西安建筑科技大学高层建筑结构设计第一章重点梳理
- 格式:pdf
- 大小:552.46 KB
- 文档页数:8
高层建筑结构设计复习总结一、1.高层建筑:将10层及10层以上或高度超过28m 的混凝土结构为高层民用建筑;高层建筑结构是高层建筑中的主要承重骨架。
2.高层建筑优点:占地面积小,节约建筑用地;缩短城市道路和各种管线,节约基础设施费用;改造城市面貌。
3.高层建筑结构功能:安全性、实用、耐久、稳定4.高层建筑结构中:轴力和结构高度成线性关系;弯矩和结构高度成二次方关系;位移和结构高度成四次方关系。
4.高层建筑结构形式:a 按材料分:砌体结构、钢筋砼、钢结构、钢和钢筋砼材料混合结构b.按结构体系:框架结构、剪力墙结构、框架-剪力墙结构、筒体结构(框筒结构、筒中筒、多筒、成束筒)、悬挂结构及巨型框架结构5.(1)砌体结构:造价低;强度低,特别是抗拉、抗剪强度低、延性差;抗震性不好(2).钢筋砼结构:优(强度高,能组成多种结构体系,抗震性能较好,跟钢结构相比刚度大,造价低,材料来源丰富,耐火性好)缺(自重大,结构截面尺寸大,建筑面积小,造价增加施工周期较长)(3)钢结构:优(较理想材料,强度高,自重轻,延性好,抗震性能好,施工速度快,易于加工,施工方便)缺(造价高,耐火性差,维护费用高)6.(1)框架结构体系:优(建筑平面布置灵活,可形成大空间,立面也可变化;延性好;造价低。
)缺(侧向刚度小;水平位移大,一般不超过60米;在高烈度地区,高度严格控制;非结构构件破坏严重,维护费用高;缺少二道防线)设计要点:a 根据使用要求,建筑要求来布置框架层高;b梁柱节点必须刚接;c梁的跨度受梁、断面尺寸限制d柱断面尺寸根据轴力大小确定,在震区有轴压比限制(2)剪力墙结构体系:利用钢筋砼墙体组成的承受全部竖向和水平作用的。
优(整体性好;侧移刚度大;变形小;非结构构件损坏小;结构次生内力P-Δ效应不显著;弹塑性稳定问题不突出;承载力易满足要求;抗震性能好;具有多道防线)缺(剪力墙间距较小;平面布置不灵活;大房间受到限制;自重大;刚度大,周期短)(3)框架-剪力墙结构体系:在框架结构中布置一定数量的剪力墙组成由框架和剪力墙共同承受竖向和水瓶座用的高层建筑结构。
“高层建筑结构设计”课程教学大纲英文名称:Design of tall building structures课程编号:402403课程类型:选修课学时:34 学分:2适应对象:土木工程专业本科学生先修课程:工程力学、钢筋混凝土结构、钢结构、施工技术、工程结构抗震等建议教材及参考书:《钢筋混凝土结构设计》梁兴文、史庆轩编科学技术文献出版社 1999年《高层建筑结构设计》史庆轩,梁兴文编著科学出版社 2006年一、课程的性质、目的和任务本课程为土木工程专业的一门限选专业课。
课程的目的及任务是学习多层及高层建筑结构设计的基本方法。
主要要求是:了解多、高层建筑结构的结构体系及各种体系的特点与应用范围;熟练掌握风荷载及地震作用的计算方法;掌握框架结构、剪力墙结构、框剪结构三种基本结构的内力及位移计算方法,理解这三种结构内力分布及侧移变形的特点及规律;学会这三种体系包含的框架及剪力墙构件的配筋计算方法及构造要求。
通过本课程学习,掌握多、高层钢筋混凝土结构的抗震设计原理及方法;初步掌握国内主流多、高层建筑结构计算机辅助设计软件的使用方法及特点。
能区别非抗震及抗震设计的不同要求。
对筒体结构、钢与混凝土组合结构的内力分布、计算特点、结构设计有初步认识。
二、课程教学内容及要求第一章绪论内容:1.高层建筑的特点;2.高层建筑结构的发展概况;3.本课程的教学内容与要求。
基本要求:通过本章的学习,应当使学生关于水平力对于结构内力、变形及对于结构设计的影响有一个深刻的认识,对于高层建筑的发展概况应有一个概括性的了解。
