893093(31)(3)a a a a a a ∆=+-=-+=--① 当0a ≤时,0∆>方程()0g x =的两个根分别为1x =,2x =所以()0g x >的解集为12(,)(,)x x -∞+∞ 因为1230x x a =≤,所以120x x ≤<,所以2(,33)4)(a D x A B ++==∞=+∞② 当103a <≤时,0∆≥,所以()0g x >的解集为12(,)(,)x x -∞+∞ , 因为123302a x x ++=>,1230x x a =>,所以120x x <≤, 所以D ==12(0,)(,)x x +∞= )+∞③ 当113a <<时,0∆<,则()0g x >恒成立,所以D A B == (0,)+∞综上所述,当0a ≤时,33()a D ++∞=当103a <≤时,D =)+∞ ;当113a <<时,D =(0,)+∞ (2)2()66(1)66()(1)f x x a x a x a x '=-++=--, 令()0f x '=,得x a =或1x =① 当0a ≤时,由(1)知2(,)x D =+∞因为2()23(1)6(3)0g a a a a a a a =-++=-≤,(1)23(1)6310g a a a =-++=-< 所以21x >,所以当2(,)x x ∈+∞时,恒有()0f x '> 所以()f x 没有极值点 ② 当103a <≤时,由(1)知D =12(0,)(,)x x +∞ 因为()(3)0g a a a =->,(1)310g a =-≤,所以1201a x x <<<≤, 所以(),()f x f x '随x 的变化情况如下表:所以()f x 的极大值点为x a =,没有极小值点 ③ 当113a <<时,由(1)知D =(0,)+∞ 所以(),()f x f x '随x 的变化情况如下表:所以()f x 的极大值点为x a =,极小值点为1x = 综上所述,当0a ≤时,()f x 没有极值点;当103a <≤时,()f x 有一个极大值点x a =,没有极小值点;当113a <<时,()f x 有一个极大值点x a =,一个极小值点1x = 2. (2013广东) 设函数()()21xf x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M . 【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞.(Ⅱ)()()()1222x x x xf x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =, 令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311k h k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭所以存在01,12x ⎛⎤∈⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>, 当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=>⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”. 综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--. 四、拓展训练1.(2013新课标)已知函数)ln()(m x e x f x +-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.【答案】2.(2013江苏)设函数ax x x f -=ln )(,ax ex g x-=)(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.【答案】解:(1)由01)('≤-=a x x f 即a x ≤1对),1(+∞∈x 恒成立,∴max 1⎥⎦⎤⎢⎣⎡≥x a 而由),1(+∞∈x 知x1<1 ∴1≥a 由a e x g x -=)('令0)('=x g 则a x ln = 当x <a ln 时)('x g <0,当x >a ln 时)('x g >0, ∵)(x g 在),1(+∞上有最小值 ∴a ln >1 ∴a >e综上所述:a 的取值范围为),(+∞e(2)证明:∵)(x g 在),1(+∞-上是单调增函数∴0)('≥-=a e x g x 即xe a ≤对),1(+∞-∈x 恒成立, ∴[]min xe a ≤而当),1(+∞-∈x 时,xe >e 1 ∴ea 1≤ 分三种情况:(Ⅰ)当0=a 时, xx f 1)('=>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵0)1(=f ∴f(x)存在唯一零点 (Ⅱ)当a <0时,a xx f -=1)('>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵)1()(aa a e a ae a e f -=-=<0且a f -=)1(>0∴f(x)存在唯一零点(Ⅲ)当0<e a 1≤时,a x x f -=1)(',令0)('=x f 得ax 1= ∵当0<x <a 1时,x a x a x f )1()('--=>0;x >a 1时,x a x a x f )1()('--=<0 ∴a x 1=为最大值点,最大值为1ln 11ln )1(--=-=a aa a a f①当01ln =--a 时,01ln =--a ,e a 1=,)(x f 有唯一零点e ax ==1②当1ln --a >0时,0<ea 1≤,)(x f 有两个零点实际上,对于0<e a 1≤,由于e a e a e e f --=-=111ln )1(<0,1ln 11ln )1(--=-=a aa a a f >0 且函数在⎪⎭⎫ ⎝⎛a e 1,1上的图像不间断 ∴函数)(x f 在⎪⎭⎫⎝⎛a e 1,1上有存在零点 另外,当⎪⎭⎫ ⎝⎛∈a x 1,0,a x x f -=1)('>0,故)(x f 在⎪⎭⎫ ⎝⎛a 1,0上单调增,∴)(x f 在⎪⎭⎫ ⎝⎛a 1,0只有一个零点下面考虑)(x f 在⎪⎭⎫⎝⎛+∞,1a 的情况, 先证)(ln ln )(1111121------=-=-=--a a a a a e a a aee a aee ef <0为此我们要证明:当x >e 时,xe >2x ,设2)(x e x h x -= ,则x e x h x 2)('-=,再设x e x l x 2)(-= ∴2)('-=x e x l当x >1时,2)('-=x e x l >e -2>0,x e x l x 2)(-=在()+∞,1上是单调增函数 故当x >2时,x e x h x 2)('-=>4)2(2'-=e h >0从而2)(x e x h x -=在()+∞,2上是单调增函数,进而当x >e 时,2)(x e x h x -=>2)(e e e h e -=>0 即当x >e 时,x e >2x ,当0<a <e 1时,即1-a >e 时,)(ln ln )(1111121------=-=-=--a a a a a e a a ae e a ae e e f <0 又1ln 11ln )1(--=-=a aa a a f >0 且函数)(x f 在[]1,1--a e a 上的图像不间断,∴函数)(x f 在()1,1--a e a 上有存在零点,又当x >a 1时,xa x a x f )1()('--=<0故)(x f 在()+∞-,1a 上是单调减函数∴函数)(x f 在()+∞-,1a 只有一个零点综合(Ⅰ)(Ⅱ)(Ⅲ)知:当0≤a 时,)(x f 的零点个数为1;当0<a <e1时,)(x f 的零点个数为23.