DSP硬件设计基础
- 格式:pptx
- 大小:102.97 KB
- 文档页数:18
DSP硬件系统的设计DSP(数字信号处理器)硬件系统是一种专门用于处理数字信号的处理器。
它可以用于各种应用领域,如音频和视频处理、通信系统、雷达和成像系统等。
在设计DSP硬件系统时,需要考虑多个因素,包括性能要求、功耗、实时性和扩展性等。
本文将详细介绍DSP硬件系统的设计过程。
首先,在DSP硬件系统的设计中,需要明确系统的性能要求。
这包括数据处理速度、存储器大小、输入输出接口等方面。
性能要求将直接影响到硬件设计的复杂度和成本。
因此,需要仔细分析系统的应用场景和所需功能,确保所设计的硬件系统能够满足性能要求。
其次,需要选择适合的DSP芯片。
市面上有许多不同的DSP芯片,每个芯片都有其独特的特性和性能。
在选择DSP芯片时,需要考虑芯片的性能指标(如时钟速度、处理能力),软件开发工具的可用性,以及芯片的功耗等因素。
此外,还需要考虑芯片的成本和可扩展性,以确保所选芯片能够满足系统的需求。
在DSP硬件系统的设计中,关键部分是处理器核心和存储器子系统。
处理器核心是执行DSP算法的主要组成部分,它负责进行定点或浮点数的运算和处理。
存储器子系统包括程序存储器、数据存储器和缓存等,用于存储数据和程序指令。
在设计处理器核心和存储器子系统时,需要考虑其性能和可靠性。
此外,还需要设计适当的输入输出接口。
输入输出接口是连接DSP硬件系统与其他外围设备的通道,它包括模数转换器(ADC)和数模转换器(DAC)等。
在设计输入输出接口时,需要考虑系统的数据传输速率、精度和稳定性等因素。
为了提高DSP硬件系统的性能,还可以采用并行处理的方法。
并行处理可以通过增加处理器核心的数量来提高系统的并行计算能力。
此外,还可以通过使用硬件加速器和协处理器等技术来提高系统的处理能力。
最后,在设计DSP硬件系统时,还需要考虑功耗和实时性。
功耗是指系统所消耗的电能,它直接影响到系统的使用成本和散热问题。
实时性是指系统对输入信号的响应时间,在一些应用领域(如通信系统)中非常重要。
dsp硬件设计课程设计一、教学目标本课程的教学目标是使学生掌握DSP硬件设计的基本原理和方法,培养学生进行DSP硬件系统设计和实现的能力。
具体目标如下:1.掌握DSP芯片的基本结构和原理。
2.了解DSP硬件设计的基本流程和步骤。
3.熟悉DSP系统的硬件架构和关键模块。
4.能够使用DSP芯片进行硬件系统设计。
5.能够进行DSP系统的硬件调试和验证。
6.能够分析和解决DSP硬件设计中遇到的问题。
情感态度价值观目标:1.培养学生的创新意识和团队合作精神。
2.培养学生对DSP硬件设计的兴趣和热情。
3.培养学生对科技发展的关注和对工程实践的重视。
二、教学内容本课程的教学内容主要包括以下几个部分:1.DSP芯片的基本结构和原理:介绍DSP芯片的内部结构、工作原理和特性。
2.DSP硬件设计的基本流程和步骤:讲解DSP硬件设计的过程,包括需求分析、硬件架构设计、硬件电路设计、硬件调试和验证等。
3.DSP系统的硬件架构和关键模块:介绍DSP系统的硬件架构,包括中央处理单元、存储器、输入输出接口等关键模块。
4.DSP硬件设计的实践案例:通过实际案例分析,使学生掌握DSP硬件设计的方法和技巧。
三、教学方法本课程的教学方法将采用多种教学手段相结合的方式,以激发学生的学习兴趣和主动性。
1.讲授法:通过教师的讲解,使学生掌握DSP硬件设计的基本原理和方法。
2.讨论法:通过分组讨论和实践案例的分析,培养学生的思考能力和团队合作精神。