重点:高层建筑的设计特点。
第二章高层建筑结构体系与结构布置内容:1.高层建筑的结构体系和选型;2.结构布置的基本原则与实例;3.楼盖结构布置;4.基础结构布置。
基本要求:熟悉高层建筑的基本结构体系,了解不同体系的优缺点及适用范围,会进行结构体系的选择;了解结构总体布置的原则及需要考虑的问题;了解高层建筑中变形缝的处理特点;了解楼盖及地基基础方案选型。
建筑结构大一知识点归纳总结建筑结构是建筑学中的一个重要分支,研究建筑物的力学性能和稳定性。
下面是建筑结构大一知识点的归纳总结:1.力学基础:力学是建筑结构的基础,大一时需要学习静力学和动力学的基本概念和原理。
静力学主要研究物体在平衡状态下的力学性质,包括力的平衡条件、力的合成与分解等;动力学则研究物体受到外力作用时的运动状态和力学性质。
2.杆件的力学性质:杆件是建筑结构中最基础的组成单元之一,大一时需要学习杆件的力学性质,如梁的受力分析、梁的截面性能、弯曲应力和变形等。
3.平面结构:平面结构是建筑物中常见的结构形式,如桁架、平面刚架等。
大一时需要了解平面结构的组成原理、受力特点和稳定性分析方法等。
4.空间结构:空间结构是三维结构,常见的有穹顶、拱和壳结构等。
大一时需要了解空间结构的受力分析方法、荷载计算和稳定性分析等。
5.基础知识:建筑结构还涉及到一些基础知识,包括力的分解合成、力的平衡条件、受力分析方法、材料力学性质等。
大一时需要掌握这些基础知识,并能够灵活运用于建筑结构的分析和设计中。
6.结构设计原则:结构设计是建筑结构的核心,大一时需要了解一些基本的结构设计原则,如强度和刚度要求、最佳构造原则、材料选取和连接方式等。
7.经典案例分析:通过分析一些经典的建筑结构案例,可以加深对建筑结构的理解和认识。
大一时可以学习一些经典建筑结构案例,如北京国家体育馆的鸟巢结构、巴黎圣母院的拱结构等。
8. 建筑结构软件应用:现代建筑结构设计和分析离不开计算机辅助设计软件的支持。
大一时可以学习一些常用的建筑结构软件,如AutoCAD、SAP2000等,并学习其基本操作和应用。
总之,建筑结构大一的知识点主要包括力学基础、杆件的力学性质、平面结构和空间结构的受力分析方法、基础知识、结构设计原则、经典案例分析和建筑结构软件应用等。
通过学习这些知识点,可以为后续的建筑结构设计和分析打下良好的基础。
1.高层建筑混凝土结构技术规程(JGJ3-2002、J186-2002)规定:10层及以上,H≥28m的钢筋砼结构高层建筑;2.注:房屋高度H :自室外地面至房屋主要屋面的高度3.水平荷载成为控制结构设计的主要荷载;侧移(层间侧移、结构顶点侧移)成为控制指标;抗侧力结构的设计非常重要,应更重视结构抗震概念设计;4. 钢结构优点:强度高、韧性大。
钢结构自重轻,延性好,抗震性能好,抗震性能好、易加工,工期短,施工方便。
缺点:用钢量大,造价高,耐腐蚀性能、耐火性能差;5.混凝土结构优点:造价较低,材料来源丰富,可浇注成各种复杂断面形状,可以组成多种结构体系;可节省钢材,承载能力较高,经过合理设计,可获得较好的抗震性能。
缺点:构件断面大,占据面间大,自重大。
6.高层建筑的结构体系按其抗侧力主要构件的种类:1)框架结构;2)剪力墙结构(含部分框支—剪力墙结构);3)框架—剪力墙结构;4)筒体结构(含框架—核心筒结构、筒中筒结构);5)复杂高层结构(含带加强层或刚臂结构、错层结构、连体结构、多塔楼结构等);6)混合结构(由多种材料的构件混在一起的结构,如钢筋混凝土构件、钢构件、组合结构构件构成的结构)。
7.高层建筑结构应根据房屋的高度(H) 、高宽比(H/B) 、抗震设防烈度、场地类别、建筑的重要性、结构材料和施工技术条件等因素,选用适宜的结构体系。
