第2课时 分式的基本性质
- 格式:ppt
- 大小:967.00 KB
- 文档页数:7
课题:15.1.2分式的基本性质(1)月日班级:姓名:一、教材分析:(一)学习目标:1.经历分数基本性质的类比过程,知道分式的基本性质.2.会简单运用分式的基本性质,会根据分式的基本性质,指出分式变形的依据,求变形后分式的分子或分母.3.知道分式约分的意义,会利用分式的基本性质进行分式约分.(二)学习重点和难点:1.重点:分式的基本性质和分式的约分。
2.难点:根据分式的基本性质,求变形后分式的分子或分母。
二、问题导读单:阅读P129—131页(例3完了)回答下列问题:1.回忆说明分数的基本性质:_______________________________________________ ______________________________________________________________如:根据分数的基本性质,在12的分子、分母同乘2,分数的值不变,所以12=24;再如:根据______________,在69的______、______同除以___,分数的值______,所以69=23.2.写出分式的基本性质:(1)文字语言_____________________________________________________________________________________________________(2)符号语言_____________________________________________________(3)如2a3a2b6ab=说明如何得到的_________________________________________3.仔细研读例题2,与同学交流每题是根据什么填写的?从哪里入手?你得到启示是:_____________________________________________________4. 仔细研读130页思考及例题3,回答相应问题,并与同学交流每题是根据什么填写的?运用了哪些知识?你说明约分实质是:________________________________三、问题训练单:5.完成下面的解题过程:下列等式的右边是怎么从左边得到的?示例:324x2x2xy y=(1)26ba3ab=;解:3324x 4x 2x 2x 2xy 2xy 2x y÷==÷ 解:2a =——————=6b 3ab ; (2)210x 2x 15xy 3y= (3)b b 4a 4a -=-; 解:210x 15xy=——————=2x 3y ; 解:b 4a --=——————=b 4a ; (4)21x 1x 1x 1+=--. (5)x x 3y 3y -=- 解:1x 1-=—————————=2x 1x 1+-. 解: (6)222a a ab a b a b+=--. 解: 6.填空: (1)21()xy 2xy =; (2)22a a b 2a b ()=-; (3)24a ()6ab 3b =; (4)22x xy x y ()x++=. 7.直接写出约分的结果: (1)2bc ac = (2)234xy 6x y = (3)3218a b 6a c -= (4)233312x y z 15x y--= 8.约分: (1)22a ab (a b)++ (2)222x y (x y)-- = == = (3)222x y 3xy x 3xy-- (4)222a 4ab 4b 3a 6ab +++ = == =四、问题生成单:五、谈本节课收获和体会:。
第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x的分子、分母都乘以10得2x +1020+5x.故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b .解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b2a ;(2)原式=-5y7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】 判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a 25c ;(2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计 1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
第十单元第2课时分式的基本性质一.选择题1.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-2 2.把分式yx x -2中的x y 、都扩大m 倍(m ≠0),则分式的值( ) A .扩大m 倍B .缩小m 倍C .不变D .不能确定 3.要使分式有意义,x 的取值范围为( )A.x ≠﹣5B.x >0C.x ≠﹣5且x >0D.x ≥04.若分式1212+-b b 的值是负数,则b 满足( ) A .b <0 B .b ≥1 C .b <1 D .b >15.下面四个等式:;22;22;22y x y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22y x y x ④其中正确的有( ) A .0个 B .1个 C .2个 D .3个6.化简222()x y y x --的结果是( ) A .﹣1 B .1 C .x y y x +- D .x y x y +- 二.填空题7. 如果分式15x -在实数范围内有意义,则x 的取值范围是______. 8. 若,则= .9.当______时,分式||44x x --的值为零. 10.填空:)()1(=++-n m n m =-----b a n m m n 212)2(;)(⋅-ba 221 11.填入适当的代数式,使等式成立:22222()a ab b a b a b+-=⋅-+ 12. 分式22112mm m -+-约分的结果是______. 三.解答题13. (1)当x=﹣1时,求分式的值.(2)已知a 2﹣4a+4与|b ﹣1|互为相反数,求的值.14.已知112x y -=,求373232x xy y x xy y+---的值.15.(1)阅读下面解题过程:已知22,15x x =+求241x x +的值. 解:∵22,15x x =+()0x ≠ 12,15x x=+∴即152x x +=⋅ 2422221114115117()2()22x x x x x x ====⋅+++--∴ (2)请借鉴(1)中的方法解答下面的题目: 已知22,31x x x =-+求2421x x x ++的值.。
青岛版八年级上册数学教学设计《3-1分式的基本性质(第2课时)》一. 教材分析《3-1分式的基本性质(第2课时)》这一节内容,是在学生已经掌握了分式的概念、分式的基本运算法则的基础上进行授课的。
本节内容主要让学生了解并掌握分式的基本性质,包括分式的分子、分母同时乘以或除以同一个不为0的整式,分式的值不变;分子、分母同时加上或减去同一个整式,分式的值也不变。
这些性质对于学生后续学习分式的运算和应用有着重要的指导作用。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于分式的基本运算法则已经有了一定的了解。
但是,学生在运用分式的性质进行运算时,容易出错,特别是在分子、分母同时乘以或除以同一个不为0的整式时,容易忽略“不为0”的条件。
因此,在教学过程中,需要引导学生注意这一点,并加强相关的练习。
三. 教学目标1.知识与技能目标:让学生掌握分式的基本性质,能够运用分式的性质进行简单的运算。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:分式的基本性质的掌握和运用。
2.难点:分式的基本性质在实际运算中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式的基本性质。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。
3.通过例题讲解、课后练习,巩固所学知识。
六. 教学准备1.教学课件:制作相关的教学课件,便于学生直观地理解分式的基本性质。
2.练习题:准备一些有关分式基本性质的练习题,用于课后巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题,引出分式的基本性质,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示分式的基本性质,让学生直观地感受分式的性质。
同时,引导学生进行思考,如何运用分式的性质进行运算。
《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。
3、教学目标(1)了解分式的基本性质。
灵活运用“性质”进行分式的变形。
(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
(3)通过探索分式的基本性质,积累数学活动经验。
(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
4、教学重难点分析重点:理解并掌握分式的基本性质。
难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。
学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。
学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
同时强化了学生以旧知识类比得出新知识的能力。
三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。