丙类高频功率放大器课程设计要点
- 格式:pdf
- 大小:942.02 KB
- 文档页数:21
实验⼆丙类⾼频功率放⼤器实验要点实验三丙类⾼频功率放⼤器实验⼀ . 实验⽬的1. 通过实验,加深对于⾼频谐振功率放⼤器⼯作原理的理解。
2. 研究丙类⾼频谐振功率放⼤器的负载特性,观察三种状态的脉冲电流波形。
3. 了解基极偏置电压、集电极电压、激励电压的变化对于⼯作状态的影响。
4. 掌握丙类⾼频谐振功率放⼤器的计算与设计⽅法。
⼆ . 预习要求:1. 复习⾼频谐振功率放⼤器的⼯作原理及特点。
2. 熟悉并分析图 3所⽰的实验电路,了解电路特点。
三 . 实验仪表设备1. 双踪⽰波器2. 数字万⽤表3. TPE-GP5通⽤实验平台4. G1N 实验模块5. G2N 实验模块四 . 电路特点及实验原理简介1. 电路特点本电路的核⼼是谐振功率放⼤器,在此电路基础上,将⾳频调制信号加⼊集电极回路中,利⽤谐振功率放⼤电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成⽆线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独⽴的载波振荡源。
2. ⾼频谐振功率放⼤器的⼯作原理参见图 1。
谐振功率放⼤器是以选频⽹络为负载的功率放⼤器,它是在⽆线电发送中最为重要、最为难调的单元电路之⼀。
根据放⼤器电流导通⾓的范围可分为甲类、⼄类、丙类等类型。
丙类功率放⼤器导通⾓θ<900,集电极效率可达 80%, ⼀般⽤作末级放⼤,以获得较⼤的功率和较⾼的效率。
图 1中, V bb 为基极偏压, V cc 为集电极直流电源电压。
为了得到丙类⼯作状态, V bb 应为负值,即基极处于反向偏置。
u b 为基极激励电压。
图 2⽰出了晶体管的转移特性曲线,以便⽤折线法分析集电极电流与基极激励电压的关系。
V bz 是晶体管发射结的起始电压(或称转折电压。
由图可知,只有在 u b 的正半周,并且⼤于V bb 和 V bz 绝对值之和时,才有集电极电流流通。
即在⼀个周期内,集电极电流 i c只在 -θ~+θ时间内导通。
课程设计前言 (2)1丙类功放原理 (3)1.1 丙类谐振功率放大器的功率与效率 (3)1.1.1 功率关系 (3)1.1.2 放大器的集电极效率 (3)1.1.3 谐振功率放大器临界状态的计算 (4)1.2 功率放大器的负载特性 (4)1.2.1 uc、ic 随负载变化的波形 (4)1.2.2 功率及效率随负载(工作状态)变化的波形 (5)1.3丙类谐振功率放大器的偏置电路及耦合电路 (6)1.3.1直流馈电电路 (6)1.3.2 输出回路和级间耦合回路 (7)1.3.3 输出耦合回路 (8)2 设计电路 (9)2.1开发与设计的总体思想 (9)2.2 丙类功放原理图 (9)2.3设计过程 (9)3 电路的仿真与分析 (10)3.1仿真软件的介绍 (10)3.2放大电路的仿真与分析 (12)3.2.1试验电路参数 (12)3.2.2计算谐振回路与耦合回路的参数 (12)3.2.3主要技术指标的测试 (14)4 总结 (15)参考文献 (16)课程设计前言高频谐振放大器广泛应用于通信系统和其他电子系统中,如在接受设备中,从天线上感应的信号是非常微弱的,高频小信号谐振放大器来完成;在发射设备中,为了有效地使信号通过信道传送到接收端,需要根据传送距离等因素来确定发射设备的发射功率,这就要用高频谐振功率放大器将信号放大到所需的发射功率。
高频功率放大器的主要功用是发射高频信号,并且以高效输出大功率为目的。
发射机中的振荡器产生的信号功率很小,需要经多级高频功率放大器才能获得足够的功率,送到天线辐射出去。
已知能量(功率)是不能放大的,高频信号的功率放大,其实质是在输入高频信号的控制下将电源直流功率转换成高频功率,因此除要求高频功率放大器产生符合要求的的高频功率外,还应要求具有尽可能高的转换效率。
低频功率放大器可以工作在A(甲)类状态,也可以工作在B(乙)类状态,或AB(甲乙)类状态。
B类状态要比A类状态效率高(A类最大效率50%;B类最大效率为78.5%)。
丙类放大器的课程设计一、课程目标知识目标:1. 学生能理解丙类放大器的基本工作原理,掌握其电路组成及功能。
2. 学生能描述丙类放大器的特点,了解其在实际应用中的优缺点。
3. 学生掌握丙类放大器输出功率、效率的计算方法,并能运用相关公式进行计算。
技能目标:1. 学生能运用所学知识,正确搭建丙类放大器的电路,并进行调试。
2. 学生能够通过实验,观察丙类放大器的工作状态,分析实验数据,提出改进措施。
3. 学生能运用仿真软件,模拟丙类放大器的工作过程,进一步优化电路设计。
情感态度价值观目标:1. 学生在课程学习中,培养对电子技术的兴趣,提高学习积极性。
2. 学生通过团队合作,培养沟通协作能力,增强团队意识。
3. 学生在学习过程中,关注电子技术在实际应用中的环保、节能问题,树立社会责任感。
课程性质:本课程为电子技术课程的一部分,侧重于实践操作和理论知识的结合。
学生特点:学生为高中二年级学生,具有一定的电子技术基础,对实践操作感兴趣。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力,培养学生的创新意识和团队协作能力。
