丙类高频功率放大器专业课程设计
- 格式:doc
- 大小:2.39 MB
- 文档页数:24
实验一高频丙类功率放大器在高频范围内为获得足够大的高频输出功率, 必须采用高频放大器, 高频功率放大器主要用于发射机的未级和中间级, 它将振荡产生的信号加以放大, 获得足够高频功率后, 再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高, 输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百 kHz —几十MHz 。
一般都采用 LC 谐振网络作负载, 且一般都是工作于丙类状态, 如果要进一步提高效率, 也可工作于丁类或戊类状态。
一、实验目的及要求(一实验目的1. 进一步了解高频丙类功率放大器的工作原理和调试技术。
2. 熟悉负载变化对放大器工作状态的影响及各指标的测试方法。
3. 掌握输入激励电压, 集电极电压, 基极偏置电压变化对放大器工作状态的影响。
(二实验要求1. 认真阅读本实验教材及有关教材内容。
2. 熟悉本实验步骤,并画出所测数据表格。
3. 熟悉本次实验所需仪器使用方法。
(三实验报告要求1. 写出本次实验原理及原理图。
2. 认真整理记录的测试数据及绘出相应曲线图。
3. 对测试结果与理论值进行比较分析,找出产生误差的原因,提出减少实验误差的方法。
4. 详细记录在调谐和测试过程中发生的故障和问题,并进行故障分析,说明排除过程和方法。
5. 本次实验收获,体会以及改进意见。
二、实验仪器及实验板1.双踪示波器 (CA8020 一台2.高频信号发生器(XFG-7 一台3.晶体管直流稳压电源一台4.数字万用表一块5.超高频毫伏表(DA22 一台6.直流毫安表一块7.高频丙类功率放大器实验板一块三、实验原理及公式推导高频谐振放大器的主要作用是使电路输出功率大, 效率高; 主要特点是用谐振回路来实现阻抗变换,并且为了提高效率常工作在丙类状态。
高频功率放大器一般有两种:窄带高频功率放大器和宽带高频功率放大器。
前者由于频带比较窄, 故常用选频网络作为负载回路, 所以又称为谐振功率放大器。
课程设计前言 (2)1丙类功放原理 (3)1.1 丙类谐振功率放大器的功率与效率 (3)1.1.1 功率关系 (3)1.1.2 放大器的集电极效率 (3)1.1.3 谐振功率放大器临界状态的计算 (4)1.2 功率放大器的负载特性 (4)1.2.1 uc、ic 随负载变化的波形 (4)1.2.2 功率及效率随负载(工作状态)变化的波形 (5)1.3丙类谐振功率放大器的偏置电路及耦合电路 (6)1.3.1直流馈电电路 (6)1.3.2 输出回路和级间耦合回路 (7)1.3.3 输出耦合回路 (8)2 设计电路 (9)2.1开发与设计的总体思想 (9)2.2 丙类功放原理图 (9)2.3设计过程 (9)3 电路的仿真与分析 (10)3.1仿真软件的介绍 (10)3.2放大电路的仿真与分析 (12)3.2.1试验电路参数 (12)3.2.2计算谐振回路与耦合回路的参数 (12)3.2.3主要技术指标的测试 (14)4 总结 (15)参考文献 (16)课程设计前言高频谐振放大器广泛应用于通信系统和其他电子系统中,如在接受设备中,从天线上感应的信号是非常微弱的,高频小信号谐振放大器来完成;在发射设备中,为了有效地使信号通过信道传送到接收端,需要根据传送距离等因素来确定发射设备的发射功率,这就要用高频谐振功率放大器将信号放大到所需的发射功率。
高频功率放大器的主要功用是发射高频信号,并且以高效输出大功率为目的。
发射机中的振荡器产生的信号功率很小,需要经多级高频功率放大器才能获得足够的功率,送到天线辐射出去。
已知能量(功率)是不能放大的,高频信号的功率放大,其实质是在输入高频信号的控制下将电源直流功率转换成高频功率,因此除要求高频功率放大器产生符合要求的的高频功率外,还应要求具有尽可能高的转换效率。
低频功率放大器可以工作在A(甲)类状态,也可以工作在B(乙)类状态,或AB(甲乙)类状态。
B类状态要比A类状态效率高(A类最大效率50%;B类最大效率为78.5%)。
丙类放大器的课程设计一、课程目标知识目标:1. 学生能理解丙类放大器的基本工作原理,掌握其电路组成及功能。
