第3讲 圆周运动
- 格式:doc
- 大小:3.07 MB
- 文档页数:26
第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。
1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。
这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。
由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。
所以可以把上一节的结论直接用于圆周运动的线量描述。
位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。
质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。
2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。
如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。
在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。
注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。
其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。
即为d θ的正方向。
2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。
3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。
第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。
2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。
测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。
该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。
该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。
求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。
[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。
(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。
2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。
小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。
当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。
第3讲圆周运动及其应用考点1 描述圆周运动的物理量及其关系(d)【典例1】(2018·浙江4月选考真题)A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们( )A.线速度大小之比为4∶3B.角速度大小之比为3∶4C.圆周运动的半径之比为2∶1D. 向心加速度大小之比为1∶2【解析】选A。
因为相同时间内它们通过的路程之比是4∶3,根据v=,则A、B的线速度之比为4∶3,故A正确;运动方向改变的角度之比为3∶2,根据ω=,则角速度之比为3∶2,故B错误;根据v=ωr可得圆周运动的半径之比为=×=×=,故C错误;根据a=vω得,向心加速度之比为==×=,故D错误。
1.如图是自行车传动结构的示意图,其中Ⅰ是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮,假设脚踏板的转速为n r/s,则自行车前进的速度为( )A. B.C. D.【解析】选D。
转速为单位时间内转过的圈数,因为转动一圈,对圆心转过的角度为2π,所以ω=2πn,因为要测量自行车前进的速度,即车轮Ⅲ边缘上的线速度的大小。
根据题意知:轮Ⅰ和轮Ⅱ边缘上的线速度的大小相等,据v=rω可知r1ω1=r2ω2,已知ω1=2πn,则轮Ⅱ的角速度ω2=ω1。
因为轮Ⅱ和轮Ⅲ共轴,所以转动的ω相等,即ω3=ω2,根据v=rω可知,v=r3ω3=,故选D。
2.(2019·台州模拟)如图所示为“行星转动示意图”。
中心“太阳轮”的转动轴固定,其半径为R1,周围四个“行星轮”的转动轴固定,其半径为R2,“齿圈”的半径为R3,其中R1=1.5R2,A、B、C分别是“太阳轮”“行星轮”“齿圈”边缘上的点,齿轮转动过程不打滑,那么( )A.A点与B点的角速度相同B.A点与B点的线速度相同C.B点与C点的转速之比为7∶2D.A点与C点的周期之比为3∶5【解析】选C。
第四章曲线运动第3讲圆周运动【教学目标】1、理解线速度、角速度和周期的概念;2、理解向心加速度和向心力以及和各物理量间的关系;3、会用牛顿第二定律求解圆周运动问题,并能灵活解决圆周运动中的有关临界问题4、知道离心现象及发生离心现象的条件。