3.实验法:通过实验操作,使学生熟悉DSP硬件设计的实践过程和技巧。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。
1.教材:选择适合本课程的教材,为学生提供系统的学习资料。
2.参考书:提供相关的参考书籍,为学生提供更多的学习资源。
3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示教学内容。
4.实验设备:提供DSP实验板和相关的实验设备,为学生提供实践操作的机会。
五、教学评估本课程的教学评估将采用多元化评估方式,全面客观地评价学生的学习成果。
5 DSP硬件系统的设计本方案是完成对三分量地震动信号采集和处理的硬件系统。
采用TI公司的TMS320C5409作为中央处理芯片,运用其高速的运算性能,完成对信号的实时处理。
5.1系统简介课题的研究对象为地面车辆的地震动信号,由前面介绍的三轴地震动检波器进行采集。
采集到的目标信号很微弱,通常只有几个至几十个微伏。
如此小的信号必须先经过前置放大和预处理后才能进行后续处理。
另外由于原始信号的这种微弱性,很容易被噪声淹没,所以一种低噪声、高增益放大电路也是本系统的重要组成部分之一。
为了能有效抑制干扰,对此测量电路应满足以下基本要求:(1)高输入阻抗,以减轻信号源的负载效应和抑制传输网络电阻不对称引入的误差;(2)高共模抑制比,以抑制各种共模干扰引入的误差;(3)零点的时间稳定性和温度稳定性要高,零位可调,或者能自动较零;(4)具有优良的动态特性。
基于以上要求,并满足三路信号的同时采集,本系统中采用的电路为三个单片的MAX4094组成多运放仪用放大电路,增益约为104,可单电源+2.7V~+6.0V 工作,功能可靠,性能稳定,达到了系统期望的要求。
在信号经过前置放大和预处理以后,就可以进行分析处理了。
本系统中采用DSP进行信号的分析与识别,由于DSP所能处理的信号为数字信号,所以在分析处理之前,必须将模拟信号转化成数字信号,也就是A/D转换。
针对于DSP芯片的数据接收特点,采用串行SPI方式进行数据接收,并要求三通道同时采集。
本系统采用MAX1246,该芯片为四通道串行数据传输、12位精度、低功耗ADC。
采用尾对尾连接方式,完全能够和DSP不加附加电路直接连接,从而简化电路的设计。
考虑到本系统的可调试方便,系统的电源使用独立变压器的+5V直流电源,它能够提供给系统稳定的电源保证,由于DSP有两种工作电压要求,一个是+1.8 V,一个是+3.3V。
所以本系统采用电源芯片为TI公司的TPS767D318。
同时考虑到模拟器件(主要是信号放大电路部分)和数字器件(主要是DSP和DSP周边器件)的干扰问题,采用电源芯片MAX860以及电压参考芯片MAX6030和断续放大器ICL7652,为系统提供双向电源3V。
DSP 系统硬件设计(二)——DSP系统硬件原理图、PCB设计和系统调试技巧北京飓风中天科技发展有限公司 朱铭锆DSP硬件设计包括:硬件方案设计、DSP及周边器件选型、原理图设计、PCB设计及仿真、硬件调试等。
前一讲我们详细讲述了硬件方案设计、DSP及周边器件选型两部分内容,本讲详细讲述原理图设计、PCB设计、硬件调试等内容。
以期共享设计的经验,并能够提高大家的设计效率。
一、系统资源规划硬件设计的前提需要做的一件事是对整个系统的资源进行规划,最终得到系统的资源分配表,即Memory Map。
表1提供了一个用TMS320DM642设计的图像处理系统的地址映射表。
通过表1我们可以清晰地看到程序空间、数据空间、图像输入口等资源的地址。
经过对系统资源的规划,我们的硬件设计才能够有整体的规划,不然设计出来的原理图就是非常盲目的“无源之水”。