(2013重庆)设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.【答案】(3)26ln 3f =+4.(2013福建)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.【答案】解:函数()f x 的定义域为(0,)+∞,()1'=-af x x.(Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈ x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.5.(2013新课标)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围.【答案】(Ⅰ)由已知得(0)2,(0)2,(0)4,(0)4f g f g ''====,而()f x '=2x b +,()g x '=()xe cx d c ++,∴a =4,b =2,c =2,d =2; (Ⅱ)由(Ⅰ)知,2()42f x x x =++,()2(1)xg x e x =+,设函数()F x =()()kg x f x -=22(1)42xke x x x +---(2x ≥-),()F x '=2(2)24x ke x x +--=2(2)(1)x x ke +-,有题设可得(0)F ≥0,即1k ≥, 令()F x '=0得,1x =ln k -,2x =-2,(1)若21k e ≤<,则-2<1x ≤0,∴当1(2,)x x ∈-时,()F x <0,当1(,)x x ∈+∞时,()F x >0,即()F x 在1(2,)x -单调递减,在1(,)x +∞单调递增,故()F x 在x =1x 取最小值1()F x ,而1()F x =21112242x x x +---=11(2)x x -+≥0,∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立, (2)若2k e =,则()F x '=222(2)()xe x e e +-,∴当x ≥-2时,()F x '≥0,∴()F x 在(-2,+∞)单调递增,而(2)F -=0, ∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立, (3)若2k e >,则(2)F -=222ke--+=222()e k e ---<0,∴当x ≥-2时,()f x ≤()kg x 不可能恒成立, 综上所述,k 的取值范围为[1,2e ].6.(2013北京)设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方.【答案】解: (I)设ln ()x f x x =,则21ln ()xf x x-'=.所以(1)1f '=.所以L 的方程为1y x =-. (II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方等价于()0g x >(0,1)x x ∀>≠.()g x 满足(1)0g =,且221ln ()1()x xg x f x x-+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减;当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增. 所以,()(1)0g x g >=(0,1x x >≠). 所以除切点之外,曲线C 在直线L 的下方. 又解:()0g x >即ln 10x x x-->变形为2l n 0x x x -->,记2()ln h x x x x =--,则2121(21)(1)()21x x x x h x x x x x--+-'=--==,所以当01x <<时,()0h x '<,()h x 在(0,1)上单调递减;当1x >时,()0h x '>,()h x 在(1,+∞)上单调递增. 所以()(1)0h x h >=.)7.【2012北京】已知函数()2()10f x ax a =+>,3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点()1,c 处具有公共切线,求a ,b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(],1-∞-上的最大值. 解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+⎺又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a -<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.。
2014年全国高考数学试题汇编二(函数与导数)★(2014年安徽卷)若函数()f x 是周期为4的奇函数,且在[0,2]上的解析式为(1)()sin x x f x xπ-⎧=⎨⎩(01)(12)x x ≤≤<≤,则2941()()46f f += .(答案:516) ★(2014年北京卷)下列函数中,定义域是R 且为增函数的是( ) A xy e -=B 3y x = C ln y x = D ||y x =★(2014年山东卷)函数()f x =的定义域为( )A (0,2)B (0,2]C (2,)+∞D [2,)+∞★(2014年湖南卷)下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) A 21()f x x=B 2()1f x x =+C 3()f x x =D ()2xf x -=★(2014年江苏卷)已知函数()xxf x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1,)x ∈+∞,使得3000()(3)f x a x x <-+成立.试比较1a e -与1e a-的大小,并证明你的结论.★(2014年四川卷)已知函数2()1xf x e ax bx =---,其中a ,b R ∈, 2.71828e =为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,证明:21e a -<<. ★(2014年重庆卷)下列函数为偶函数的是( ) A ()1f x x =-B 2()f x x x =+C ()22x xf x -=-D ()22x xf x -=+★(2014年广东卷)下列函数为奇函数的是( )A 1()22xx f x =-B 3()sin f x x x =C ()2cos 1f x x =+D 2()2xf x x =+ ★(2014年湖北卷)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()3f x x x =-,则函数()()3g x f x x =-+的零点的集合为( )A {1,3}B {3,1,1,3}--C {2-D {2-★(2014年湖南卷)若3()ln(1)xf x e ax =++是偶函数,则a = .