2. 学生能描述丙类放大器的特点,了解其在实际应用中的优缺点。
3. 学生掌握丙类放大器输出功率、效率的计算方法,并能运用相关公式进行计算。
技能目标:1. 学生能运用所学知识,正确搭建丙类放大器的电路,并进行调试。
2. 学生能够通过实验,观察丙类放大器的工作状态,分析实验数据,提出改进措施。
3. 学生能运用仿真软件,模拟丙类放大器的工作过程,进一步优化电路设计。
情感态度价值观目标:1. 学生在课程学习中,培养对电子技术的兴趣,提高学习积极性。
2. 学生通过团队合作,培养沟通协作能力,增强团队意识。
3. 学生在学习过程中,关注电子技术在实际应用中的环保、节能问题,树立社会责任感。
课程性质:本课程为电子技术课程的一部分,侧重于实践操作和理论知识的结合。
学生特点:学生为高中二年级学生,具有一定的电子技术基础,对实践操作感兴趣。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力,培养学生的创新意识和团队协作能力。
通过本课程的学习,使学生能够掌握丙类放大器的相关知识,为后续深入学习电子技术打下基础。
二、教学内容本课程教学内容主要包括以下三个方面:1. 丙类放大器的基本原理:- 放大器分类及丙类放大器的工作原理;- 丙类放大器的电路组成及其功能;- 丙类放大器的工作状态及其特点。
2. 丙类放大器的性能分析:- 输出功率、效率的计算方法;- 丙类放大器的非线性失真及其影响;- 丙类放大器的稳定性分析。
3. 丙类放大器的应用与实验:- 丙类放大器在实际应用中的优缺点;- 搭建丙类放大器电路,进行调试和性能测试;- 利用仿真软件模拟丙类放大器工作过程,优化电路设计。
教学内容安排与进度:1. 第1课时:介绍放大器分类及丙类放大器的基本原理;2. 第2课时:分析丙类放大器的电路组成及其功能;3. 第3课时:讲解丙类放大器的工作状态、特点及性能分析;4. 第4课时:进行丙类放大器电路的搭建与调试;5. 第5课时:利用仿真软件进行丙类放大器电路设计与优化。
摘要利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
关键词:丙类谐振功率放大器;谐振功率放大器;高频放大器目录引言 (2)1 谐振功率放大器 (3)1.1定时系统 (3)1.1.1 举例 (3)1.1.2 定时器的结构 (5)1.1.3 TMOD (6)1.2 引脚工作原理 (7)1.2.1 P1端口的结构和工作原理 (7)1.2.3 P3端口的结构和工作原理 (9) (9)2 电路设计与制作电路板 (11)2.1 电路设计 (12)2.1.1电路原理图 (12)2.2.1 画PCB图 (12)2.2.2 制作电路板 (14)3 系统软件设计 (14)4 电路的调试 (27)4.1 显示日期和时间 (27)4.2 闹铃功能 (27)5 结论 (27)谢辞 (28)参考文献 (29)引言本论文是丙类谐振功率放大器的一个应用实例。
并简要的介绍了丙类谐振功率放大器的工作原理。
动态特性和电路组成。
在通信系统中,高频功率放大电路作为发射机的重要组成部分,用于对高频已调波信号进行功率放大,然后经天线将其辐射到空间,所以要求输出功率很大。
功率放大电路是一种能量转换电路,即将直流电源能量转换为输出信号能量,同时必然有一部分能量损耗。
从节省能量的角度考虑,效率显得更加重要。
因此,高频功放常采用效率较高的丙类工作状态。
同时,为了滤除丙类工作是产生的众多高次谐波分量,常采用LC谐振回路作为选频网络,故称为丙类谐振功率放大电路。
高频实验: 丙类功率放大器设计
一、实验目的
1.了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3.比较甲类功率放大器与丙类功率放大器的特点
4.掌握丙类放大器的计算与设计方法。
二、实验内容
1.观察高频功率放大器丙类工作状态的现象, 并分析其特点
2.测试丙类功放的调谐特性
3.测试丙类功放的负载特性
4.观察激励信号变化、负载变化对工作状态的影响
三、实验原理
放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小, 放大器的效率越高。
甲类功率放大器的o 180=, 效率最高只能达到50%, 适用于小信号低功率放大, 一般作为中间级或输出功率较小的末级功率放大器。
