第七章非线性规划 第二节 一维搜索(1)
- 格式:pdf
- 大小:854.32 KB
- 文档页数:33
非线性规划非线性规划问题是比线性规划问题更一般的数学规划问题,它的目标函数或约束函数中至少含有一个非线性函数,非线性规划就是研究非线性规划问题的有关理论和方法的学科。
非线性规划是运筹学的一个重要分支,它在军事、经济、工程、管理以及最优设计等方面都有着广泛的应用。
本部分介绍无约束非线性规划和约束非线性规划的基本理论和方法。
第三章 无约束优化方法无约束非线性规划问题是指可行域是整个决策空间的非线性规划问题。
本章首先分析无约束非线性规划问题的一阶和二阶最优性条件,包括必要条件和充分条件,然后讨论一维搜索问题,最后介绍无约束优化的求解方法,包括最速下降法,Newton 法共轭梯度法和拟Newton 法等。
补充:最优性条件现在考虑无约束非线性规划问题)(min x xf (UNP)其中决策变量n R ∈x ,目标函数1:R R f n →。
我们先引进下降方向的概念,并研究其充分条件,由此建立(UNP)的一阶和二阶最优性条件。
补.1 下降方向定义补.1 设函数1:R R f n →,n R ∈x ,nR ∈s 是非零方向。
若存在δ>0,使()(f f λ+<x s x ,(0,)λδ∀∈则称s 是f 在x 处的下降方向。
注补.1 设*x 是(UNP)的局部最优解,则f 在*x 处不存在下降方向。
定理补.1 设)(x f 在x 处可微,nR ∈s 是非零方向。
若()Tf ∇x s <0,则s 是f 在x 处的下降方向。
证明:对任意的λ>0,因为)(x f 在x 处可微,故由)(x f 在x 处的一阶Taylor 展开式知,()()()()()[()()/]T T f f f o f f o λλλλλλ+=+∇+=+∇+x s x x s x x s (补.1)根据条件()Tf ∇x s <0和0()lim0o λλλ→=知,存在δ>0,使()()0T o f λλ∇+<x s ,(0,)λδ∀∈代入(补.1)并由λ>0得到,()(f f λ+<x s x ,(0,)λδ∀∈由此知s 是f 在x 处的下降方向。
非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。
其倒数至今在优选法中仍得到广泛应用。
在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。
例如阿基米德证明:给定周长,圆所包围的面积为最大。
这就是欧洲古代城堡几乎都建成圆形的原因。
但是最优化方法真正形成为科学方法则在17世纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。
以后又进一步讨论具有未知函数的函数极值,从而形成变分法。
这一时期的最优化方法可以称为古典最优化方法。
最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。
反之,某些最优化方法可适用于不同类型的模型。
最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。
(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。
求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。
(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。
此时可采用直接搜索的方法经过若干次迭代搜索到最优点。
这种方法常常根据经验或通过试验得到所需结果。
对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
第二章 一维搜索法● 概述● 确定初始单谷区间的进退法 ● 一维搜索法分类 ● 区间消去法 ● 函数逼近法概述求一元函数()F x 的极小点和极小值问题就是一维最优化问题。
求解一维优化问题的方法称为一维优化方法,又称一维搜索法。
一维搜索法是优化问题中最简单、最基本方法。
因为它不仅可以解决单变量目标函数的最优化问题,而且在求多变量目标函数的最优值时,大多数方法都要反复多次地进行一维搜索,用到一维优化法。
一般多维优化计算的迭代的基本格式:从一个已知点()k x 出发(()k x由上次迭代获得,开始时就是起始点(0)x),沿某一优化方法所规定的是目标函数值下降的搜索方向()k S,选择一个步长因子α,求得下一个新迭代点(1)k x +,(1)()()k k k xx S α+=+并且满足1()()k k F x F x +≤,即新点必须能够使目标函数值有所下降,这个新点就是下一次迭代的出发点,如此重复,直到求出目标函数的最优解为止。
理想步长kα可以通过()()()()k k F F x S αα=+的极小点获得min ()F α,使得目标函数达到最小()()min ()k k F x S α+,这种在第k 次迭代中求理想步长k α的过程,就是一维搜索过程。
大致分为两个步骤:1. 确定初始搜索区域[a,b],该区域应该包括一维函数极小点在内的单谷区域;2. 在单谷区域[a,b]上寻找极小点。
寻找极小点kα可以采用解析解和数值解等方法。
确定初始单谷区间的进退法单谷区域的定义:设函数()F x 在区域12[,]x x 内有定义,且(1) 在区域12[,]x x 内存在极小值x *,既有min ()()F x F x *=,12[,]x x x ∈; (2) 对区域1[,]x x *上任意自变量x ,有()()F x F x x >+∆,0x ∆>;对区域2[,]x x *上任意自变量x ,有()()F x F x x <+∆,0x ∆>;则称12[,]x x 为函数()F x 的单谷区域。
无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。
这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。
(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。
间接法:又称解析法,是应用数学极值理论的解析方法。
首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。
)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。
根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。
一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。
一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。
由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。
在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak设Φ(a)=f(xk+adk)这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。
其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。
一维搜索通常分为精确的和不精确的两类。
如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=minf(xk+adk) (a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f(xk)一f(xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。