用遗传算法解决0-1背包问题
- 格式:pdf
- 大小:775.75 KB
- 文档页数:31
遗传算法解决01背包问题2015 ~2016 学年第二学期学生姓名专业学号2016年 6 月目录一:问题描述 (3)二:遗传算法原理及特点 (3)三:背包问题的遗传算法求解 (3)1.文字描述 (3)2.遗传算法中的抽象概念在背包问题的具体化 (3)3.算法求解的基本步骤 (4)四:算法实现 (4)1.数据结构 (4)2.部分代码 (5)五:结论 (8)六:参考文献 (8)一、问题描述0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。
01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。
问应如何选择合适的物品装入背包,使得背包中装入的物品的总价值最大。
注意的一点是,背包内的物品的重量之和不能大于背包的容量C。
在选择装入背包的物品时,对每种物品i只有两种选择:即装入背包或者不装入背包,不能讲物品i装入背包多次,也不能只装入部分的物品,称此类问题为0/1背包问题。
二、遗传算法原理及特点遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法有着鲜明的优点:(1)遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性.(2)遗传算法只需利用目标的取值信息,而无需递度等高价值信息,因而适用于任何规模,高度非线形的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性.(3)遗传算法择优机制是一种“软”选择,加上良好的并行性,使它具有良好的全局优化性和稳健性.(4)遗传算法操作的可行解集是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性与简单性.三、背包问题的遗传算法求解1、文字描述0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。
遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。
物品i的重量是wi,其价值为vi。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。
(2)基因:染色体的每一个比特。
(3)种群:解的集合。
(4)适应度:衡量个体优劣的函数值。
2、控制参数(1)种群规模:解的个数。
(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。
(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。
3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。
三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。
种群:用二维数组表示,每一行表示一个染色体。
遗传算法求解0-1背包问题。
(步骤)#include "iostream.h"#include "iomanip.h"#include "stdlib.h"#include "math.h"#include "time.h"//定义问题的最大规模#define max 100//问题规模,即共有多少个包int packageNum;//每个包的重量int packageWeight[max];//每个包的价值int packageValue[max];//约束,背包的最大容量int limitWeight;//群体的规模int colonySize;//colonyState[i][k] 表示一个染色体//colonyState[1...colonySize][ 0|1 ] 表示一代群体int colonyState[max][2][max];// currAge 表示当前代的编号// (currAge+1)%2 表示下一代的编号int currAge = 0;//个体评价信息表typedef struct tagIndividualMsg{int index;int value;} IndividualMsg;IndividualMsg individualMsg[max];//////////////////////////////////////////////////////////// // 函数声明void printColonyState( int nextAge );//////////////////////////////////////////////////////////// //初始化群体void colonyInit(){int i , j;int w;for( i = 0 ; i < colonySize ; i++ ){//保证找到一个符合约束的染色体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][currAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][currAge][j];}}}}//对个体进行评价int cmp( const void *a , const void *b ){IndividualMsg *x = (IndividualMsg *)a;IndividualMsg *y = (IndividualMsg *)b;return y->value - x->value;}void individualEstimate(){int i , j;for( i = 0 ; i < colonySize ; i++ ){individualMsg[i].index = i;individualMsg[i].value = 0;for( j = 0 ; j < packageNum ; j++ )individualMsg[i].value += packageValue[j] * colonyState[i][currAge][j]; }qsort( individualMsg , colonySize , sizeof(IndividualMsg) , cmp );}//终止循环的条件bool stopFlag(){//进行n 代进行后停止static int n = 50;if( n-- <= 0 )return true;elsereturn false;}//赌轮选择int gambleChoose(){int wheel[max] = { 0 };int i = colonySize - 1;int choose;wheel[i] = individualMsg[i].value;for( i-- ; i >= 0 ; i-- )wheel[i] = ( individualMsg[i].value + wheel[i+1] ) + colonySize * ( colonySize - i ); int seed = abs( wheel[0] - ( rand() % ( 2 * wheel[0] ) + 1 ) );choose = colonySize - 1;while( seed > wheel[choose] )choose--;// cout<<"----------------------------------------"<<endl;// cout<<"wheel :"<<endl;// for( i = 0 ; i < colonySize ; i++ )// cout<<setw(5)<<wheel[i];// cout<<endl;// cout<<"seed = "<<seed<<endl;// cout<<"choose "<<choose<<endl;return choose;}//交叉void across( int male , int female , int index ){int nextAge = (currAge+1)%2;int i , j , t;int acrossBit = rand() % (packageNum-1) + 1;for( j = 0 ; j < packageNum ; j++ ){colonyState[index][nextAge][j] =colonyState[individualMsg[male].index][currAge][j];colonyState[index+1][nextAge][j] =colonyState[individualMsg[female].index][currAge][j];}for( i = 0 ; i < acrossBit ; i++ ){t = colonyState[index][nextAge][i];colonyState[index][nextAge][i] = colonyState[index+1][nextAge][i];colonyState[index+1][nextAge][j] = t;}}//变异void aberrance( int index ){int seed , nextAge;nextAge = (currAge+1)%2;//只有1/3 的概率发生异变seed = rand() % ( packageNum * 3 );if( seed < packageNum )colonyState[index][nextAge][seed] = ( colonyState[index][nextAge][seed] + 1 ) % 2;}//处理死亡个体void