二、硬件原理图设计DSP的芯片厂家在设计出每一种DSP芯片时一般都提供了相应的EVM(评估板)参考原理图设计,大家可以通过网络免费下载,或通过购买原装的EVM板得到。
详细的针对某一个板的原理我们就不细讲解,根据作者多年从事DSP设计的经验把设计中的技巧总结出来与大家分享。
硬件设计时,应重点注意以下几点。
(1)时钟电路。
DSP时钟可由外部提供,也可由板上的晶振提供。
但一般DSP系统中经常使用外部时钟输入,因为使用外部时钟时,时钟的精度高、稳定性好、使用方便。
由于DSP工作是以时钟为基准,如果时钟质量不高,那么系统的可靠性、稳定性就很难保证。
因此,若采用外部时钟,选择晶振时应对其稳定性、毛刺做全面的检验,以便DSP系统可靠地工作。
(2)复位电路。
应同时设计上电复位电路和人工复位电路,在系统运行中出现故障时可方便地人工复位。
对于复位电路,一方面应确保复位低电平时间足够长(一般需要20ms以上),保证DSP可靠复位;另一方面应保证稳定性良好,防止DSP误复位。
(3)在DSP电路中,对所有的输入信号必须有明确的处理,不能悬浮或置之不理。
目录目录 0引言 01.时钟信号的产生 (1)2.锁相环PLL (1)硬件配置的PLL (2)软件可编程PLL (3)2.2.1软件可编程PLL的工作方式 (3)2.2.3时钟工作方式寄存器CLKMD的应用说明 (4)3. 可编程PLL时钟工作模式的切换编程 (5)从分频模式切换向倍频模式的切换编程 (5)从倍频模式向分频模式的切换编程 (6)从倍频模式向倍频模式的切换编程 (7)从分频模式向分频模式的切换编程 (8)紧跟在复位之后的PLL操作 (8)使用IDLE指令时PLL的编程方法 (8)5 参考文献 (9)引言一个完整的DSP系统通常是由DSP芯片和其他相应的外围器件构成。
TMS320C54XX1X2\CLKIN4 1 3 2Vdd TSM320C54XX1X2\CLKINC1C2晶体DSP硬件系统主要包括电源电路、复位电路、时钟电路等。
DSP的时钟电路用来为TMS320C54x芯片提供时钟信号,由一个内部振荡器和一个锁相环PLL组成,可通过晶振或外部的时钟驱动。
以下我们将着重讨论DSP 硬件系统的基本设计中时钟电路的设计。
1.时钟信号的产生为DSP芯片提供时钟信号一般有两种方法:(1)使用外部时钟源的时钟信号,将外部时钟信号直接加到DSP芯片的X2/CLKIN引脚,而X1引脚悬空。
外部时钟源可以采用频率稳定的晶体振荡器,具有使用方便,价格便宜,因而得到广泛应用。
连接方式如图所示。
(2)利用DSP芯片内部的振荡器构成时钟电路,连接方式如图所示。
在芯片的X1和X2/CLKIN引脚之间接入一个晶体,CLKMD引脚必须设置以启动内部振荡器。
外部晶振(1)硬件配置的PLL:用于C541、C542、C543、C545和C546芯片。
(2)软件可编程PLL:用于C54A、C546A、C548、C549、C5402、C5410、和C5420芯片。
硬件配置的PLL硬件配置PLL,通过设定C54x的3个引脚CLKMD1、CLKMD2和CLKMD3的状态来选定时钟方式。
4)DSP硬件系统设计内容回顾1、片内存储器1)SRAM:共18k×16bit(M0、M1、L0、L1、H0)2)FLASH:128k×16bit,分为10个扇区,5@150MHz2、外设寄存器空间1)外设帧0:支持16位或32位访问2)外设帧1:仅支持32位访问3)外设帧2:支持16位访问3、外部扩展接口(XINTF)1)分为5个独立的存储空间,提供3个片选信号;2)每个空间可独立配置建立、有效、跟踪周期。