(答案:32-) ★(2014年全国卷)奇函数()f x 的定义域为R .若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A 2-B 1-C 0D 1★(2014年新课标全国卷Ⅱ)偶函数()y f x =的图像关于直线2x =对称,(3)3f =,则(1)f -= .(答案:3)★(2014年全国新课标卷Ⅰ)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( ) A ()()f x g x 是偶函数 B |()|()f x g x 是奇函数C ()|()|f x g x 是奇函数D |()()|f x g x 是奇函数★(2014年四川卷)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10(),01x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .(答案:1)★(2014年江苏卷)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是 .(答案:(2-) ★(2014年全国卷)函数cos 22sin y x x =+的最大值为________.(答案:32) ★(2014年安徽卷)设log 7a =, 1.12b =, 3.10.8c =,则( )A b a c <<B c a b <<C c b a <<D a c b <<★(2014年福建卷)若函数log a y x =(0a >且1a ≠)的图象如图12-所示,则下列函数图象正确的是( )图1。
2014年广东省高考大题训练(六) 函数与导数(附答案及评分标准)1.(本小题满分14分) 已知函数R x ax x a x x f ∈+--+=,13)1(23)(23. (1)讨论函数)(x f 的单调区间;(2)当3=a 时,若函数)(x f 在区间]2,[m 上的最大值为28,求m 的取值范围.解:(1)()()()2()=3+3131f x x a x a x x a '--3=-+. …………………………………………………2分令()0f x '=得121,x x a ==-.……………………………………………………………………3分 (i )当1a -=,即1a =-时,()2()=310f x x '-≥,()f x 在(),-∞+∞单调递增. ………4分(ii )当1a -<,即1a >-时,当21x x x x <>或时()0f x '>,()f x 在()()21,x x -∞+∞和,内单调递增;当21x x x <<时()0f x '<,()f x 在()21,x x 内单调递减. ………………………………5分 (iii )当1a ->,即1a <-时,当12x x x x <>或时()0f x '>,()f x 在()()12,x x -∞+∞和,内单调递增;当12x x x <<时()0f x '<,()f x 在()12,x x 内单调递减. ………………………………6分 综上,当1a <-时,()f x 在()()12,x x -∞+∞和,内单调递增,()f x 在()12,x x 内单调递减;当 1a =-时,()f x 在(),-∞+∞单调递增;当1a >-时,()f x 在()()21,x x -∞+∞和,内单调递增, ()f x 在()21,x x 内单调递减.(其中121,x x a ==-)…………………………………………… 7分 (2)当3a =时,32()391,[,2]f x x x x x m =+-+∈,2()3693(3)(1)f x x x x x '=+-=+- 令()0f x '=,得121,3x x ==-.………………………………………………………………… 8分 将x ,()f x ',()f x 变化情况列表如下:x )3,(--∞3-)1,3(-1 ]2,1(()f x ' +0 -0 +()f x↗极大↘极小↗………………………………………………………………………………………………………10分由此表可得()(3)28f x f =-=极大,()(1)4f x f ==-极小.…………………………………11分 又(2)328f =<,………………………………………………………………………………… 12分故区间[,2]m 内必须含有3-,即m 的取值范围是3]-∞-(,.……………………………… 14分2.(本小题满分14分)已知二次函数 )(x f 的最小值为-4,且关于x 的不等式0)(≤x f 的解集为{}R x x x ∈≤≤- ,31|.(1)求函数)(x f 的解析式; (2)求函数x xx f x g ln 4)()(-=的零点个数. 解:(1)∵ )(x f 是二次函数,且关于x 的不等式0)(≤x f 的解集为{}R x x x ∈≤≤- ,31|.依题可设a ax ax x x a x f 32)3)(1()(2--=-+=,且0>a . ………………………………4分 ∵0>a ,4]4)1[()(2-≥--=x a x f ,且a f 4)1(-=,∴44)(min -=-=a x f ,解得1=a .故函数 )(x f 的解析式为32)(2--=x x x f .……………………………………………………6分(2)∵)0(2ln 43ln 432)(2>---=---=x x xx x x x x x g ,, ∴22)3)(1(431)(xx x x x x g --=-+='. …………………………………………………………8分 列极值表如下:………………………………………………………………………………………11分x(0,1)1(1,3)3(3,)+∞()g x '+-+()g x↗-4↘4ln 3-↗当30≤<x 时04)1()(<-=≤g x g ; …………………………………………………………12分 又0922122203)(5555>=-->---=ee e g .……………………………………………13分 故函数)(x g 只有1个零点,且零点),3(50e x ∈.………………………………………………14分 3.(本小题满分14分)为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品 每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多 卖出的商品件数与商品单价的降低值x (单位:万元,030x ≤≤)的平方成正比,已知商品单价降低 2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?解:(1)设商品降价x 万元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x .…………1分 则依题意有2()(309)(432)f x x kx =--+2(21)(432)x kx =-+.……………………………4分又由已知条件,2242k=·,于是有6k =.