医学遗传学单基因遗传病
- 格式:ppt
- 大小:1.22 MB
- 文档页数:71
单基因遗传病摘要遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。
由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。
遗传病可分为单基因病和多基因病。
其中,单基因病是遗传病中最主要的一个类型。
单基因遗传病是指一对同源染色体上单个基因或一对等位基因发生突变所引起的遗传病,又称孟德尔式遗传病。
目前已知的很多疾病都属于单基因病。
如:血友病、色盲、多指、并指、苯丙酮尿症、抗维生素D性佝偻病、假性肥大型肌营养不良等【1】。
关键字:遗传病单基因遗传病诊断预防与治疗1.单基因遗传病的种类及特点【2】根据决定某一性状或疾病的基因在常染色体上还是在性染色体上;是受显性基因决定,还是隐性基因决定【3】。
可将人类单基因遗传病分为五类:1.1常染色体显性遗传病及其常见病症致病基因显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1∕2。
此种患者的异常性状表达程度可不尽相同。
常见常染色体显性遗传病:多指(趾)、并指(趾)、珠蛋白生成障碍性贫血、多发性家族性结肠息肉、多囊肾、先天性软骨发育不全、多发性成骨发育不全、视网膜母细胞瘤。
1.2 常染色体隐性遗传病致病基因为隐性并且位于常染色体上,基因性状是隐性的,即只有纯合子时才显示病状。
此种遗传病父母双方均为致病基因携带者,故多见于近亲婚配者的子女。
1.3 X连锁性遗传病X连锁显性遗传病病种较少,有抗维生素D性佝偻病等。
这类病女性发病率高,这是由于女性有两条X染色体,获得这一显性致病基因的概率高之故,但病情较男性轻。
男性患者病情重,他们全部女儿都将患病。
常见X伴性显性遗传病:抗维生素D佝偻病、家族性遗传性肾炎。
1.4 X 连锁隐性遗传病致病基因在X染色体上,性状是隐性的,女性只是携带者,这类女性携带者与正常男性婚配,子代中的男性有1/2是概率患病,女性不发病,但有1/2的概率是携带者。
1、某种疾病的发生主要受一对等位基因控制,它们的传递方式遵循孟德尔遗传律,这种疾病称单基因遗传病。
2、系潜(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布等资料,并按一定格式将这些资料绘制而成的图解。
3、先证者是指某个家族中第一个被医生或遗传研究者发现的催患某种遗传嫡的患者或具有某种性状的成员。
4、表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。
5、基因的多效性是指一个墓因可以决定或影响多个性状。
6、遗传异质性是指一种性状可以由多个不同的基因控制。
7、从性遗传是指位于常染色体上的基因,由于性别的差异而显示出男女性分布比例上的差异或基因表达程度上的差异。
8、外显率是指某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的百分比。
9、一个个体的同源染色体(或相应的一对等位基因)因分别来自其父方或母方,而表现出功能上的差异,因此当它们其一发生改变时,所形成的表型也有不同,这种现象称为遗传印记。
10、杂合子在生命的早期,因致病基因井不表达或虽表达但尚不足以引起明显的临床表现,只在达到一定的年龄后才表现出疾病,这一显性形式称为延迟显性。
11、因为男性只有一条X染色体,其X染色体上的基因在Y染色体上缺少与之对应的等位基因,因此男性只有成对基因中的一个成员,故称半合子。
12、限性遗传是指位于常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现。
13、遗传早现是指一些遗传病(通常为显性遗传病)在连续几代的遗传中,发病年龄提前而且病情严重程度增加。
14、不规则显性遗传是指杂合子的显性基因由于某种原因血不表现出相应的性状,因此在系谱中一可以出现隔代遗传的现象。
15、位于一对同源染色体上某一特定位点的三种或三种以上的基因,称为复等位基因。
单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。
上下代传递遵循孟德尔遗传定律。
分为核基因遗传和线粒体基因遗传。
