线性系统频域分析方法开环频率曲线绘制
- 格式:pptx
- 大小:1.41 MB
- 文档页数:26
自动控制理论上机实验报告学院:机电工程学院班级:13 级电信一班姓名:学号:实验三 线性系统的频域分析一、实验目的1.掌握用 MATLAB 语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及 MATLAB 函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系 统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表 达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种 :Nyquist 图、 Bode 图和 Nichols 图。
1) Nyquist 图的绘制与分析MATLAB 中绘制系统 Nyquist 图的函数调用格式为 :nyquist(num,den) 频率响应 w 的范围由软件自动设定 nyquist(num,den,w) [Re,Im]= nyquist(num,den)量,不作图例 4-1: 已知系统的开环传递函数为 G(s) 图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); pnyquist(num,den)极点的显示结果及绘制的 Nyquist 图如图 4-1 所示。
由于系统的开环右根数 P=0,系统的 Nyquist 曲线没有逆时针包围 (-1 ,j0 )点,所 以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668频率响应 w 的范围由人工设定返回奈氏曲线的实部和虚部向2s 63 2,试绘制 Nyquist s 2s 5s 2图 4-1 开环极点的显示结果及 Nyquist 图若上例要求绘制(10 2,103 )间的Nyquist 图,则对应的MATLAB语句为: num=[2 6];den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100 个等距离的点nyquist(num,den,w)2) Bode图的绘制与分析系统的Bode 图又称为系统频率特性的对数坐标图。
实验名称:线性系统的频率响应分析系专业班姓名学号授课老师预定时间实验时间实验台号一、目的要求1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、原理简述1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0 变至∞) 而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。
2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比和相位差随角频率(ω由0 变到∞) 变化的特性。
而幅值比和相位差恰好是函数的模和幅角。
所以只要把系统的传递函数,令,即可得到。
我们把称为系统的频率特性或频率传递函数。
当由0 到∞变化时,随频率ω的变化特性成为幅频特性,随频率的变化特性称为相频特性。
幅频特性和相频特性结合在一起时称为频率特性。
3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。
这两组曲线连同它们的坐标组成了对数坐标图。
对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。
②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。
(2) 极坐标图(或称为奈奎斯特图)(3) 对数幅相图(或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。
实验中提供了两种实验测试方法:直接测量和间接测量。
直接频率特性的测量用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。