………………………………………………………5分 所以32()61264329072[030]f x x x x x =-+-+∈,,.…………………………………………7分 (2)根据(1),有2()18252432f x x x '=-+-18(2)(12)x x =---.……………………………9分 作出以下表格: ……………………………………………………………………………………12分x[)02,2 (212),12 (]1230,()f x '-0 +0 -()f x极小极大故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,则定价为301218-=万元能使一个星期的商品销售利润最大.………………………………14分4.(本小题满分12分)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据:x 2 4 56 8 y 30 40 60 50 70 (1)画出散点图;(2)求回归直线方程;(参考数据:1380,13500,14551512512===∑∑∑===i i i i i i iy x y x)(3)试预测广告费支出为10万元时,销售额多大? 解:(1)根据表中所列数据可得散点图如下:………………………………………………………………3分(2)50525057050604030,5525586542==++++===++++=y x . …………………4分又1380,14551512==∑∑==i i i i i y x x ,可得:5.65551455055138055251251=⨯⨯-⨯⨯-=--=∑∑==x xyx yx b i ii ii . …6分50 6.5517.5a y bx =-=-⨯=.…………………………………………………………………8分因此,所求回归直线方程为:5.175.6ˆ+=x y.…………………………………………………9分 (3)根据上面求得的回归直线方程,当广告费支出为10万元时,5.825.17105.6ˆ=+⨯=y(万元) 即这种产品的销售收入大约为82. 5万元.………………………………………………………12分5.(本小题满分14分) 设函数)0()2()(2≥--=x ax e x x f x ,其中e 是自然对数的底,a 为实数. (1)若1a =,求()f x 的单调区间;(2)当1a ≠时,()f x x ≥-恒成立,求实数a 的取值范围.解:(1)当1a =时,()()22x f x x e x =--. ……………………………………………………………1分()()()2221x x xf x e xe x e x '∴=-+-=-+. …………………………………………………2分0x ≥,11x ∴+≥,∴令()0f x '<,得[)0,ln2x ∈.…………………………………………………………………4分 令()0f x '>,得()ln 2,x ∈+∞.………………………………………………………………5分 ∴函数()f x 的单调减区间是[)0,ln2,单调增区间是()ln 2,+∞.……………………………6分 (2)()f x x ≥-,()10x x e ax ∴--≥.……………………………………………………………7分设()1xg x e ax =--,则()xg x e a '=-. ………………………………………………………8分0x ≥,1x e ∴≥,①当1a <时,()0g x '>,()g x 为增函数,而()00g =,∴()0g x ≥,()f x x ∴≥-恒成立.…………………………………………………………10分 ②当1a >时,由()0xg x e a '=->解得:ln x a >.∴当[)0,ln x a ∈时,()g x 为减函数;当[)ln ,x a ∈+∞时,()g x 为减函数.()00g =,∴当[)0,ln x a ∈时,()0g x <,故当0x >时,()0xg x <.即()10xx e ax ∴--<,()f x x ∴<-.此时,()f x x ≥-不可能恒成立. ……………………………………………………………13分综上所述,a 的取值范围是(),1-∞.……………………………………………………………14分 6.(本小题满分14分)已知二次函数)(x f 满足:①当2x =时有极值;②图象与y 轴交点的纵坐标为4-,且在该点处的 切线与直线440x y +-=平行. (1)求(-1)f 的值;(2)若m R ∈,求函数[](ln +),1,y f x x m x e =∈的最小值;(3)若曲线),1(),(ln +∞∈=x x f y 上任意一点处的切线的斜率恒大于34k k --,求k 的取值范围. 解:(1)设)0()(2≠++=a c bx ax x f ,由题意可得:(0)4,4f c =-∴=-……………………………1分∴.2)(b ax x f +=' ∵在2x =处有极值,∴(2)0,0.f a b '=+=即4………………………… 2分 ∵在点(0,-4)处的切线与直线044=-+y x 平行,∴4)0(-='f ,即4-=b ,故1=a ……3分∴2()44,(-1)1+441f x x x f =--=-=…………………………………………………………4分 (2)∵22()44(2)8f x x x x =--=--,∴2(ln )(ln 2)8.y f x x m x x m =+=+--.…………5分 令x x t ln =,∴当],1[e x ∈时,]1,1ln 10x e t x '∈=+≥>当时, ∴x x t ln =在],1[e x ∈上单调递增,∴0,t e ≤≤ …………………………………………………6分∴2()(2)8.(0)y g t t m t e ==+--≤≤∵函数2()(2)8.(0)y g t t m t e ==+--≤≤的对称轴为m t -=2. …………………………7分 ①当02≤-m ,即2≥m 时,函数)(t g y =在区间],0[e 内单调递增,8)2()0(2min --==∴m g y ……………………………………………………………………8分 ②当e m <-<20,即22<<-m e 时,函数)(t g y =在顶点取得最小值,8)2(min -=-=∴m g y …………………………………………………………………………9分 ③当e m ≥-2,即e m -≤2时,函数)(t g y =在区间],0[e 内单调递减,8)2()(2min --+==∴m e e g y …………………………………………………………… 10分(3)2(ln )(ln )4ln 4,ln ,f x x x t x =--=令,令x t ln =.∵),1(+∞∈x ,∴0,()44,()24t f t t t f t t '>∴=--∴=-,∴20,()44,()24t f t t t f t t '>∴=--∴=-,∴0,()44,()24t f t t t f t t '>∴=--∴=-. ∵0>t ,∴()4f t '>-……………………………12分 由题意得34()k k f t '--<恒成立,恒成立,∴344,(1)(1)0,101k k k k k k k --≤-∴+-≤∴≤-≤≤或,∴44,(1)(1)0,101k k k k k k k --≤-∴+-≤∴≤-≤≤或, ∴1-≤k 或10≤≤k , ∴k 的取值范围为1-≤k 或10≤≤k .