常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。
常染色体完全显性遗传的特征⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即男女患病的机会均等⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲无病时,子女一般不会患病(除非发生新的基因突变)⑶患者的同胞和后代有1/2的发病可能⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。
带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。
常染色体隐性遗传的遗传特征⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,即男女患病的机会均等⑵患者的双亲表型往往正常,但都是致病基因的携带者⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能为携带者;患者的子女一般不发病,但肯定都是携带者⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时在整个系谱中甚至只有先证者一个患者⑸近亲婚配时,后代的发病风险比随机婚配明显增高。
这是由于他们有共同的祖先,可能会携带某种共同的基因由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。
如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。
男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。
第一章单基因遗传病复习思考题一、名词解释:医学遗传学遗传病等位基因修饰基因系谱系谱分析复等位基因不完全外显或外显不全隔代遗传近亲亲缘系数交叉遗传二、问答题:1、遗传病的特性2、试述单基因遗传病的概念及其分类的依据3、试举例说明AD病的6种遗传方式4、为什么说AD病的患者基因型大多为杂合子5、试述AR病的特点6、XR病致病基因的遗传有何特点7、为什么说XD病(1)患者大多为女性;(2)女性患者基因型大多为杂合子;(3)杂合子的女性患者病情较轻8、请阐述不完全显性遗传和不完全外显的区别.9、为什么AR病近亲婚配子女发病风险会显著增高第二章多基因遗传病发复习思考题∙名词解释:数量性状质量性状微效基因积累效应易患性(变异)发病阈值遗传度∙问答题:∙数量性状的遗传有何特点;∙为什么说易患性变异的本质是数量性状;∙群体易患性高低的表示方法、衡量标准、测量依据分别是什么;∙遗传度的计算;∙对多基因病作遗传咨询时要考虑哪些因素。
∙若某多基因病,发病率为10%,请用正太分布的曲线表示。
第三章群体遗传学复习思考题∙名词解释:群体(广义、狭义)群体遗传学遗传平衡定律突变率中性突变自然选择适合度相对生育率选择系数(压力)∙问答题:∙求群体中基因的频率有哪两种方法;∙如何检验一个群体是否平衡;∙为什么依据遗传平衡定律可以计算群体中基因的频率;∙为什么说大多数群体都是平衡群体且是动态平衡;∙基因突变是如何改变基因频率(或影响遗传平衡)的;∙中性突变,群体平衡时,求基因频率的公式有何意义;∙自然选择的作用机制是什么;∙当自然选择对AR病、AD病、XD病、XR病不利的时候,选择的效果分别是什么。
第四章动态突变复习思考题∙动态突变的概念;∙动态突变的特点;∙动态突变的意义;∙为什么说动态突变不仅改变而且丰富了经典遗传学有关突变的概念;试述脆性X综合征发病的分子遗传学机理、诊断方法、临床表现、基因突变的特点。
名词概念(一)染色体遗传:核型、核型分析、染色体组、嵌合体、同源嵌合体、异源嵌合体、衍生染色体、倒位、平衡易位、平衡易位携带者(二)分子病:分子病、血红蛋白病、酶蛋白病、地中海贫血、α地中海贫血、β地中海贫血(三)肿瘤遗传:癌家族、家族性癌、遗传性肿瘤、肿瘤遗传易感性、标记染色体、特异性标记染色体、非特异性标记染色体、癌基因、细胞癌基因、病毒癌基因、肿瘤抑制基因、杂合性丢失思考题(一)染色体遗传:1、根据染色体的改变,先天愚型可分为几种类型?不同类型形成的机制如何?2、一对表型正常的夫妻,生育了一个先天愚型的孩子,前来遗传咨询,请问你对此如何处理和解决?3、分析下列案例的发病原因,确定能否再次生育。