非线性丙类功率放大器的电流导通角o 90, 效率可达到80%, 通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小), 基极偏置为负值, 电流导通角o 90, 为了不失真地放大信号, 它的负载必须是LC谐振回路。
四、实验仿真原理图
五、实验仿真结果
结果说明:
CH1波形为输入波形, CH2波形为经1M选频网络之后的波形, 形成2倍频。
一、实验目的1.高频丙类功率放大器的设计2.用相关仿真软件画出电路并对电路进行分析与测试3.测量高频功率放大器的主要技术指标4.观察高频丙类功率放大器的负载特性5.研究输入信号幅度的变化对功率放大器的输入功率、输出功率、总效率的影响6.研究直流电源电压对高频丙类功率放大器工作状态的影响二、实验原理1、利用选频网络作为负载回路的功率放大器称为谐振放大器。
如:图 1 谐振高频功率放大器原理图所示。
它是无线发射机中的重要组成部件。
根据放大器电流导通角C θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。
电流导通角愈小,放大器的效率愈高。
如甲类功放的导通角0=180c θ,效率η最高也只能达到50%,而丙类功放的导通角c θ0≤90,效率η可达到80%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
本课设使用的是丙类功率放大器,研究的是是丙类功率放大器的功率及效率。
2、丙类谐振功率放大器的效率与功率功率放大器是依据激励信号放大电路对电流的控制,起到把集电极电源直流功率变换成负载回路的交流功率的作用。
在同样的直流功率作用条件下,转换的功率越高,输出的交流功率越大。
集电极电源0V 提供的直流功率:式中C0I 为余弦脉冲的直流分解系数。
C0cm c I I ()αθ=图1 谐振高频功率放大器原理图D C0CCP =I U式中,CM I 为余弦脉冲的最大值;0C αθ()为余弦脉冲的直流分解系数。
式中,BB U '为晶体管的导通电压;BB V 为晶体管的基极偏置;bm V 为功率放大器的激励电压振幅。
集电极输出基波功率:式中C U 为回路两端的基频电压,C1I 为余弦电流脉冲基频电流,L R 为回路的谐振阻抗。
集电极效率:式中,ε为集电极电压利用系数;1()c θα为余弦脉冲的基波分解系数。
功率放大器的设计原则是在高效率下取得较大的输出功率。
学院学生课程设计报告课程名称:高频电路原理•与分析专业班级: ____________________ 姓名: _______________________ 学号:学期:1.课程设计tl的 (2)2.课程设计题H描述和耍求 (2)3.课程设计报告内容 (2)3. 1原理分析 (2)3. 2电路总体设计 (5)3. 3丙类功率放大器具体设计 (6)3 . 4宽频功率放大器具体参数设计 (8)3. 5电路仿真 (10)4.结论 (12)5.结束语 (13)6.参考文献 (14)7.附录 (15)1.课程设计目的通过木课程设计,对■理论知识进一步全面认识,加深对高频功率放大器的工作原理的理解,熟悉高频功率放人器的实际电路,初步学会高频功率放大器电路的设计,以达到理论知识与实践相结合。
2.课程设计题目描述和要求设计一高频功率放大电路,要求三极管丁•作在丙类状态;输入己调波的蜂值为1 OOmV;载波频率6. 5MHz,输出功率:P1M1W;负载50Q ;效率r] M80%。
3.课程设计报告内容3. 1原理分析高频功率放大器川于发射机的末级,作用是将高频己调波信号进行功率放大, 以满足发送功率的要求,然后经过天线将其辐射到空间,保证在…定区域内的接收机可以接收到满意的信号电平,并且不干扰诂从信道的通信。
高频功率放大器是通信系统中发送装置的重要组件。
按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以貝有选频滤波作川的选频电路作为输出冋路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放人器的输出电路则是传输线变压器或莫他宽带匹配电路,因此乂称为非调谐功率放大器。