……………………………14分7.(本小题满分14分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (1)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (2)求()f x 的单调区间;(3)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值 范围.解:(1)2()(21)f x ax a x'=-++(0)x >,(1)(3)f f ''=,解得23a =.………………………………3分(2)(1)(2)()ax x f x x--'=(0)x >. …………………………………………………………………5分①当0a ≤时,0x >,10ax -<, 在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<, 故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………………………6分②当102a <<时,12a >, 在区间(0,2)和1(,)a+∞上,()0f x '>;在区间1(2,)a 上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a+∞,单调递减区间是1(2,)a .……………………7分③当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞. ……………………8分④当12a >时,102a<<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a 上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a.……………………9分(3)由已知,在(0,2]上有max max ()()f x g x <. ……………………………………………………10分由已知,max ()0g x =,由(2)可知,①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+,∴222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……………………………11分②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减,故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,∴22ln 0a --<,max ()0f x <. ……………………………………………………………13分 综上所述,ln 21a >-. …………………………………………………………………………14分8.(本小题满分14分) 已知函数322()23().3f x x ax x x =-+∈R . (1)若1a =,点P 为曲线()y f x =上一个动点,求以点P 为切点的切线斜率取最小值时的切线方程; (2)若函数()(0,)y f x =+∞在上为单调增函数,试求满足条件的最大整数..a .解:(1)设切线的斜率为k ,则22()2432(1)1k f x x x x '==-+=-+.………………………………2分 又5(1)3f =,所以所求切线的方程为:513y x -=-.………………………………………… 5分 即3320.x y -+=.………………………………………………………………………………… 6分 (2)2()243f x x ax '=-+,要使()y f x =为单调增函数,必须满足()0f x '≥.即对任意的),0(+∞∈x ,恒有0)(>'x f .……………………………………………………… 8分2()2430f x x ax '=-+≥,2233424x x a x x+∴≤=+.……………………………………… 11分 而36242x x +≥,当且仅当62x =时,等号成立,所以62a ≤. 所求满足条件的a 值为1.…………………………………………………………………………14分9.(本小题满分14分) 设函数)()]([)12(2131)(223R b a b x a f a a x a x x f ∈+'--+--=,. (1)求)(a f '的值;(2)若对任意的]1,0[∈a ,函数)(x f )在]1,0[∈x 上的最小值恒大于1,求b 的取值范围. 解:(1)∵b x a f a a x a x x f +'--+--=)]([)12(2131)(223, ∴)()12()(22a f a a x a x x f '--+--=', ……………………………………………………2分 ∴)()12()(22a f a a a a a a f '--+--=', ……………………………………………………3分 ∴0)(='a f . ………………………………………………………………………………………4分 (2)由(1)得b x a a x a x x f +-+--=][)12(2131)(223. ∵)()]1([)12()(22a x a x a a x a x x f -⋅--=-+--=', 令10)(-<⇒>'a x x f 或a x >,令a x a x f <<-⇒<'10)(,∴)(x f 在]1,(--∞a 上单调递增,在],1[a a -上单调递减,在),[+∞a 上单调递增.………6分 又∵10≤≤a ,∴)(x f 在]1,0[∈x 上的最小值为b a a a f +-=232131)(.…………………8分 ∴1213123>+-b a a 在]1,0[∈a 上恒成立, 即1213123++->a a b 在]1,0[∈a 上恒成立.令)10(12131)(23≤≤++-=x x x x g ,则0)1()(2≥--=+-='x x x x x g ,……………………………………………………………13分∴)(x g 在]1,0[∈x 上单调递增,∴67)(1≤≤x g ,∴67>b .………………………………14分。
2014年高考数学试题汇编 导数一.选择题1。
(2014大纲)曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 【答案】C . 2。
(2014浙江)已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤c B 。
63≤<c C 。
96≤<c D. 9>c C3。
(2014陕西)定积分1(2)x x e dx +⎰的值为( ).2Ae + .1B e + .C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4. (2014湖南)已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A 。
56x π=B 。
712x π= C 。
3x π= D.6x π=5(2014山东)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A )22(B )42(C)2(D )46. (2014新课标II )设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A 。