第五章单基因遗传病单基因遗传病:受一对等位基因(主基因)影响而发生的疾病称为单基因遗传病,其遗传方式遵循孟德尔遗传定律,所以也称孟德尔遗传病。
单基因遗传病的方式:1)常染色体遗传:常染色体显性遗传和常染色体隐性遗传。
2)x连锁遗传:x连锁显性遗传和x连锁隐性遗传。
3)y连锁遗传。
先证者:指一个家族中最早被发现或被确诊患有某遗传病的患者。
常染色体显性遗传病(AD):如果一种疾病的致病基因位于1到22号染色体上,且致病基因为显性,这种疾病就称为常染色体显性遗传疾病。
常染色体显性遗传病的发病特点:杂合子发病。
常染色体显性遗传病系谱特征:患者双亲中常常有一方为患者。
系谱中连续几代都可以看到患者。
双亲无病史子女一般不会患病,除非发生新的基因突变。
患者的同胞后代患有同种疾病的概率,为二分之一。
男女患病的机会均等。
常染色体显性遗传的类型:1.完全显性遗传:纯合子和杂合子患者在表型上无差别,例如并指1型。
2.不完全显性遗传:杂合子的表型介于显性纯合子和正常隐性纯合子之间,也称半显性,例如软骨发育不全,家族性高胆固醇血症。
3.共显性遗传:一对等位基因彼此间没有显性和隐性的区别,在杂合状态时两者的作用都完全表现出来。
例如MN血型,ABO血型(复等位基因)。
4.不规则显性遗传:在某些常染色体显性遗传中,杂合子由于某些因素的影响,其显性基因的作用没能表达出来,或者表达的程度有差异,使显性性状的传递不规则,这种现象称为不规则显性遗传。
例如多指外显率:是指在一个群体中一定基因型的个体在特定环境中,显示预期表型的百分率。
包括完全外显,不完全外显和未外显个体。
例如多指。
表现度:是指致病基因的表达程度。
表现度不一致:是指同一基因型的不同个体不同程度地表现出相应的表型。
其原因可能是由于遗传背景或(和)外界环境因素的影响。
例如Marfan综合症。
外显率不完全和表现度不一致都属于不规则显性遗传。
5.延迟显性遗传:杂合子在生命早期,致病基因并不表达,达到一定年龄以后,其作用才表达出来。
单基因遗传病名词解释医学遗传学
医学遗传学是研究遗传病的发生、遗传机制以及遗传咨询和遗传治疗等相关问题的学科。
单基因遗传病(也称为遗传性疾病)是由单个基因突变引起的疾病,其遗传方式通常符合孟德尔遗传规律。
这些突变可以是点突变、插入、缺失或重复等多种形式,导致基因功能的异常或丧失。
这些遗传病可以遗传给子代,因此在医学遗传学中也强调了遗传咨询、遗传测试和遗传治疗等方面的工作。
常见的单基因遗传病包括囊性纤维化、遗传性失聪、血友病、遗传性肌营养不良等。
通过研究单基因遗传病,医学遗传学可以提供更好的诊断和治疗策略,以及家庭规划和咨询等方面的建议。
单基因遗传病名词解释医学遗传学一、引言医学遗传学是研究遗传因素在疾病发生和发展中的作用的学科。
单基因遗传病是由单个基因突变引起的疾病,本文将对医学遗传学和单基因遗传病进行详细解释。
二、医学遗传学的概念医学遗传学是研究遗传因素在疾病发生和发展中的作用的学科。
它涉及基因的结构和功能,基因突变的发生和传递,以及遗传变异与疾病风险的关系等内容。
医学遗传学的研究范围广泛,包括遗传病的诊断、预防、治疗以及遗传咨询等。
三、单基因遗传病的概念单基因遗传病是由单个基因突变引起的疾病,遵循孟德尔遗传规律。
这些疾病通常是由于基因突变导致蛋白质功能异常或缺失,从而引发特定的病理过程。
单基因遗传病可以分为常染色体显性遗传、常染色体隐性遗传、X连锁遗传等不同类型。
1. 常染色体显性遗传常染色体显性遗传是指只需要一个突变基因就能表现出疾病的遗传方式。
如果一个父母中有一个是患者,子女就有50%的机会继承该突变基因,并表现出相应的疾病。
常见的常染色体显性遗传病包括多指畸形、马方综合征等。
2. 常染色体隐性遗传常染色体隐性遗传是指需要两个突变基因才能表现出疾病的遗传方式。
如果两个携带突变基因的父母生育子女,子女患病的概率为25%。
常见的常染色体隐性遗传病包括囊性纤维化、苯丙酮尿症等。
3. X连锁遗传X连锁遗传是指基因位于X染色体上,且表现出性别相关遗传特征的遗传方式。
因为女性有两个X染色体,所以通常只有在两个X染色体上都携带突变基因的情况下才会表现出疾病。
而男性只有一个X染色体,如果携带突变基因,就会直接表现出疾病。