通过本课程的学习,使学生能够掌握丙类放大器的相关知识,为后续深入学习电子技术打下基础。
二、教学内容本课程教学内容主要包括以下三个方面:1. 丙类放大器的基本原理:- 放大器分类及丙类放大器的工作原理;- 丙类放大器的电路组成及其功能;- 丙类放大器的工作状态及其特点。
2. 丙类放大器的性能分析:- 输出功率、效率的计算方法;- 丙类放大器的非线性失真及其影响;- 丙类放大器的稳定性分析。
3. 丙类放大器的应用与实验:- 丙类放大器在实际应用中的优缺点;- 搭建丙类放大器电路,进行调试和性能测试;- 利用仿真软件模拟丙类放大器工作过程,优化电路设计。
教学内容安排与进度:1. 第1课时:介绍放大器分类及丙类放大器的基本原理;2. 第2课时:分析丙类放大器的电路组成及其功能;3. 第3课时:讲解丙类放大器的工作状态、特点及性能分析;4. 第4课时:进行丙类放大器电路的搭建与调试;5. 第5课时:利用仿真软件进行丙类放大器电路设计与优化。
实验二丙类功率放大器要点实验二非线性丙类功率放大器实验一、实验目的1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
二、实验内容1、观察高频功率放大器丙类工作状态的现象,并分析其特点2、测试丙类功放的调谐特性3、测试丙类功放的负载特性4、观察激励信号变化、负载变化对工作状态的影响三、实验仪器1、信号源模块 1块2、频率计模块 1块3、 8 号板 1块4、双踪示波器 1台5、频率特性测试仪(可选) 1台6、万用表 1块四、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角θ越小,放大器的效率η越高。
1、丙类功率放大器 1)基本关系式丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO )在射极电阻上产生的压降来提供的,故称为自给偏压电路。
当放大器的输入信号'i v 为正弦波时,集电极的输出电流i C 为余弦脉冲波。
利用谐振回路LC 的选频作用可输出基波谐振电压v c1, 电流i c1。
图2-1画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。
分析可得下列基本关系式:011R I V m c m c =式中,m c V 1为集电极输出的谐振电压及基波电压的振幅;m c I 1为集电极基波电流振幅;0R 为集电极回路的谐振阻抗。
2102111212121R V R I I V P mc m c m c m c C === 式中,P C 为集电极输出功率 CO CC D I V P =式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。
放大器的效率η为CO mc CC m c I I V V 1121?=η图2-1 丙类功放的基极/集电极电流和电压波形2)负载特性当放大器的电源电压+V CC ,基极偏压v b ,输入电压(或称激励电压v sm 确定后,如果电流导通角选定,则放大器的工作状态只取决于集电极回路的等效负载电阻R q 。
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重R Li要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,V bb为基极偏压,V cc为集电极直流电源电压。
为了得到丙类工作状态,V bb 应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
高频实验: 丙类功率放大器设计
一、实验目的
1.了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3.比较甲类功率放大器与丙类功率放大器的特点
4.掌握丙类放大器的计算与设计方法。
二、实验内容
1.观察高频功率放大器丙类工作状态的现象, 并分析其特点
2.测试丙类功放的调谐特性
3.测试丙类功放的负载特性
4.观察激励信号变化、负载变化对工作状态的影响
三、实验原理
放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小, 放大器的效率越高。
甲类功率放大器的o 180=, 效率最高只能达到50%, 适用于小信号低功率放大, 一般作为中间级或输出功率较小的末级功率放大器。
非线性丙类功率放大器的电流导通角o 90, 效率可达到80%, 通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小), 基极偏置为负值, 电流导通角o 90, 为了不失真地放大信号, 它的负载必须是LC谐振回路。
四、实验仿真原理图
五、实验仿真结果
结果说明:
CH1波形为输入波形, CH2波形为经1M选频网络之后的波形, 形成2倍频。
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重cR L要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。
为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。