高频功率放大器是--种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
在“低频电子线路”课程中已知,放人器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。
甲类放大器电流的流通角为180°,适用丁•小信号低功率放大。
丙类高频功率放大器专业课程设计
高频电子线路课程设计报告
题目:丙类功率放大器
院系:
专业:电子信息科学与技术
班级:
姓名:
学号:
指导教师:
报告成绩:
2013年12月20日
目录
一、设计目的 (1)
二、设计思路 (1)
三、设计过程 (2)
3.1、系统方案论证
3.1.1 丙类谐振功率放大器电路
3.2、模块电路设计
3.2.1丙类谐振功率放大器输入端采用自给偏置电路
3.2.2丙类谐振功率放大器输出端采用直流馈电电路
3.2.3匹配网络
3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析
四、整体电路与系统调试及仿真结果 (11)
4.1 电路设计与分析
4.2.仿真与模拟
4.2.1 Multisim 简介
4.2.2 基于Multisim电路仿真用例
五、主要元器件与设备 (14)
5.1 晶体管的选择
5.1.2 判别三极管类型和三个电极的方法
5.2电容的选择
六、课程设计体会与建议 (17)
6.1、设计体会
6.2、设计建议
七、结论 (18)
八、参考文献 (19)
一、设计目的
电子技术迅猛发展。
由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。
基本放大器是组成各种复杂放大电路的基本单元。
弱电控制强电在许多电子设备中需要用到。
放大器在当今和未来社会中的作用日益增加。
高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。
所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射设备的重要组成部分。
丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。
设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。
二、设计思路
丙类谐振功率放大器工作原理
图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V
BB 应设置在功率的截止区。
输入回路
由于功率管处于截止状态,基极偏置电压V
BB
作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。
由i
C ≈βi
B
知,i
C
也严重失真,且脉宽小于90o。
输出回路
若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线
(i
C ~V
BE
)上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半
个周期。
图2-2-1 丙类谐振功率放大器原理图
由Dirichlet收敛定理可知,可将电流脉冲序列i
C
分解成平均分量、基波分量和各次谐波分量之和,即
i
C =I
CO
+ I
c1m
cosωSt+ I
c2m
cos2ωSt+…
由于集电极谐振回路调制在输入信号频率上因而它对i
C
中的基波分量呈现的阻抗很大,且为纯电阻。
而对其他谐波分量和平均分量阻抗均很小,可以忽略,这样,在负载上得到了所需的不失真的信号功率。
三、设计过程
3.1系统方案论证
3.1.1丙类谐振功率放大器电路
在放大器原理上,功率放大器与其他放大器一样,都是能量转换器件,最主要是安全、高效和不失真(失真在允许范围内)地输出所需信号功率,为高效率输出信号且不失真(或失真在允许的范围内),通常采用丙类谐振功率放大器。
本章主要介绍丙类谐振功率放大器的电路组成和工作原理并对各种状态进行分析。
在丙类谐振功率放大器中,管外电路由直流馈电电路和自给偏自电路两部
分组成。
如图3-1-1所示为集电极直流馈电电路(串馈),图中,L
C
为高频扼流。