0 B. 1 C 。
2 D. 3 【答案】 D..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= 7. (2014江西)若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A 。
1- B.13- C 。
13D 。
1 【答案】B 【解析】设()1m f x dx=⎰,则2()2f x x m=+,()111123011()2()2233f x dx x f x dx dx x mx m m =+=+=+=⎰⎰⎰,所以13m =-.8。
2014高考真题汇编函数与导数(二)1.[2014·山东卷] 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A. 2 2 B. 4 2 C. 2 D. 41.D [解析] 直线y =4x 与曲线y =x 3在第一象限的交点坐标是(2,8),所以两者围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝⎛⎪⎪⎭⎫2x 2-14x 420=4,故选D.2、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图1-42.2e2 [解析] 因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为S =2⎠⎛1eln x d x =2(x ln x -x)|e1=2[(eln e -e )-(ln 1-1)]=2,故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2e 2.3.[2014·江西卷] 若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .13.B [解析] ⎠⎛01f (x )d x =⎠⎛01⎣⎡⎦⎤x 2+2⎠⎛01f (x )d x d x =⎣⎡⎦⎤13x 3+⎝⎛⎭⎫2⎠⎛01f (x )d x x 10=13+2⎠⎛01f (x )d x ,得⎠⎛01f (x )d x =-13.4.[2014·湖南卷] 已知函数f (x )=sin(x -φ),且⎰320πf(x)d x =0,则函数f(x)的图像的一条对称轴是( )A .x =5π6 B .x =7π12 C .x =π3 D .x =π64.A [解析] 因为∫2π30f(x)d x =0,即∫2π30f(x)d x =-cos (x -φ)2π30=-cos ⎝⎛⎭⎫2π3-φ+cos φ=0,可取φ=π3,所以x =5π6是函数f(x)图像的一条对称轴.5.[2014·新课标全国卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞)C .(-∞,-2)D .(-∞,-1)5.C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a ,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意. 综上可知,实数a 的取值范围为(-∞,-2).6.[2014·湖北卷] 若函数f (x ),g (x )满足⎠⎛-11f(x)g(x)d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数: ①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .36.C [解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足⎠⎛-11f(x)g(x)d x =0.①⎠⎛-11f(x)g(x)d x =⎠⎛-11sin 12x cos 12x d x = 12⎠⎛-11sin x d x =⎝⎛⎭⎫-12cos x 1-1=0,故第①组是区间[-1,1]上的正交函数; ②⎠⎛-11f(x)g(x)d x =⎠⎛-11(x +1)(x -1)d x =⎝⎛⎭⎫x 33-x 1-1=-43≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11f(x)g(x)d x =⎠⎛-11x ·x 2d x =x 441-1=0,故第③组是区间[-1,1]上的正交函数. 综上,是区间[-1,1]上的正交函数的组数是2. 故选C 74.[2014·黄冈中学期末] 已知f (x )是定义在R 上以2为周期的偶函数,且当0≤x ≤1时,f (x )=log 12(1-x ),则f ⎝⎛⎭⎫-20114=( ) A .-2 B.12C .1D .27.D [解析] f -20114=f 20114=f 34=log 121-34=log 1214=2.8.[2014·青岛期中] 若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-15.B [解析] 由题意,要使函数f (x )在区间(-1,1)上存在一个零点,则有f (-1)f (1)<0,8.即(a +1)(-5a +1)<0,所以(a +1)(5a -1)>0,解得a >15或a <-1.9.[2014·内江模拟] 已知函数f (x )=13x 3-12x 2+cx +d 有极值,则c 的取值范围为( )A .c <14B .c ≤14C .c ≥14D .c >149.A [解析] 由题意得,f′(x)=x 2-x +c ,Δ=1-4c>0,解得c<1410.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 10.解:(1)函数y =f (x )的定义域为(0,+∞), f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞).因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e22.11.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.11.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x)=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1. (2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x-c >0,此时f (x )无极值. 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).12、[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.12.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a舍去.当x ∈(0,x 1)时,f ′(x )<0; 当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减, 在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <121<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.13、[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.10.