8.框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构,平面。
优点是柱网布置灵活,便于获得较大的使用空间;延性较好。
但结构的横向侧移刚度较小,侧移较大;结构变形曲线以剪切型为主;适用于空间大、层数不太多、房屋的高度不太高的建筑,例如商场、车站、展览馆、停车库、宾馆的门厅、餐厅等。
框架应当纵横双向布置,形成双向抗侧力体系。
框架结构中的填充墙有一定的抗侧力作用,合理选择填充墙材料,合理布置填充墙,可降低材料消耗,减轻结构自重。
9.剪力墙结构:由剪力墙组成的承受竖向和水平作用于结构。
高层建筑结构设计知识点总结
嘿!今天咱们来好好唠唠《高层建筑结构设计知识点总结》!
哎呀呀,首先呢,咱得明白高层建筑结构设计的重要性哇!这可不是闹着玩的呢!
第一点,高层建筑的荷载计算那可是相当关键呀!风荷载、地震作用,这些都得仔细琢磨呢!你想想,风呼呼地吹,地震晃啊晃,要是计算不准确,那楼不得摇摇欲坠啦?
第二点呢,结构体系的选择也很重要哇!框架结构、剪力墙结构、框架-剪力墙结构,各有各的特点和适用范围呀!比如说框架结构空间灵活,但是抗侧刚度相对较弱;剪力墙结构抗侧刚度大,可空间就没那么灵活啦!这可得根据具体情况好好权衡呢!
第三点,基础设计可不能马虎呀!基础得稳稳地承载着整个大楼的重量呢!桩基础、筏板基础,选择合适的基础形式才能保证大楼的稳定性呀!
第四点,抗震设计那可是重中之重哇!要提高结构的抗震性能,从结构布置到构件设计,每一个环节都得精心处理呢!
第五点,材料的选择也有讲究哇!高强度的钢材、高性能的混凝土,这都能提升结构的强度和耐久性呢!
哇塞!高层建筑结构设计的知识点真是多如牛毛呀!不过只要咱们一个个搞清楚,弄明白,就一定能设计出安全可靠又美观实用的高层建筑呢!你说是不是呀?。
高层建筑结构设计名词解释1.高层建筑:10层及10层以上或房屋高度大于28m的建筑物。
2.框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。
3.剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。
4.框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。
5.结构刚度中心:各抗侧力结构刚度的中心。
6.剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。
框架结构的变形特征是呈剪切型的。
7.剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。
由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。
8.延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。
在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。
具有上述性能的结构,称为延性结构。
第一章概论1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。
5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙结构体系,框架—剪力墙结构体系,筒体结构体系,板柱—剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠合楼盖体系,预制板楼盖体系,组合楼盖体系。
