张正友标定数学原理
- 格式:pptx
- 大小:1.64 MB
- 文档页数:22
张正友标定算法原理详解
张正友标定算法是一种多摄像机标定的有效方法,它使用了一个具有内部参考点的3D物体来检测至少6个相互独立的2D-3D配准,从而确定每个摄像机之间的关系。
该算法的优点在于它能够利用棋盘格子上的多个点,从而使得标定更加可靠。
张正友标定算法主要分为三步:
(1)首先获取所有摄像机的内参和外参,这些参数表示每个摄像机的视角和位置,包括焦距、畸变参数和旋转参数等信息。
(2)计算每个摄像机的平面坐标系,这些平面坐标系将求解的不同摄像机之间的关系。
(3)把实际的物体点映射到每个摄像机的平面坐标系中,并计算所有摄像机之间的关系。
最后,张正友标定算法可以得出每个摄像机的位置和姿态,从而实现多摄像机视角的标定。
张正友标定算法解读一直以来想写篇相机标定方面的东西,最近组会上也要讲标定方面东西,所以顺便写了。
无论是OpenCV还是matlab标定箱,都是以张正友棋盘标定算法为核心实现的,这篇PAMI的文章<<A Flexible New Technique for Camera Calibration>>影响力极大,张正友是zju的机械系出身,貌似现在是微软的终身教授了,有点牛的。
我就简单的介绍下算法的核心原理,公式的推理可能有点多。
一基本问题描述:空间平面的三维点与相机平面二维点的映射假设空间平面中三维点:(齐次坐标,世界坐标系)相机平面二维点:(齐次坐标,相机坐标系)那么空间中的点是如何映射到相机平面上去呢?我们用一个等式来表示两者之间关系:(1)注:A为相机内参矩阵,R,t分别为旋转和平移矩阵,s为一个放缩因子标量。
我们把等式(1)再简化下:(2)因为张正友算法选取的是平面标定,所以令z=0,所以平移向量只有r1,r2即可。
H就是我们常说的单应性矩阵,在这里描述的是空间中平面三维点和相机平面二维点之间的关系。
因为相机平面中点的坐标可以通过图像处理的方式(哈里斯角点,再基于梯度搜索的方式精确控制点位置)获取,而空间平面中三维点可以通过事先做好的棋盘获取。
所以也就是说每张图片都可以计算出一个H矩阵。
二内参限制我们把H矩阵(3*3)写成3个列向量形式,那么我们把H矩阵又可写成:(3)注:lamda是个放缩因子标量,也是s的倒数。
那么现在我们要用一个关键性的条件:r1和r2标准正交。
正交:(4)单位向量(模相等):(5)这个两个等式是非常优美的,因为它完美的与绝对二次曲线理论联系起来了,这里就不展开了。
三相机内参的求解我们令:(6)我们可知B矩阵是个对称矩阵,所以可以写成一个6维向量形式:(7)我们把H矩阵的列向量形式为:(8)那么根据等式(8)我们把等式(4)改写成:(9)(10)最后根据内参数限制条件(等式(4)(5)):(11)即,(12)V矩阵是2*6矩阵,也就是说每张照片可建立起两个方程组,6个未知数。
相机标定一、实验原理相机标定就是求解相机的内参数以及畸变参数的过程。
相机的标定主要有两种:传统的摄像头标定方法和摄像头自标定方法,典型的有:(1)Tsai(传统的标定方法);(2)张正友(介于传统和自标定之间)。
1999年,微软研究院的张正友提出了基于移动平面模板的相机标定方法。
此方法是介于传统标定方法和自标定方法之间的一种方法,传统标定方法虽然精度高设备有较高的要求,其操作过程也比较繁琐,自标定方法的精度不高,张正友标定算法克服了这两者的缺点同时又兼备二者的优点,因此对办公、家庭的场合使用的桌面视觉系统(DVS)很适合。
张正友标定方法由于简单、效果好而得到广泛使用。
张正友标定法的标定步骤:1、打印一张模板并贴在一个平面上;2、从不同角度拍摄若干张模板图像;3、检测出图像中的特征点;4、求出摄像机的外参数(单应性矩阵)和内参数(最大似然估计);5、求出畸变系数;6、优化求精。
张正友标定方法的主要思想是:1、相机内参矩阵其中,q 的坐标系是默认的OpenCV 的像素坐标系,Q 的坐标系是标定板坐标系,Z 轴为0,原点在标定板的某个内角点上(标定板上角点的坐标均为[*,*,0]的形式),在OpenCV 3.0中使用的是([i ∗Squres_Size ,j ∗Square_Size ,0]的形式)。
其中fx 和fy 表示相机x 轴和y 轴的焦距,s 表示成像平面x 轴和y 轴的不正交性。
2、基础公式对于不同位置的棋盘格到相机的成像,可以使用下面的公式进行表示:其中,[R|t]表示棋盘格坐标系相对于相机坐标系的位姿。
把矩阵R 和M ~写开,如下式所示:进行化简得:其中[u v 1]是已知量,[X Y 1]也是已知量,A 和[r1 r2 t]是未知量。
其中H=A[r1 r2 t]又叫做单应性矩阵,可以使用下面的3中所述的方法求解。
3、单应矩阵求解这里使用的方法基于最大似然准则:假设提取的m 存在均值为0,噪声协方差矩阵为的高斯白噪声。