(整理)1.1电力电子器件的基本模型1.2电力二极管.
- 格式:doc
- 大小:1.24 MB
- 文档页数:14
第2章 电力电子器件2.1.1电力二极管1. 电力二极管的基本特性电力二极管是指可以承受高电压大电流具有较大耗散功率的二极管,它与其他电力电子器件相配合,作为整流、续流、电压隔离、钳位或保护元件,在各种变流电路中发挥着重要作用;它的基本结构、工作原理和伏安特性与信息电子电路中的二极管相同,以半导体PN 结为基础;主要类型有普通二极管、快恢复二极管和肖特基二极管;由一个面积较大的PN 结和两端引线以及封装组成,从外形上看,大功率的主要有螺栓型和平板型两种封装,小功率的和普通二极管一致。
2.电力二极管的基本特性静态特性,主要是指其伏安特性。
正向电压大到一定值(门槛电压UTO ),正向电流才开始明显增加,处于稳定导通状态。
与IF 对应的电力二极管两端的电压即为其正向电压降UF 。
承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。
动态特性,因为结电容的导致电压-电流随时间变化,这就是电力二极管的动态特性,并且往往专指反映通态和断态之间转换过程的开关特性,由正向偏置转换为反向偏置。
电力二极管并不能立即关断,而是须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。
在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。
图2-2 电力二极管的伏安特性图2-1 电力二极管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号延迟时间:td=t1-t0电流下降时间:tf =t2- t1反向恢复时间:trr=td+ tf恢复特性的软度: tf /td ,或称恢复系 数,用Sr 表示。
由零偏置转换为正向偏置,先出现一个过冲UFP ,经过一段时间才趋于接近稳态压降的某个值(如2V )。
正向恢复时间tfr ,出现电压过冲的原因:电导调制效应起作用所需的大量少子需要一定的时间来储存,在达到稳态导通之前管压降较大;正向电流的上升会因器件自身的电感而产生较大压降。
电流上升率越大,UFP越高。
天津冶金职业技术学院教案( 首页)天津冶金职业技术学院教案( 首页)图1.3.2 晶闸管的内部结构和等效电路)导通:阳极施加正向电压时→给门极G也加正向电压T I I图1.3.6 控晶闸管的电气图形符号和伏安特性a) 电气图形符号b) 伏安特性1.4 可关断晶闸管可关断晶闸管(Gate-Turn-Off Thyristor)简称GTO。
天津冶金职业技术学院教师授课教案沟道沟道MOSFET耗尽型:增强型:耗尽型增强型之间就存在导电沟道;才存在导电沟道1. IGBT的结构图1.7.1 IGBT的结构、简化等效电路与电气符号IGBT的结构如图1.7.1(a)所示。
它是在VDMOS管结构的基础上再增加一个P+层,形成了一个大面积的P+N结1J,和其它结2J、3J一起构成了一个相当于由VDMOS驱动的厚基区PNP型GTR;简化等效电路如图1.7.1(b)所示。
电气符号如图1.7.1(c)所示GBT有三个电极:集电极C、发射极E和栅极G。
2. IGBT的工作原理IGBT也属场控器件,其驱动原理与电力MOSFET基本相同,是一种由栅电压GEU控制集电极电流的栅控自关断器件。
1.7.2 缘栅双极型晶体管的特性IGBT的伏安特性和转移特性图1.7.2 IGBT的伏安特性和转移特性天津冶金职业技术学院教案( 首页)构,如图1.8.4(a)。
)三极:阳极A 、阴极、栅极G ,)原理:栅极开路,在阳极和阴极之间加正向电压,有电流流过SITH ;在栅极G 和阴极K 之间加负电压,G-K 之间PN 结反偏,在两个栅极图1.9.5 GTO 的基本驱动电路2)导通和关断过程:图1.9.5(b)导通时GTO 门极与阴极间流过负电流而被关断;由于GTO 的开通和关断均依赖于一个独立的电源,故其关断能力强且可控制,其触发脉冲可采用窄脉冲;3)图1.9.5(c)中,导通和关断用两个独立的电源,开关元件少,电路简单。
4)图1.9.5(d),对于300A 以上的GTO ,用此驱动电路可以满足要求。
1.1不可控器件电力二极管功率二极管是开通与关断均不可控的半导体开关器件,其电压、电流定额较大,也称为半导体电力二极管。
1.2功率二极管的结构和工作原理与普通二极管相比,工作原理和特性相似,具有单向导电性。
在面积较大的PN 结上加装引线以及封装形成,主要有螺栓式和平板式。
1.3功率二极管的基本特征1) 静态特性主要指其伏安特性1.门槛电压U TO,正向电流I F开始明显增加所对应的电压。
2.与I F对应的电力二极管两端的电压即为其正向电压降U F。
3.承受反向电压时,只有微小而数值恒定的反向漏电流。
2) 动态特性功率二极管通态和断态之间转换过程的开关特性。
1.二极管正向偏置形成内部PN结的扩散电容。
此时突加反向电压,二极管并不能立即关断。
当结电容上的电荷复合掉以后,二极管才能恢复反向阻断能力,进入截止状态。
2.二极管处于反向偏置状态突加正向电压时,也需要一定的时间,才会有正向电流流过,称为正向恢复时间。
1.4功率二极管的主要参数1.额定正向平均电流I F(AV)——在规定的管壳温度和散热条件下,功率二极管长期运行时允许流过的最大工频正弦半波电流的平均值。
2.反向重复峰值电压U RRM——功率二极管反向所能承受的重复施加的最高峰值电压。
3.正向管压降U F——功率二极管在规定的壳温和正向电流下工作对应的正向导通压降。
4.最高允许结温T jM——结温(T j)是管芯PN结的平均温度,最高允许结温(T jM)是PN结正常工作时所能承受的最高平均温度。
1.5功率二极管的主要类型1) 普通二极管(General Purpose Diode ) 又称整流二极管(Rectifier Diode )多用于开关频率不高(1kHz 以下)的整流电路其反向恢复时间较长正向电流定额和反向电压定额可以达到很高2) 快恢复二极管(Fast Recovery Diode ——FRD )简称快速二极管 快恢复外延二极管(Fast Recovery Epitaxial Diodes ——FRED ),其t rr 更短(可低于50ns ), U F 也很低(0.9V 左右),但其反向耐压多在1200V 以下。