6.高层结构平面布置时,应使其平面的质量中心和刚度中心尽可能靠近,以减少扭转效应。
9三种常用的钢筋混凝土高层结构体系是指框架结构、剪力墙结构、框架—剪力墙结构。
(二)选择题1.高层建筑抗震设计时,应具有[ a ]抗震防线。
a.多道;b.两道;c.一道;d.不需要。
2.下列叙述满足高层建筑规则结构要求的是[ d ]。
a.结构有较多错层;b.质量分布不均匀;c.抗扭刚度低;d.刚度、承载力、质量分布均匀、无突变。
高层建筑结构设计知识点随着城市的发展和人口的增长,高层建筑如雨后春笋般涌现。
高层建筑结构设计是一项复杂而关键的工作,它不仅要确保建筑的安全性和稳定性,还要满足使用功能和美观的要求。
下面让我们来了解一些高层建筑结构设计的重要知识点。
一、结构体系的选择高层建筑的结构体系多种多样,常见的有框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
框架结构由梁和柱组成,具有较好的空间灵活性,但抗侧刚度相对较小,适用于层数较低的建筑。
剪力墙结构则依靠墙体来抵抗水平荷载,其抗侧刚度大,但空间布置不够灵活。
框架剪力墙结构结合了框架和剪力墙的优点,既能提供较大的空间,又具有较好的抗侧性能,是许多高层建筑常用的结构形式。
筒体结构包括框筒、筒中筒等,具有很强的抗侧能力,适用于超高层建筑。
在选择结构体系时,需要综合考虑建筑的高度、功能、抗震要求、经济因素等。
例如,对于高度较高、抗震要求严格的建筑,筒体结构可能是更合适的选择;而对于商业建筑,需要较大的空间灵活性,框架剪力墙结构可能更能满足需求。
二、风荷载和地震作用风荷载和地震作用是高层建筑结构设计中必须考虑的重要水平荷载。
风荷载的大小与建筑的高度、体型、地理位置等因素有关。
高层建筑由于高度较大,风荷载对其影响较为显著。
在设计时,需要通过风洞试验或规范中的计算方法确定风荷载的大小和分布,并采取相应的抗风措施,如增加结构的刚度、设置抗风构件等。
地震作用是另一个不可忽视的因素。
地震的发生具有不确定性和随机性,因此在设计时需要根据建筑所在地区的抗震设防烈度、场地类别等进行抗震计算和设计。
通常采用反应谱法或时程分析法来计算地震作用,并通过合理的结构布置和抗震构造措施来提高结构的抗震性能。
三、结构分析方法在高层建筑结构设计中,常用的结构分析方法包括静力分析和动力分析。
静力分析是最基本的分析方法,用于计算结构在恒载、活载和风荷载等作用下的内力和变形。
常见的静力分析方法有分层法、D 值法等。
1 高层定义:(1)JGJ3—2002《高层建筑混凝土结构技术规范》将10层及10层以上或高度超过28m 的混凝土划为高层民用建筑。
(2)GB50045—1995《高层民用建筑防火技术规范》和JGJ99—1998《高层民用建筑钢结构技术规范》中规定10层以及10层以上的居住建筑和24m 以上的其他民用建筑为高层建筑。
2 建筑结构的功能:建筑结构是建筑中的主要承重骨架。
其功能为在规定的设计基准期内,在承受其上的各种荷载和作用下,完成预期的承载力、正常使用、耐久性以及突发时间中的整体稳定功能。
3 高层建筑结构体系:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构、悬挂结构以及巨型框架结构等。
4 地震作用:指地震波从震源通过基岩传播一的地面运动,使处于静止的建筑物受到动力作用而产生的强烈振动。
5 三水准二阶段:小震不坏,小震作用下,结构应维持在弹性状态,保证正常使用;中震可修,中等地震作用下,结构可以局部进入塑性状态,但结构不允许破坏,震后经修复可以重新使用;大震不倒,强烈地震作用下,应保证结构不能倒塌。