常见的X连锁遗传病包括血友病、肌营养不良症等。
四、单基因遗传病的诊断和治疗单基因遗传病的诊断和治疗是医学遗传学的重要内容之一。
通过对患者的家族史、临床表现和基因检测等综合分析,可以对单基因遗传病进行准确的诊断。
目前,常用的诊断方法包括基因测序技术、基因芯片分析等。
针对不同的单基因遗传病,治疗方法也各异。
一些单基因遗传病目前还没有有效的治疗方法,只能通过对症治疗来缓解症状和改善生活质量。
医学遗传学使用人类遗传学的理论和方法来研究遗传病从亲代遗传到子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系的一门综合性学科。
遗传病的特点1.一般垂直方式传播2.亲祖代和子代以一定数量比例出现3.往往具有先天性4.往往具有家族型5.一般没有传染性人类遗传病分类1单基因2多基因3染色体4线粒体5体细胞遗传病基因的结构(一)分类1.单一基因:单倍体基因组中只有一份称单一基因2.基因家族:从已克隆的许多基因中发现他们不都完全是单拷贝,有的是重复的多拷贝,这部分基因属于两个或更多的相似基因的家族,称为基因家族3.假基因:基因家族中有的基因与有功能的基因相似,但是不能产生相应的蛋白,前面的基因称假基因4.串联重复基因:45SrRNA、5SrRNA、各种tRNA基因以及蛋白质家族中的组蛋白基因是呈串联重复排列的,这类基因称为串联重复序列(二)割裂基因由编码序列(外显子)和非编码序列(内含子)组成,两者相间排列。
基因组的组成(一)单拷贝序列:在基因组中只有单一或者少数拷贝,长度较短800-1000bp,其中有些是编码细胞中各种蛋白质和酶的结构基因(二)重复多拷贝序列:有的较短,有的较长,分散的穿插于整个基因组,1.简单序列DNA:以5bp、10bp、200bp为一个重复单位,串联重复多次,约占整个基因组的10-15%,大多重复次数多,长度达105 bp2.中度重复DNA和可动DNA因子:以不同的量分布于整个基因组的不同部位。
100-500bp 为短散在核元件,如Alu家族;6000-7000bp称长散在核元件,如Kpn Ⅰ家族结构基因组学(一)遗传图:又称连锁图,是以具有遗传多态性的遗传标记作为“位标”,以遗传学距离为“图距”的基因组图。
(二)物理图:以一段已知核苷酸序列的DNA片段,称为序列标签微点为“位标”,以bp、kp、Mp为图距的基因组图。
(三)转录图:转录图将最终成为基因图,就是在人类基因组中鉴别出占2%长度的全部蛋白编码基因的位置、结构与功能。
《医学遗传学》答案第1章绪论一、填空题1、染色体病单基因遗传病多基因遗传病线粒体遗传病体细胞遗传病2、突变基因遗传素质环境因素细胞质二、名词解释1、遗传因素而罹患的疾病成为遗传性疾病或遗传病,遗传因素可以是生殖细胞或受精卵内遗传物质结构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变。
2、主要受一对等位基因所控制的疾病,即由于一对染色体(同源染色体)上单个基因或一对等位基因发生突变所引起的疾病。
呈孟德尔式遗传。
3、染色体数目或结构异常(畸变)所导致的疾病。
4、在体细胞中遗传物质的改变(体细胞突变)所引起的疾病。
第2章遗传的分子基础一、填空题1、碱基替换同义突变错义突变无义突变2、核苷酸切除修复二、选择题 1、A三、简答题1、⑴分离律生殖细胞形成过程中,同源染色体分离,每个生殖细胞中只有亲代成对的同源染色体中的一条;位于同源染色体上的等位基因也随之分离,生殖细胞中只含有两个等位基因中的一个;对于亲代,其某一遗传性状在子代中有分离现象;这就是分离律。
⑵自由组合律生殖细胞形成过程中,非同源染色体之间是完全独立的分和随机,即自由组合定律。
⑶连锁和交换律同一条染色体上的基因彼此间连锁在一起的,构成一个连锁群;同源染色体上的基因连锁群并非固定不变,在生殖细胞形成过程中,同源染色体在配对联会时发生交换,使基因连锁群发生重新组合;这就是连锁和交换律。
第3章单基因遗传病一、填空题:1、常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、X连锁显性遗传2、系谱分析法3、具有某种性状、患有某种疾病、家族的正常成员4、高5、常染色体、无关6、 1/4、2/3、正常、1/27、半合子8、 Y伴性遗传 9、环境因素 10、基因多效性11、发病年龄提前、病情严重程度增加 12、表现型、基因型二、选择题——A型题1、B2、A3、C4、D5、D6、A7、D8、BB型题1、A2、D3、B4、C5、D6、C7、B8、C三、名词解释:1、所谓系谱(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布资料绘制而成的图解。
