电力电子器件的概念
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
电力电子器件与系统电力电子器件与系统是电力工程领域的一个重要分支,涉及到电力转换、控制和保护等方面的技术研究与应用。
本文将从电力电子器件和系统的概念、应用领域、工作原理以及发展趋势等方面进行论述,以帮助读者全面理解和掌握电力电子技术的基本知识。
一、电力电子器件的基本概念电力电子器件是指能够实现电能的整流、变换、控制和保护等功能的电子器件。
常见的电力电子器件包括晶闸管、可控硅、MOSFET、IGBT等。
这些器件通过控制电压或电流的开关状态,将电能从一种形式转换成另一种形式,以满足不同的电力需求。
电力电子器件具有高效、可靠、灵活等特点,在工业、农业、交通、通信等领域得到了广泛的应用。
二、电力电子器件的应用领域1. 电力系统电力电子器件在电力系统中的应用十分广泛。
它们可以用于电力输配电、电力负荷控制、电力变换和调节等方面。
比如,柔性交流输电技术就是利用大功率晶闸管和换流变换技术实现的,能够提高输电效率,降低线路损耗。
另外,电力电子器件还能实现对电力系统的稳定控制和保护,提高系统的可靠性和安全性。
2. 新能源随着新能源的快速发展,电力电子器件在风电、太阳能等新能源发电系统中的应用也越来越广泛。
电力电子器件可以将不稳定的新能源输出电能转换为稳定的交流电能,并通过逆变器等设备实现对新能源发电系统的功率调节和并网运行控制。
这种技术不仅可以提高新能源发电系统的利用率和可靠性,还可以减少对传统能源的依赖,具有重要意义。
3. 电动汽车电力电子器件在电动汽车领域的应用也十分重要。
电力电子器件可以实现电动汽车电池充电、电能变换和电机控制等功能。
通过电力电子器件的控制,可以实现对电动汽车电池的快速充电和有效管理,提高电动汽车的运行效率和续航里程。
此外,电力电子器件还可以控制电动汽车电机的转速和扭矩,提高汽车的操控性能。
三、电力电子系统的工作原理电力电子系统是由多个电力电子器件和控制电路组成的复杂系统。
这些器件和电路通过合理的连接和控制方式,实现对电能的转换和控制。
电力电子器件与应用电力电子技术是现代电气工程领域中的重要分支,它主要研究与应用电子器件在电力系统中的转换、调节和控制技术。
电力电子器件的发展和应用,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本文将从电力电子器件的基本原理、常见的电力电子器件和其应用领域等方面进行探讨。
一、电力电子器件的基本原理电力电子器件是指能够将电力信号进行转换、调节和控制的电子器件。
其基本原理是利用半导体器件的导通和截止特性,通过不同的电路拓扑结构,实现对电力信号的处理。
常见的电力电子器件包括二极管、晶闸管、可控硅、IGBT和MOSFET等。
二、常见的电力电子器件1. 二极管:二极管是一种最简单的电力电子器件,其具有单向导电性。
它常用于整流电路中,将交流电信号转换为直流电信号。
2. 晶闸管:晶闸管是一种具有双向导电性的电力电子器件。
它具有可控性,可以通过控制电压或电流来实现导通和截止。
晶闸管广泛应用于交流电调节、交流电转换和交流电控制等领域。
3. 可控硅:可控硅是一种具有单向导电性和可控性的电力电子器件。
它可以通过控制触发信号来实现导通和截止。
可控硅常用于交流电调节和交流电控制等应用中。
4. IGBT:IGBT是一种综合了MOSFET和可控硅特性的电力电子器件。
它具有高压、高电流和高频率的特点,广泛应用于交流电调节、交流电转换和电力传输等领域。
5. MOSFET:MOSFET是一种具有双向导电性和可控性的电力电子器件。
它具有高速开关和低功耗的特点,常用于直流电调节、直流电转换和电力传输等应用中。
三、电力电子器件的应用领域电力电子器件在电力系统中的应用非常广泛,主要包括以下几个方面:1. 电力调节:电力电子器件可以通过调节电压、电流和频率等参数,实现对电力系统的调节。
例如,通过调节晶闸管和可控硅的触发角度,可以实现对交流电的调节,提高电力系统的稳定性和可靠性。
2. 电力转换:电力电子器件可以将不同形式的电力信号进行转换,实现能量的传输和转换。
电力电子器件的概念:
直接承担电能的变换或控制的电路称为主电路。
可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。
电力电子器件的特征:
(1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。
(2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。
(3)、电力电子器件往往需要由信息电子电路来控制。
(4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。
电力电子器件的系统组成:
一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。
电力电子器件的分类:
1、按能够被控制信号所控制的程度来分类:
全控型:既可控制其导通,又可控制其关断(绝缘栅
双极晶体管,电力MOSFET)
半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件)
不可控型:导通与关断取决于所承受的电流、电压(电
力二极管)
2、按照驱动电路加在器件控制端的信号性质分类:电压
驱动型、电流驱动型
3、根据驱动电路加在器件控制端有效信号的波形分类:
脉冲触发型、电平控制型
4、按照器件内部电子的空穴参与导电的情况:单极型、
双极型、复合型
电力二极管
特征:能承受高电压和大电流(垂直导电结构、低掺杂N区)静态特征:伏安特征
动态特征:零偏、正偏、反偏时的过滤过程(图)
主要参数:
1、正向平均电流I F(AV),正向压降VF,反向重复峰值电
压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。
主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管
电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。
——使原始基片的电阻率下降。
晶闸管:
正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。
关断条件:。