第一阶段:是针对所有进行抗震设计的高层建筑,除了在确定结构方案和进行结构布置时考虑抗震要求外,还应按照小震作用进行抗震计算和保证结构延性的抗震构造设计;第二阶段:主要针对甲级建筑和特别不规则的结构,用大震作用进行结构易损部位的塑性变形验算。
6 高层建筑结构布置总原则:综合考虑使用要求,建筑美观、结构合理及便于施工等。
不应采用严重不规则的结构体系;宜采用规则结构;应使结构具有必要的承载能力、刚度和变形能力;应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力。
7 框架—剪力墙结构体系特点:既具有框架结构布置灵活、具有大空间、使用方便的特点,又有较大的抗侧刚度和较强的承载能力和抗震性能。
框架和剪力墙共同受力,剪力墙承担绝大部分水平荷载,而框架则以承受竖向荷载为主。
8 高层建筑结构的概念设计:指工程结构设计人员运用所学掌握的理论知识和工程经验,在方案决断及初步设计阶段,从宏观上、总体上和原则上去决策和确定高层建筑结构设计中的一些最基本、最本质也是最关键的问题,主要涉及结构方案的选定和布置、荷载和作用传递途径的设置、关键部位和薄弱环节 判定和加强、结构整体稳定性保证和耗能作用的发挥以及承载力和结构刚度在平面内和沿高度的均匀分配;结构分析理论的基本假定等等。
第一章建筑结构的设计原则1、在建筑工程中,通常将直接作用在建筑结构上的外力称为荷载。
2、荷载的分类、作用在结构上的荷载可分为三类:(1)永久荷载、例如结构自重、土压力、预应力等。
(2)可变荷载、例如楼(屋)面活荷载、风荷载、雪荷载、安装荷载、吊车荷载、积灰荷载等。
(3)偶然荷载、偶然荷载。
在爆炸力、撞击力等。
3、永久荷载。
在结构使用期间,其值不随时间变化。
4、可变荷载。
在结构使用期间,其值随时间变化,5、(3)偶然荷载。
在结构使用期间不一定出现,一旦出偶然荷载。
在结构使用期间不一定出现6、设计中用来验算极限状态所采用的荷载值称为荷载代表值。
7、对永久荷载应采用标准值(G₁)作为代表值,对可变荷载应根据设计要求采用标准值(Q₁)、组合值(Q.)、频遇值(Q,)或准永久值(Q.)作为代表值,对偶然荷载应根据建筑结构使用的特点确定其代表值。
8、荷载标准值。
它是荷载的基本代表值,指结构在使用期间可能出现的最大荷值9、可变荷载组合值。
当结构同时承受两种或两种以上的可变荷载时,10、荷载分布形式;(1)均布面荷载(2)均布线荷载(3)非均布线荷载(4)集中荷载。
11、荷载设计值为荷载分项系数与荷载代表值的乘积。
12、任何建筑结构都是为了满足使用所要求的功能而设计的。
13、建筑结构在规定的设计使用年限内,应满足下列功能要求;(1)安全性(2)适用性(3)耐久性。
14、结构可靠性的概念外延显然比安全性大,结构可靠度则是可靠性的定量指标。
15、结构可靠度是可靠性的概率度量。
16、判断结构的可靠度设计是否满足要求常以“极限状态”为标志,并以此作为结构设计的准则。
17、当结构安全可靠地工作能够宗成预定的各项功能时,处千可靠或有效状态;反之则处于不可靠或失效状态。
18、结构的设计工作就是以这一临界状态为准则进行的。
(这一临界状态为极限状态)19、整个结构或结构的一部分招过某一特定状态就不能满足设计规定的某一功能要求,此特定状态为该功能的极限状态。