(75-2.78MHz)1DSP原理及其应用技术DSP硬件系统设计4.1 DSP系统设计概述4.2 DSP最小系统设计4.3 人机接口设计4.4 存储器接口设计 4.5 实验系统简介24.1 DSP系统设计概述1、总体方案设计2、硬件电路设计3、软件编程4、系统调试5、程序固化3DSP系统设计流程根据需求写出任务说明书根据任务书确定技术指标DSP芯片及外围芯片总体设计确定软硬件分工软件设计说明书软件编程与调试系统集成硬件设计说明书硬件设计(.sch/ .pcb )硬件调试系统测试、样机完成、中试、产品测试与生产4硬件设计步骤确定硬件方案器件选型(查手册)原理图设计PCB图设计硬件调试(结合软件)5系统分析系统综合DSP开发系统组成__281X MEMORY Peri-XDS510 System1)硬件开发工具;2)软件开发工具;3)DSP目标板。
JTAGSCAN PORTCPUpheralsDebugger CCS IDEJTAGXDS510 Software XDS510 DSPPC目标板6DSP开发系统组成PC机CCS IDEJTAG目标板仿真器7TI DSP 开发工具软件开发工具:C CompilerAssembler / Linker C-Source Debugger: Code Composer Studio IDECode composer studioSimulator硬件开发系统XDS510/560 EVM F28x MCK28x DSK28xFlash programming tools8DSP硬件开发工具TMS320的硬件开发工具,包括1)DSK(Develop Starter Kit)、2)EVM(Evaluate Module);3)硬件仿真系统XDS-510/560。
DSP主控板硬件设计DSP主控板是一种集成了数字信号处理(Digital Signal Processor,DSP)功能的主控板。
它是一种专门设计用于数字信号处理任务的硬件设备,广泛应用于音频和视频处理、图像处理、通信系统、雷达系统等领域。
DSP主控板的硬件设计是保证其正常运行和性能优化的关键步骤。
在硬件设计方面,主要包括核心芯片选型、外设接口设计、电源设计和时钟设计等方面。
首先,核心芯片选型是DSP主控板硬件设计的关键之一。
根据应用需求和性能要求,选择适合的DSP芯片。
常见的DSP芯片有TI的TMS320系列和Analog Devices的Blackfin系列等。
不同芯片具有不同的处理能力、计算速度、内存容量和功耗等指标,因此需根据具体需求进行选型。
其次,外设接口设计是DSP主控板硬件设计的另一个重要方面。
根据应用需要,设计适合的输入输出接口,如模拟输入输出接口、数字输入输出接口和通信接口等。
这些接口可以连接外部设备,实现与外部系统的数据交互,满足不同的应用需求。
再次,电源设计是DSP主控板硬件设计的必要环节。
稳定可靠的电源是保证DSP主控板正常工作的前提条件。
设计电源模块时,需考虑电压稳定性、电源纹波、电源噪声等因素,充分满足DSP主控板的电源需求。
最后,时钟设计是DSP主控板硬件设计的关键一环。
时钟信号是DSP主控板正常运行所必须的,它主要用于控制和同步DSP芯片的工作。
时钟设计要考虑时钟频率、时钟稳定性、时钟分频等因素,确保DSP主控板稳定工作。
除了以上几个方面,DSP主控板的硬件设计还需要考虑其他一些因素,如EMI(Electromagnetic Interference,电磁干扰)抑制、抗干扰能力、PCB(Printed Circuit Board,印制电路板)布局等。
EMI抑制可以减少DSP主控板对周围设备的电磁干扰,保证其正常工作。
抗干扰能力可以提高DSP主控板的稳定性和可靠性。