医学遗传学的名词解释1.名词解释:遗传病:由于遗传物质改变而引起的疾病称为遗传病。
单基因遗传病:由于一对同源染色体上的单个基因话一对等位基因发生突变所引起的疾病。
染色体病:先天性的染色体数目或结构上的改变所引起的具有一系列临川症状的疾病。
体细胞遗传病:体细胞中遗传物质改变所引起的疾病。
多基因家族:基因组中由一个祖先基因进过重复和变异所形成的一组来源相同,结构相似,功能相关的基因。
拟基因:与某些功能基因结构相似但却不能产生相应功能的基因产物的基因。
顺式作用元件:基因启动子中有一些保守序列能与转录因子特异性结合,调节基因转录,这些元件称为顺式作用元件。
复制子:真核细胞的DNA复制有许多复制起始点,一个复制起始点所进行复制的DNA 区段为复制单位,称为复制子。
细胞周期:细胞从上一次有丝分裂借宿到下一次有丝分裂王城的全过程,包括细胞间期和分裂期。
易位:两条染色体同时发生断裂,其染色体片段结合到另一条染色体上。
倒位:一条染色体上发生两次断裂后,两个断裂点之间的片段旋转180°重接。
分臂内倒位和臂见倒位。
插入:一条染色体的短片转移到另一条染色体的中间部位。
重复:一条染色体片段在同一条染色体上出现两次或两次以上。
衍生染色体:相互易位的染色体在减数分裂中,进过同源染色体间的配对,减缓和分离,不再长生心的结构重组的染色体,这类染色体称为衍生染色体。
重组染色体:倒位或插入的染色体在减数分裂中,由于在移位片段和正常位置的相应片段发生了交换,从而产生了新的片段组成的染色体,为继发性重排的产物。
嵌合体:一个体内同时含有两种或两种以上的不同和兴的细胞系。
系谱图:从先证者入手,追溯调查所有家族成员的数目,亲属关系及某种遗传病的分布资料绘制而成的图解。
表现度:基因在个体中得表现程度,或者说具有统一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现得程度可能有显著差异。
外显率:是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的百分率。
癌家族:指恶性肿瘤特别是腺癌发生率最高的家族。
癌基因:指正常人体和动物细胞以及致癌病毒体内所固有的可能引起细胞恶性转化的核苷酸序列(或DNA片段)。
单基因遗传病:简称单基因病,是指由一对等位基因控制而发生的遗传性疾病。
病毒癌基因:存在逆转录病毒基因组内的一段核苷酸序列。
非间断基因。
标记染色体:在肿瘤细胞中常见的结构异常的染色体。
如果一种异常染色体较多的出现在某种肿瘤细胞内,就成为标记染色体。
不完全外显或外显不全:Aa的表现型在不用条件下不同,可能显性而发病,可能隐性不发病,其中发病的频率叫外显率,这种遗传现象叫不完全外显或外显不全。
等位基因:位于同源染色体上相同位点上控制相对性状的两个基因。
复等位基因:是指位于同源染色体相同位点上,控制相对性状的多个基因。
动态突变:是指DNA中重复单位拷贝数发生扩增而导致的基因突变。
倒位:染色体结构变异的一种。
染色体上两个断裂点间的断片,倒转180度后又重新连接。
地中海贫血:由于珠蛋白基因缺失或缺陷导致某种珠蛋白链合成速率降低,造成α链与非α链的数量不平衡,从而引起的溶血性贫血。
非特异性标记染色体:指可以出现在多种肿瘤细胞中的标记染色体,并不为某种肿瘤所特有。
常见于:双微体(DM)、巨大近端着丝粒chr、巨大亚中着丝粒chr(巨A染色体)等。
发病阈值:指个体的易患性打到或超过一定限度后就会患病,把该种限度的易患性叫发病阈值。
分子病:由于基因突变导致蛋白质分子结构或数量的异常,从而引起机体功能障碍的一类疾病。
核型:一个细胞中的所有染色体按其大小形态等特点排列而成的一个图像即核型。
核型分析:将待测细胞的全套染色体按照Denver体制配对、排列,分析确定其是否正常的过程,称为核型分析。
家族性癌:是指一个家族中多个成员患有某种恶性肿瘤。
近亲:是在3-4代以内有共同祖先的个体间的关系。