高层建筑结构设计复习重点关键信息项1、高层建筑结构的分类与特点框架结构剪力墙结构框架剪力墙结构筒体结构复杂高层建筑结构2、风荷载与地震作用风荷载计算方法地震作用计算方法风振系数与地震影响系数3、结构分析方法弹性分析方法弹塑性分析方法时程分析方法4、框架结构设计要点梁柱截面设计节点设计框架柱的轴压比控制5、剪力墙结构设计要点剪力墙的厚度确定剪力墙的配筋计算开洞剪力墙的计算与设计6、框架剪力墙结构设计要点协同工作分析框架与剪力墙的比例关系变形协调7、筒体结构设计要点筒中筒结构框架核心筒结构巨型结构8、基础设计桩基础设计筏板基础设计基础与上部结构的共同作用9、结构抗震设计抗震等级确定抗震构造措施结构薄弱层的判别与加强10、高层建筑结构的舒适度要求风振舒适度楼盖振动舒适度11 高层建筑结构的分类与特点111 框架结构框架结构是由梁和柱通过节点连接组成的结构体系。
其优点是建筑平面布置灵活,可形成较大的空间;缺点是侧向刚度较小,在水平荷载作用下侧移较大。
112 剪力墙结构剪力墙结构是由一系列纵向和横向的钢筋混凝土墙体组成的结构体系。
剪力墙具有较大的侧向刚度,能有效地抵抗水平荷载,但建筑平面布置不够灵活。
113 框架剪力墙结构框架剪力墙结构是由框架和剪力墙共同承担水平和竖向荷载的结构体系。
它结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的侧向刚度。
114 筒体结构筒体结构包括框筒、筒中筒和束筒等形式。
筒体结构具有很大的侧向刚度和承载能力,适用于高度较大的高层建筑。
115 复杂高层建筑结构复杂高层建筑结构如带转换层、加强层、连体结构等,其设计需要考虑特殊部位的受力和变形特点。
12 风荷载与地震作用121 风荷载计算方法风荷载的计算通常基于基本风压、风载体型系数、风压高度变化系数等参数。
根据不同的规范和标准,采用相应的计算公式来确定风荷载的大小。
122 地震作用计算方法地震作用的计算方法包括底部剪力法、振型分解反应谱法和时程分析法。
高层建筑结构设计
1、学习本门课程的重要性
1) 一门主要专业课之一;
2)与先修课程密切联系;
3)与毕业设计和毕业后从事专业工作密切相关;
4)培养实践能力和创新精神。
2、本门课程的主要内容
1)绪论2)结构体系和结构布置
3)荷载和设计方法4)剪力墙结构分析与设计
5)框-剪结构分析与设计6)筒体结构分析与设计
3、学习本门课程中可能出现的几个矛盾?
1)课时少与课程内容较多(抓住内容主线、重点突出)
2)推导多、公式多(掌握思路、理解推导原理)
第1章 绪论
1.1 概 述
问题:高层建筑的定义?
通常以建筑的高度和层数两个指标来判定,但目前还没有一个统一的划分标准。
1)国外:
美国规定:高度22~25m以上或7层以上建筑为高层建筑;
英国规定:24.3m以上的建筑;
日本规定:8层以上或高度超过31m的建筑。
2)我国:
《高层民用建筑设计规范》GB50045-95 规定:≥10层的居住建筑或≥24m的公共建筑。
《高层建筑混凝土结构技术规程》(JGJ3-2002):≥10层或≥28m;(本课程内容的依据)
3)国际上
1972年国际高层建筑会议将高层建筑分为4类:
第一类:9~16层(最高50米)
第二类:17~25层(最高75米)
第三类:26~40层(最高100米)
第四类:40层以上(高于100米)
注:高层建筑的高度般是指从室外地面至檐口或主要屋面的距离,不包括局部突出屋面的楼电梯间、水箱间、构架等高度。
4)超高层建筑
最初来源于日本,1995年出现英文词条Super-tall building ;
没有明确的分界线和规定,一般泛指某个国家和地区内较高的高层建筑;
通常将高度超过 100m 或层数在 30 层以上的高层建筑称为超高层建筑。
1.2 高层建筑结构的设计特点
问题:与多层建筑相比有哪些的设计特点 ? 1、水平荷载成为设计的决定性因素
1)竖向荷载产生轴向压力与结构高度的一次方成正比; 2)水平荷载产生的倾覆力矩以及轴力与高度的二次方成正比。
结构底部内力N 、M 与建筑高度H 的关系
