s ˆxz x ,y ,z x ,y ,z C ˆ4,zx,y ,z y ,x,z
y
p
s s ˆ x C ˆ z 4 ,z x ,y ,z ˆ x y z ,x ,z y ,x ,z
x
s s ˆ x C ˆ z 4 ,z x ,y ,z ˆ x y z ,x ,z y ,x ,z
记为 Cˆ n ;相应地,旋转轴也称为真轴,记为 Cn 。
H2O2 中的 C2
能使图形复原所必须转动的最小角度( 0o 除外 ),称
为基转角 a 。
对称轴的轴次: n 360 α
一个 n 重对称轴包含 n 个对称操作,可表示为:
C n (C ˆn 1 ,C ˆn 2 , ,C ˆn i, ,C ˆn n E )
4.1 生活中的对称性
生 物 界 的 对 称 性
立方 ZnS 型晶体模型 NaCl 型晶体模型
B6H6
B5H9
4.2 对称操作与对称元素
我们在谈论生活中的对称性时,更多的是定性的,和 出于美感的。然而,当我们开始讨论分子的对称性时,必 须对分子对称性的含义具有明确的概念。
使对称概念严格、系统化,是从引进,并明确“对称 操作”的基本概念开始的。
但这些特殊的例子能够帮助我们理解对称元素的组合原如果存在n次旋转轴c垂直的二次旋转轴c轴与轴的组合bf432对称元素组合原理22n的二个二次旋转轴c决定的平面的垂直方向上过交点有一个n次旋转一个具体的例子是我们刚刚证明了
第四章 分子对称性
目录
4.1 生活中的对称性 4.2 对称操作与对称元素 4.3 对称元素组合原理 4.4 对称性与分子的偶极矩、旋光性 4.5 分子点群
可以证明,分子或有限图形所具有的所有可能的对称类 型只有 5 种:E,Cn,s,i,Sn(In) 。