食品化学 水和冰的结构
- 格式:ppt
- 大小:1.47 MB
- 文档页数:23
食品化学知识点第一章水1、在冷冻食品中存在4中主要的冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶以及各种中间状态的晶体。
2、冰的特性—过冷A】食品中水的蒸汽压和该温度下纯水的饱和蒸汽压的比值。
3、【水分活度W4、水在食品中以游离水和结合水两种状态存在的。
5、结合水的特性:①在-40℃不会结冰;②不能作为所加入溶质的溶剂;③在质子核磁共振试验中使氢的谱线变宽。
6、各种有机分子与水之间的作用以氢键为主要方式。
7、【吸湿等温线(MSI)】在恒定温度下,食品的水分含量与它的水分活度之间的关系图。
8、吸湿等温线:Ⅰ区:水的主要形式是化合水。
Ⅰ区和Ⅱ区分界线之间:水的主要形式是化合水和单层水。
Ⅱ区:水的主要形式是化合水+单层水+多层水。
Ⅱ区和Ⅲ区分界线之间:出现游离水。
Ⅲ区:游离水。
9、滞后现象:理论上二者应该一致,但实际二者之间有一个滞后现象,形成滞后环。
在一定时,食品的解吸过程一般比回吸过程时含水量更高。
【简答】10、简述水分活度与食品保存性的关系。
(一)、水分活度与微生物生长的关系:不同类群微生物生长繁殖的W A 最低范围是:大多数细菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。
在低于0.60时。
绝大多数微生物就无法生长。
细菌形成芽孢时的W A 阈值比繁殖生长时要高。
(二)、水分活度与酶水解的关系:当降低到0.25~0.30的范围,就能有效地减慢或阻止酶促褐变的进行。
(三)、水分活度与化学反应的关系:① 大多数化学反应都必须在水溶液中才能进行。
降低水分活度,食品中许多化学反应受到抑制,反应速率下降。
② 发生离子化学反应的条件是反应物首先必须进行离子的水合作用,所以要有足够的游离水。
③ 化学反应和生物反应都必须有水分子参与。
降低水分活度,减少了参加反应的水的有效数量,反应速率下降。
④ 当W A <0.8时,大多数酶活力受抑制;当W A 在0.25~0.30之间时,淀粉酶、多酚氧化酶和过氧化物酶就会丧失活力或受到强烈的抑制。
固态冰的结构与其分子的排列方式有关,冰的基本结构是由水分子(H₂O)构成的。
在冰的结构中,水分子通过氢键形成稳定的晶格,这导致冰在低温下凝固成为固态。
普通冰的结构:
1. 冰的分子结构:水分子是由一个氧原子和两个氢原子组成的。
在普通冰中,水分子呈六角形的环状结构排列。
2. 氢键:水分子之间通过氢键相互连接。
每个水分子通过氢键与其他四个水分子相连,形成一个均匀的晶格。
3. 晶格形状:水分子的六角形排列形成冰的晶格结构。
这种六角形排列的晶格结构使得冰的结构相对有序,而这也是冰在固态时呈现出透明和结晶质感的原因。
4. 密度增加:当水冷却至冰点以下,水分子的热运动减缓,氢键的形成使得水分子更加有序。
这导致水的密度增加,使得固态冰比液态水密度更大。
需要注意的是,虽然普通冰是最常见的冰相,但还存在其他形态的冰,例如压力下形成的冰₂、冰₂等,它们具有不同的晶体结构。
这些冰的结构差异通常是由于不同的温度和压力条件下,水分子之间的相互作用发生变化。
绪论1:食品化学:是一门研究食品中的化学变化与食品质量相关性的科学。
2:食品质量属性(特征指标):色、香、味、质构、营养、安全。
第一章:水一:名词解释1:AW:指食品中水分存在的状态,即水分与食品结合程度(游离程度)。
AW=f/fo (f,fo 分别为食品中水的逸度、相同条件下纯水的逸度。
)2:相对平衡湿度(ERH): 不会导致湿气交换的周围大气中的相对湿度。
3:过冷现象:由于无晶核存在,液体水温度降到冰点以下仍不析出固体。
4:异相成核:指高分子被吸附在固体杂质表面或溶体中存在的未破坏的晶种表面而形成晶核的过程(在过冷溶液中加入晶核,在这些晶核的周围逐渐形成长大的结晶,这种现象称为异相成核。
)5:吸湿等温线(MSI):在一定温度条件下用来联系食品的含水量(用每单位干物质的含水量表示)与其水活度的图6:解吸等温线:指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。
7:单层值(BET):单分子层水,量为BET,一般食品(尤为干燥食品)的水分百分含量接近BET时,有最大稳定性,确定某种食品的BET对保藏很重要。
8:滞后环:是退汞曲线和重新注入汞曲线所形成的圈闭线。
它反映了孔隙介质的润湿及结构特性。
9:滞后现象:MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。
二:简述题1:食品中水划分的依据、类型和特点。
答:以水和食品中非水成分的作用情况来划分,分为游离水(滞化水、毛细管水和自由流动水)和结合水【化合水和吸附水(单层水+多层水)】。