竖向结构的轴力 wH N = (1.2.1)
结构底部的倾覆力矩 ()
()⎪⎩⎪⎨⎧=水平倒三角形荷载水平均布荷载2
2
qH 3
1qH 21M (1.2.2)
2 侧移成为设计的控制指标
结构顶点的侧移t u 与结构高度H 的四次方成正比,即
()()⎪⎩⎪⎨⎧=水平倒三角形荷载水平均布荷载44
t qH EI
12011qH EI 81u (1.2.3)
结构的侧移与结构的使用功能和安全有着密切的关系:
(1)过大的水平位移会使人产生不安全感,会使填充墙和主体结构出现裂缝或损坏,造成电梯轨道变形,影响正常使用;
(2)过大的侧移会使结构因Δ−P 效应而产生较大的附加内力等。
3 轴向变形的影响在设计中不容忽视
1)竖向荷载产生的结构轴向变形对其内力及变形的影响;
2)对预制构件的下料长度和楼面标高会产生较大的影响。
休斯敦75层的某大厦,采用剪力墙和钢柱混合体系,由于钢柱负荷面积大,底层的轴向压缩变形要比墙多260mm ,下料时需加长260mm ,并需逐层调整。
3)水平荷载产生的结构轴向变形对其内力及侧移的影响
水平荷载作用下,使竖向结构体系一侧构件产生轴向压缩,另一侧构件产生轴向拉伸,从而产生整体水平侧移。
不同层数的双肢剪力墙结构,不考虑轴向变形时内力和侧移的计算误差,如下表所示。
可见,结构层数越多,轴向变形的影响越大。
图1.2.5给出了水平荷载作用下双肢墙的内力、侧移分布曲线。
4 延性成为结构设计的重要指标
1)延性表示构件和结构屈服后,具有承载能力不降低、具有足够塑性变形能力的一种性能。
2)延性系数μ:y u ΔΔ=/μ,用来衡量延性的大小。
3)延性的大小还表示结构“能量吸收与耗散”能力的大小;
4)为了保证结构具有较好的抗震性能,除承载力、刚度外,还需要有较好的延性。
可通过加强结构抗震概念设计,采取恰当的抗震构造措施来保证。
5 结构材料用量显著增加
如图1.2.6所示,为高层建筑钢结构材料用量与高度的关系
1)对于高层建筑结构,随高度增大,材料用量增大较多。
2)特别是水平荷载对材料用量影响较大。
3)结构方案对材料用量影响很大,水平力作用下对结构进行优化设计至关重要。
例如:
筒体结构可使结构用钢量大幅度减小,高381m的帝国大厦,采用平面框架结构体系,用钢量为206kg/m2;采用筒体结构,高344m的约翰.汉考克大厦用钢量仅为146kg/m2,高443m的西尔斯大厦用钢量仅为161kg/m2。
1.3 高层建筑结构的类型
问题:按使用的材料,高层建筑结构的类型?
按使用的材料,高层建筑可采用砌体结构、混凝土结构、钢结构和钢-混凝土混合结构等类型。
1、砌体结构
公元524年的河南嵩岳寺塔(15层简筒结构,高50m)
公元704年的西安大雁塔(7层砖木结构,总高64m)
公元1055年的河北定县料敌塔(11层筒体结构,高82m)
优点:取材容易、施工简便、造价低廉;
缺点:脆性材料,强度较低,抗震性能较差;
配筋砌体可改善砌体的受力性能,但较少用于高层。
2、混凝土结构
优点:承力大,刚度好、节约钢、可模性好、耐久、耐火性好
缺点:自重大、施工复杂、建造周期长;
应用情况:我国绝大多数高层建筑都是采用混凝土结构。
最早混凝土框架结构高层建筑,是1903年在美国辛辛那提建造的因格尔斯大楼,16层,高64m。
目前世界上最高的混凝土建筑为香港中环广场达78层374m,其次是平壤柳京饭店达105层300m。
平壤市的柳京饭店芝加哥西尔斯大厦(Sears Tower)
3、钢结构
优点:强度高、自重轻、施工周期短、抗震性能好;
缺点:用钢量大、造价高、防火性能差、刚度差;
应用情况:采用钢结构的高层建筑不断的增多;美国、日本等从钢结构起步建造高层。