【重、难点】1、会用牛顿第二定律求解圆周运动问题;2、临界问题【知识梳理】1(1)匀速圆周运动是匀变速曲线运动.()(2)物体做匀速圆周运动时,其角速度是不变的.()(3)物体做匀速圆周运动时,其合外力是不变的.()(4)匀速圆周运动的向心加速度与半径成反比.()(5)做匀速圆周运动的物体角速度与转速成正比.( )(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.()(7)匀速圆周运动的向心力是产生向心加速度的原因.()(8)做圆周运动的物体所受到的合外力不一定等于向心力.()(9)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.()(10)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.()(11)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.()(12)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.()(13)在绝对光滑的水平路面上汽车可以转弯.()(14)火车转弯速率小于规定的数值时,内轨受到的压力会增大.()(15)飞机在空中沿半径为R的水平圆周盘旋时,飞机机翼一定处于倾斜状态.()典例精析考点一描述圆周运动的物理量1.圆周运动各物理量间的关系及其理解2.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即23v A =v B 。
(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即 v A =v B 。
第3讲 圆周运动知识要点一、匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
2.特点:加速度大小不变,方向始终指向圆心,是变加速运动。
3.条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
二、角速度、线速度、向心加速度三、匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
2.大小:F n =ma n =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
3.方向:始终沿半径指向圆心方向,时刻在改变,即向心力是一个变力。
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
四、离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
基础诊断1.如图1所示,a、b是地球表面上不同纬度上的两个点,如果把地球看做是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的()图1A.线速度B.加速度C.角速度D.轨道半径答案 C2.(多选)一质点做匀速圆周运动,其线速度大小为4 m/s,转动周期为2 s,则()A.角速度为0.5 rad/sB.转速为0.5 r/sC.轨迹半径为4πm D.加速度大小为4π m/s2答案BCD3.[人教版必修2·P25·T3改编]如图2所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A受力情况是()图2A.重力、支持力B.重力、向心力C.重力、支持力、指向圆心的摩擦力D.重力、支持力、向心力、摩擦力答案 C4.如图3所示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()图3A.运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合外力大于所需的向心力解析向心力为沿半径方向上的合力。
运动员转弯时,受力分析如图所示,可知地面对车轮的摩擦力提供所需的向心力,故A错误,B正确;当F f<m v2r,摩擦力不足以提供所需向心力时,就会发生侧滑。
故C、D错误。
答案 B圆周运动的运动学问题1.对公式v=ωr的进一步理解当r一定时,v与ω成正比;当ω一定时,v与r成正比;当v一定时,ω与r成反比。
2.对a=v2r=ω2r=ωv的理解在v一定时,a与r成反比;在ω一定时,a与r成正比。
3.常见传动方式及特点(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同。
(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等。
【例1】(2019·浙江十校联盟3月适应性考试)如图4所示是一种古老的舂米机。
舂米时,稻谷放在石臼A中,横梁可以绕O转动,在横梁前端B处固定一舂米锤,脚踏在横梁另一端C点往下压时,舂米锤便向上抬起。
然后提起脚,舂米锤就向下运动,击打A中的稻谷,使稻谷的壳脱落,稻谷变为大米。
已知OC>OB,则在横梁绕O转动过程中()图4A.B、C的向心加速度相等B.B、C的角速度关系满足ωB<ωCC.B、C的线速度关系满足v B<v CD.舂米锤击打稻谷时对稻谷的作用力大于稻谷对舂米锤的作用力解析由图可知,B与C属于共轴转动,则它们的角速度是相等的,即ωC=ωB,向心加速度a n=ω2r,因OC>OB,可知C的向心加速度较大,选项A、B错误;由于OC>OB,由v=ωr可知C点的线速度大,选项C正确;舂米锤对稻谷的作用力和稻谷对舂米锤的作用力是一对作用力与反作用力,二者大小相等,选项D错误。
答案 C1.(多选)(2019·安徽合肥模拟)如图5所示,自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,它们的边缘有三个点A、B、C。
关于这三点的线速度、角速度、周期和向心加速度的说法中正确的是()图5A.A、B两点的线速度大小相等B.B、C两点的角速度大小相等C.A、C两点的周期大小相等D.A、B两点的向心加速度大小相等解析自行车的链条不打滑,A点与B点的线速度大小相等,故A正确;B点与C点绕同一转轴转动,角速度相等,故B正确;由T=2πrv可知,A点的半径大于B点的半径,A点的周期大于B点的周期,而B点的周期与C点的周期相等,所以A点的周期大于C点的周期,故C错误;由向心加速度公式a n=v2r,A点的半径大于B点的半径,可知A点的向心加速度小于B点的向心加速度,故D 错误。