交叉遗传:男性X染色体及其连锁的基因只能从母亲传来,又只能传给女儿,也就是从女到男,再从男到女,这种传递方式称为交叉遗传。
绪论1.genetic disease【遗传病】遗传物质改变所导致的疾病。
2.major gene【主基因】如果一种遗传病的发病涉及一对基因,这对基因就称为主基因。
3.monogenic disorder【单基因遗传病】由致病主基因所导致的疾病就称为单基因遗传病。
4.polygenic disease【多基因遗传病】一些常见的疾病和畸形,有复杂的病因,既涉及多个遗传基因,又需要环境因素的作用才发病,也称为多基因病。
5.chromosome disease【染色体病】染色体数目或结构的改变所导致的疾病称为染色体病。
6.somatic cell genetic disease【体细胞遗传病】体细胞中遗传物质改变所致的疾病,称为体细胞遗传病,因为它是体细胞中遗传物质的改变,所以一般并不向后代传递。
遗传的细胞学基础1.chromatin【染色质】是间期细胞核内能被碱性染料着色的物质,是遗传信息的载体,主要化学组成为DNA、组蛋白、非组蛋白和少量RNA。
2.nuclesome【核小体】是染色体的基本结构单位,由5种组蛋白(H2A、H2B、H3、H4和H1)和200个碱基对的DNA 分子组成,包括核心颗粒和连接区两部分。
3.euchromatin【常染色体】是间期细胞核内纤维盘曲程度小、分散度大、能活跃地进行转录的染色质,染色浅,所位于细胞核的中央。
4. heterochromatin【异染色质】是间期细胞核内纤维盘曲紧密、呈凝集状态,一般无转录活性的染色质,着色较深,常位于细胞核的边缘和核仁周围。
5.sex chromatin【性染色质】是性染色体(X和Y染色体)的异染色质在间期细胞核中显示出来的一种特殊结构,包括X染色质和Y染色质6.meiosis【减数分裂】是有性生殖的生物形成性细胞过程中的一种特殊的分裂形式,它由两次联系的细胞分裂来完成,在两次连续的细胞分裂中,染色体只复制一次,分裂结果形成的4个子细胞中染色体的数目只有原来母细胞的一半。
医学遗传学重点整理第一章绪论1.遗传病的概念:遗传病是遗传物质改变所导致的疾病。
2.遗传病的分类:单基因病,多基因病,染色体病,体细胞遗传病。
第二章第三章遗传的细胞和分子基础1.核小体:5种组蛋白(H2A, H2B,H3,H4,H1)和200个碱基对的DNA分子组成,包括核心颗粒和连接部两部分。
组蛋白中的H2A, H2B,H3,H4各两分子组成八聚体,约140个碱基对的DNA分子在八聚体外缠绕1.75圈,构成核小体的核心颗粒。
约60个碱基对的DNA分子构成核心颗粒的连接部。
2.常染色质和异染色质的区别常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性的染色质。
异染色质:细胞间期核内纤维折叠盘曲紧密,呈凝集状态,染色较深且没有转录活性的染色质。
(分为结构异染色质和兼性异染色质)3.Lyon假说(1961)——X染色体失活假说及剂量补偿效应①雌性哺乳动物体内仅有一条X染色体有活性,另一条在遗传上是失活的,在间期细胞核中异固缩为X染色质。
②失活发生在胚胎早期(人胚第16天),此前2条X染色体都有活性。
③X染色体的失活是随机的,但是是恒定的。
剂量补偿:由于雌性细胞中的两条X染色体中的一条发生异固缩,失去转录活性,这样保证了雌雄两性细胞中都只有一条X染色体保持转录活性,使两性X连锁基因产物的量保持在相同水平上,这种效应称为X染色体的剂量补偿4.多基因家族:由一个祖先基因经过重复和变异形成的一组来源相同、结构相似、功能相关的基因。
5.拟基因:也称假基因,指在多基因家族中,某些成员不产生有功能的基因产物,这些基因称为拟基因,常用ψ表示。
6.遗传印记:不同性别的亲体传给子代的同一染色体或基因,当发生改变时可引起不同表型的现象,也称为基因组印记。
父母双方的某些同源染色体或等位基因存在着功能上的差异。
母系印记:母源基因失活,父源基因表达父系印记:父源基因失活,母源基因表达7.点突变(碱基替换)引起几类不同的生物学效应:①同义突变②错义突变③无义突变④终止密码突变8.动态突变:又称不稳定三核苷酸重复序列突变,其突变是由于基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断增加,因而称之为动态突变。