结合水:流动性差,在-40℃不会结冰,不能作为溶剂。
游离水:流动性强,在-40℃可结冰,能作为溶剂。
2:冰与水结构的区别答:水:由两个氢原子的s的轨道与一个氧原子的两个sp3杂化轨道形成两个σ共价键。
冰:由水分子构成的非常“疏松”的大而长的刚性结构,相比液态水则是一种短而有序的结构。
普通冰属于六方晶系中的双六方双锥体,同时有9种以上晶型及无定形态每个水分子最多形成4个氢键,但不一定形成4个,键角104.5水的三个一般模型:混合、填隙和连续(均一)模型0℃时冰的配位数为4水的低粘度:水分子的氢键键合排列是高度动态的,允许各个水分子在毫微秒至微微秒的时间间隔内改变它们与邻近水分子间的氢键键合关系,即一个氢键快速地终止而代之以一个新的氢键,从而增加了水的流动性。
体相水:食品体系中的非结合水,包括自由水和截留水持水力(Water holding capacity):由分子(通常以低浓度存在的大分子)构成的基质通过物理方式截留大量水以防止水渗出的能力。
←属于物理方式持水,加工性质几乎与纯水相似—物理截留水—干燥时易除去,冷冻时易成冰,可作为溶剂,食品被切割或剁碎时不会/不易流出,整体流动受到严格限制;各个分子的运动基本上与在稀盐溶液中的水分子相同结合水(Bound water):存在于溶质和其他非水分成分相邻处,并且具有与统一体系中体相水显著不同性质的那部分水。
←属于“化学”方式持水,加工性质与纯水完全不同—化学截留水—低温(通常是指-40C或更低)下不能冻结;不能作为外加溶质的溶剂;流动性受到严格限制,处在溶质和其它非水物质的邻近位置;性质显著不同于同一体系中体相水(bulk-phase water)的性质结合水包括:构成水、邻近水和多层水净结构(Net structure):包括正常的或新类型的水结构。
从“正常”的水结构来看,所有离子都是破坏性的。
净结构形成效应(Net structure forming effect):小离子或多价离子产生强电场,强烈地与4至6个第一层水分子相互作用,导致它们比纯水中的HOH具有较低的流动性和包装得更紧密——Li+, Na+, H3O+, Ca2+, Ba2+, Mg2+, Al3+, F-, OH-净结构破坏效应(Net structure breaking effect):大离子和单价离子产生较弱电场,打破水的正常结构,并且新的结构又不足以补偿这种结构上的损失——K+, Rb+, Cs+, NH4+ , Cl-, Br-, I-, NO3- , BrO3- , IO3- , ClO4-水分活度(AW):能反映水和各种非水成分缔合的强度。
第一章水分一、填空题1、从水分子结构来瞧,水分子中氧的6个价电子参与杂化,形成4个sp3杂化轨道,有近似四面体的结构。
2、冰在转变成水时,静密度增大,当继续升温至3、98℃时密度可达到最大值,继续升温密度逐渐下降。
3、一般来说,食品中的水分可分为结合水与自由水两大类。
其中,前者可根据被结合的牢固程度细分为化合水、邻近水、多层水,后者可根据其在食品中的物理作用方式细分为滞化水、毛细管水、自由流动水。
4、水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态;水与不同类型溶质之间的相互作用主要表现在与离子与离子基团的相互作用、与非极性物质的相互作用、与双亲(中性)分子的相互作用等方面。
5、一般来说,大多数食品的等温线呈S形,而水果等食品的等温线为J形。
6、吸着等温线的制作方法主要有解吸等温线与回吸等温线两种。
对于同一样品而言,等温线的形状与位置主要与试样的组成、物理结构、预处理、温度、制作方法等因素有关。
7、食品中水分对脂质氧化存在促进与抑制作用。
当食品中a w值在0、35 左右时,水分对脂质起抑制氧化作用;当食品中a w值>0、35时,水分对脂质起促进氧化作用。
8、冷冻就是食品储藏的最理想方式,其作用主要在于低温。
冷冻对反应速率的影响主要表现在降低温度使反应变得非常缓慢与冷冻产生的浓缩效应加速反应速率两个相反的方面。
二、选择题1、水分子通过的作用可与另4个水分子配位结合形成四面体结构。
(A)范德华力(B)氢键(C)盐键(D)二硫键2、关于冰的结构及性质,描述有误的就是。
(A)冰就是由水分子有序排列形成的结晶(B)冰结晶并非完整的警惕,通常就是有方向性或离子型缺陷的(C)食品中的冰就是由纯水形成的,其冰结晶形式为六方形(D)食品中的冰晶因溶质的数量与种类等不同,可呈现不同形式的结晶3、食品中的水分分类很多,下面哪个选项不属于同一类?(A)多层水(B)化合水(C)结合水(D)毛细管水4、下列食品中,哪类食品的吸着等温线呈S形?(A)糖制品(B)肉类(C)咖啡提取物(D)水果5、关于BET(单分子层水),描述有误的就是一。