答案AB2.(多选)(2019·辽宁丹东质检)在如图6所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,小齿轮边缘的A点和大齿轮边缘的B点()图6A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的解析题图中三个齿轮边缘线速度大小相等,A点和B点的线速度大小之比为1∶1,由v=ωr可得,线速度大小一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C正确,B、D错误。
答案AC3.(多选)(2019·江苏卷,6)如图7所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动。
座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()图7A.运动周期为2πR ωB.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为mω2R解析座舱的周期T=2πRv=2πω,A错误;根据线速度与角速度的关系,v=ωR,B正确;座舱做匀速圆周运动,摩天轮对座舱的作用力与重力大小不相等,其合力提供向心力,合力大小为F合=mω2R,C错误,D正确。
答案BD圆周运动中的动力学问题1.向心力的来源(1)向心力的方向沿半径指向圆心。
(2)向心力来源:一个力或几个力的合力或某个力的分力。
2.解决圆周运动动力学问题的主要步骤(1)审清题意,确定研究对象;明确物体做圆周运动的所在平面是至关重要的一环;(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;(3)分析物体的受力情况,画出受力示意图,确定向心力的来源;(4)根据牛顿运动定律及向心力公式列方程。
【例2】(2019·辽宁大连模拟)游乐场有一种叫做“快乐飞机”的游乐项目,其简化模型如图8所示,已知模型飞机质量为m,固定在长为L的旋臂上,旋臂与竖直方向夹角为θ(0<θ≤π2),当模型飞机以角速度ω绕中央轴在水平面内做匀速圆周运动时,下列说法正确的是()图8A.模型飞机受到重力、旋臂的作用力和向心力B.旋臂对模型飞机的作用力方向一定与旋臂垂直C.旋臂对模型飞机的作用力大小为m g2+ω4L2sin2θD.若夹角θ增大,则旋臂对模型飞机的作用力减小解析当模型飞机以角速度ω绕中央轴在水平面内做匀速圆周运动时,模型飞机受到的力为重力和旋臂的作用力,它们的合力充当向心力,选项A错误;旋臂对模型飞机的作用力方向可以与旋臂不垂直,这个作用力在水平方向的分力提供向心力,在竖直方向的分力与重力平衡,选项B错误;由力的合成可知,旋臂对模型飞机的作用力大小为F=m g2+ω4L2sin2θ,选项C正确;由C项分析可知,当夹角θ增大时,旋臂对模型飞机的作用力增大,选项D错误。
答案 C1.如图9所示,照片中的汽车在水平路面上做匀速圆周运动,已知图中双向四车道的总宽度约为15 m,假设汽车受到的最大静摩擦力等于车重的0.7倍,则运动的汽车()图9A.所受的合力可能为零B.只受重力和地面支持力作用C.最大速度不能超过25 m/sD.所需的向心力由重力和支持力的合力提供解析汽车在水平面上做匀速圆周运动,合外力时刻指向圆心,拐弯时由静摩擦力提供向心力,因此排除A、B、D,选项C正确。
答案 C2.(多选)(2019·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转。
一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2)。
设两球同时做如图10所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()图10A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1D.球A、B到P的距离之比等于m1∶m2解析对其中一个小球受力分析,其受到重力和绳的拉力F,绳中拉力在竖直方向的分力与重力平衡,设轻绳与竖直方向的夹角为θ,则有F cos θ=mg,拉力在水平方向上的分力提供向心力,设该小球到P的距离为l,则有F sin θ=mg tan θ=m4π2T2l sin θ,解得周期为T=2πl cos θg=2πhg,因为任意时刻两球均在同一水平面内,故两球运动的周期相等,选项A正确;连接两球的绳的张力F相等,由于向心力为F n=F sin θ=mω2l sin θ,故m与l成反比,由m1≠m2,可得l1≠l2,又小球的向心加速度a=ω2l sin θ=(2πT )2l sin θ,故向心加速度大小不相等,选项C 正确,B 、D 错误。
答案 AC竖直面内的圆周运动模型建构1.两类模型轻绳模型轻杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg=mv2临r得v临=gr由小球恰能做圆周运动得v临=0受力示意图力学方程mg+F N=m v2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gRv≥02.考向轻绳模型【例3】如图11所示,长为L的轻绳一端固定在O点,另一端系一小球(可视为质点),小球在竖直平面内沿逆时针方向做圆周运动。
已知小球运动过程中轻绳拉力F的大小与绳和竖直方向OP的夹角θ的关系为F=b+b cos θ,b为已知的常数,当地重力加速度为g,小球的质量为m,则小球在最低点和最高点的速度分别为()图11A.(2b-mg)Lm、gL B.gL、gLC.gL、(2b-mg)Lm D.2bLm、gL解析θ=0°时,F=2b,小球在最低点,设其速度为v1,由牛顿第二定律得2b-mg=m v21L ,解得v1=(2b-mg)Lm;θ=180°时,F=0,小球在最高点,设其速度为v2,由牛顿第二定律得mg=m v22L,解得v2=gL,选项A正确。
答案 A考向轻杆模型【例4】如图12所示,在伦敦奥运会体操男子单杠决赛中,荷兰选手宗德兰德荣获冠军。