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数, 因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.(ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ),则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2,因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.2.[2014·成都检测] 定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a ,b ∈R ,有f (a +b )=f (a )f (b ).(1)求证:f (0)=1;(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)若f (x )f (2x -x 2)>1,求x 的取值范围.2.解:(1)证明:令a =b =0,则有f (0)=[f (0)]2. ∵f (0)≠0,∴f (0)=1.(2)证明:令a =x ,b =-x ,则有f (0)=f (x )f (-x ),∴f (-x )=1f (x ).∵当x >0时,f (x )>1>0,∴当x <0时,-x >0,∴f (-x )>0,∴f (x )=1f (-x )>0.又当x =0时,f (0)=1>0, ∴对任意的x ∈R ,恒有f (x )>0.(3)任取x 2>x 1,则f (x 2)>0,f (x 1)>0,x 2-x 1>0, ∴f (x 2)f (x 1)=f (x 2)·f (-x 1)=f (x 2-x 1)>1, ∴f (x 2)>f (x 1),∴f (x )在R 上单调递增. 又f (x )·f (2x -x 2)=f [x +(2x -x 2)]=f (-x 2+3x ), 且f (0)=1,∴f (3x -x 2)>f (0),∴3x -x 2>0,解得0<x <3.4.[2014·广州调研] 设函数f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1.(1)若曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,求实数a ,b 的值;(2)当b =1-a2时,若函数h (x )=f (x )+g (x )在区间(-2,0)内恰有两个零点,求实数a 的取值范围;(3)当a =1,b =0时,求函数h (x )=f (x )+g (x )在区间[t ,t +3]内的最小值.4.解:(1)因为f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1,所以f ′(x )=x 2-a ,g ′(x )=2bx .因为曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线, 所以f (1)=g (1),且f ′(1)=g ′(1), 即13-a =b +2b -1,且1-a =2b , 解得a =13,b =13.(2)当b =1-a 2时,h (x )=13x 3+1-a 2x 2-ax -a (a >0),所以h ′(x )=x 2+(1-a )x -a =(x +1)(x -a ). 令h ′(x )=0,解得x 1=-1,x 2=a >0.当x 变化时,h ′(x ),h (x )的变化情况如下表:故h (x )在区间(-2,-1)上单调递增,在区间(-1,0)上单调递减. 又函数h (x )在区间(-2,0)内恰有两个零点,所以有⎩⎪⎨⎪⎧h (-2)<0,h (-1)>0,h (0)<0,即⎩⎨⎧-83+2(1-a )+2a -a <0,-13+1-a2+a -a >0,-a <0,解得0<a <13,所以实数a 的取值范围是0,13.(3)当a =1,b =0时,h (x )=13x 3-x -1,b =1-a 2,则由(2)可知,函数h (x )的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).因为h (-2)=-53,h (1)=-53,所以h (-2)=h (1).①当t +3<1,即t <-2时,[h (x )]min =h (t )=13t 3-t -1.②当-2≤t <1时,[h (x )]min =h (-2)=-53.③当t ≥1时,h (x )在区间[t ,t +3]上单调递增,[h (x )]min =h (t )=13t 3-t -1.综上可知,函数h (x )在区间[t ,t +3]上的最小值[h (x )]min =⎩⎨⎧133-t -1,t ∈(-∞,-2)∪[1,+∞),-53,t ∈[-2,1).。
2014年高考数学函数与导数一、选择题1.【2014·全国卷Ⅰ(理3,文5)】设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数2. 【2014·全国卷Ⅰ(理6)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )3. 【2014·全国卷Ⅰ(理11,文12)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)4. 【2014·全国卷Ⅱ(理8)】设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A. 0 B. 1 C. 2 D. 35【2014·全国卷Ⅱ(理12)】设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞6.【2014·全国卷Ⅱ(文3)】函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则( )(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件 7.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( )(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞8. 【2014·全国大纲卷(理7)】曲线1x y xe -=在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .1 9. 【2014·全国大纲卷(理12)】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--10.【2014·全国大纲卷(文5)】函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈11.【2014·全国大纲卷(文12)】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1 12. 【2014·山东卷(理3)】函数()f x =)(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞13.【2014·山东卷(文3)】函数()f x =的定义域为( )(A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞14.【2014·山东卷(理5)】已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是( ) (A )221111x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y > (D )22x y > 15.【2014·山东卷(文5)】已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )(A) 33x y > (B) sin sin x y > (C) 22ln(1)ln(1)x y +>+ (D) 221111x y >++ 16.【2014·山东卷(文6)】已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是( )(A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< 17.【2014·山东卷(文9)】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是( )(A) ()f x = (B) 3()f x x =(C) ()tan f x x =(D) ()cos(1)f x x =+18.【2014·山东卷(理6)】直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )(A )B )C )2(D )419.【2014·山东卷(理8)】已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )(A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞20.【2014·安徽卷(理6)】设函数()(f x x R ∈)满足()()f x f x sinx π+=+.当0x π≤≤时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )A.12 C.0 D.12-21.【2014·安徽卷(文、理9)】若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A. 5或8 B. 1-或5 C. 1-或4- D. 4-或822.【2014·安徽卷(文5)】设3log 7a =, 3.32b =, 3.30.8c =,则( )A. b a c <<B. c a b <<C. c b a <<D. a c b <<23.【2014·浙江卷(理6,文8)】已知函数32()f x x ax bx c =+++ 且0(1)(2)(3)3f f f ≤-≤-≤-≤,则( )A.3≤cB.63≤<cC.96≤<cD. 9>c 24.【2014·北京卷(理2)】下列函数中,在区间(0,)+∞上为增函数的是( ).A y =2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+25.【2014·北京卷(文2)】下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.y x = C.ln y x = D.y x = 26.【2014·北京卷(文6)】已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞27.【2014·天津卷(文4)】设2log a p =,12log b p =,2c p -=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >>28.【2014·福建卷(理4,文8)】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )29.【2014·福建卷(理7,文8)】已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数 B.C.()x f 是周期函数D.()x f 的值域为[)+∞-,130.【2014·辽宁卷(理3,文3)】已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 31.【2014·辽宁卷(理11)】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--32.【2014·辽宁卷(文10)】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--33.【2014·陕西卷(理3)】定积分1(2)x x e dx +⎰的值为( ).2A e + .1B e + .C e .1D e -34.【2014·陕西卷(文、理7)】下列函数中,满足“()()()f xy f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭ (D )()3x f x =35.【2014·湖南卷(理3)】已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++(1)(1)f g +则=( ) A .-3 B .-1 C .1 D .336.【2014·湖南卷(文4)】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -= 37.【2014·湖南卷(理10)】已知函数221()(0)()ln()2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.(-∞ B.(-∞ C.( D.( 38.【2014·湖南卷(文9)】若1201x x <<<,则( )A.2121ln ln x x e e x x ->-B.2121ln ln x x e e x x -<-C.1221x x x e x e >D.1221x x x e x e < 39【2014·江西卷(理2)】函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞40.【2014·江西卷(理3)】已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. -141.【2014·江西卷(文4)】已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D 42【2014·江西卷(理8)】若120()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.143.【2014·湖北卷(理6)】若函数(),()f x g x 满足11()g()0f x x dx -=⎰ ,则称(),()f x g x 为区间[]1,1-上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==。