dealDeath(){int i , j;int weight , w;int nextAge = (currAge+1)%2;for( i = 0 ; i < colonySize ; i++ ){weight = 0;for( j = 0 ; j < packageNum ; j++ )weight += packageWeight[j] * colonyState[i][nextAge][j];if( weight > limitWeight ){//随机生成新的个体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][nextAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][nextAge][j];}}}}printColonyState( nextAge );}//最优个体保护void saveBest(){int i , j;int min , minp , value;int nextAge = ( currAge+1)%2;min = individualMsg[0].value;minp = -1;for( i = 0 ; i < colonySize ; i++ ){value = 0;for( j = 0 ; j < packageNum ; j++ )value += packageValue[j] * colonyState[i][nextAge][j]; if( value <= min ){min = value;minp = i;}}if( minp >= 0 ){for( j = 0 ; j < packageNum ; j++ ){colonyState[minp][nextAge][j] =colonyState[individualMsg[0].index][currAge][j];}}}//////////////////////////////////////////////////////////// void setProblem(){int i;packageNum = 5;int w[] = { 5 , 4 , 3 , 2 , 1 };int v[] = { 8 , 9 , 3 , 1 , 2 };for( i = 0 ; i < packageNum ; i++ ){packageWeight[i] = w[i];packageValue[i] = v[i];}limitWeight = 13;colonySize = 5;}void printProblem(){int i;cout<<"----------------------------------------"<<endl;cout<<"problem state:"<<endl;cout<<"packageNum = "<<packageNum<<endl;cout<<"limitWeight = "<<limitWeight<<endl;cout<<"Weight: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageWeight[i];cout<<endl;cout<<"Value: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageValue[i];cout<<endl;}void printColonyState( int k ){cout<<"----------------------------------------"<<endl;cout<<"colonyState-->";if( k == currAge )cout<<"currAge:"<<endl;elsecout<<"next age:"<<endl;int i , j;for( i = 0 ; i < colonySize ; i++ ){for( j = 0 ; j < packageNum ; j++ )cout<<setw(2)<<colonyState[i][k][j];cout<<endl;}}void printIndividualMsg(){int i;cout<<"----------------------------------------"<<endl;cout<<"Individual Msg:"<<endl;for( i = 0 ; i < colonySize ; i++ ){cout<<individualMsg[i].index<<"\t"<<individualMsg[i].value<<endl; }}////////////////////////////////////////////////////////////void main(){srand( (unsigned int)time(NULL) );setProblem();printProblem();//初始群体colonyInit();printColonyState( currAge );while( !stopFlag() ){//评价当前群体individualEstimate();//生成下一代for( int i = 0 ; i < colonySize ; i += 2 ){int male = gambleChoose();int female = gambleChoose();across( male , female , i );aberrance( i );aberrance( i + 1 );}//处理死亡个体dealDeath();//最优个体保护saveBest();//现在的下一代变成下一轮的当前代currAge = ( currAge + 1 ) % 2;//printColonyState( currAge );}//输出问题解individualEstimate();cout<<"近似解:"<<endl;int j , w = 0;cout<<setw(10)<<"Value:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<packageValue[j];cout<<endl;cout<<setw(10)<<"Weight:";for( j = 0 ; j < packageNum ; j++ ){w += packageWeight[j] * colonyState[individualMsg[0].index][currAge][j]; cout<<setw(5)<<packageWeight[j];}cout<<endl;cout<<setw(10)<<"Choose:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<colonyState[individualMsg[0].index][currAge][j];cout<<endl;cout<<"limitWeight: "<<limitWeight<<endl;cout<<"总重量: "<<w<<endl;cout<<"总价值: "<<individualMsg[0].value<<endl; }////////////////////////////////////////////////////////////。
遗传算法求解01背包问题一、问题描述01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。
01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为W i,其价值为V i,背包的容量为C。
选择合适的物品装入背包,使得背包中装入的物品的总价值最大。
注意的一点是,背包内的物品的重量之和不能大于背包的容量C。
在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。
称此类问题为0/1背包问题。
01背包问题是NP问题,传统的解决方法有动态规划法、分支界限法、回溯法等等。
传统的方法不能有效地解决01背包问题。
遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。
二、遗传算法1、遗传算法的基本思想遗传算法的搜索从一个被称作种群的候选解集开始,新的种群由旧的种群中产生以期得到更好的种群。
从旧种群中按照解的适应度来选择解以产生新的解;适应度越大,解被选择生成后代的机率也越大。
这个从已有种群中选择双亲并产生后代的迭代过程持续到遗传算法的停止条件满足为止。
2、遗传算法的基本元素。
遗传算法由以下几个原素组成:由染色体组成的种群,根据适应度进行选择以及交叉产生后代。
三、用遗传算法求解01背包问题1、01背包问题中染色体的表示。
用向量X来表示染色体,X = {x1,x2,……,x n}。
,x i∈{0,1},x i=1表示物品i装入了背包,x i =0表示物品i未装入背包。
每个染色体对应其当前装入背包的物品的总价值和总重量。
背包中物品的中价值代表了该物品的适应度。
程序中定义了这样的一个结构来表示染色体:typedef struct{int Weight; //染色体代表的物品的总重量int Fitness; //染色体代表的物品的价值(适应度)int Gene[NUMG]; //用元素取值于定义域{0,1}的数组表示染色体。
第41卷第2期西华师范大学学报(自然科学版)2020年6月Vol.41No.2Jouroal of China West Normal UvPvrsEa(Natural Sciences)Jun.2020DOI50.16246/j.issp.177-8470.0020.60.63扩展SD)0-11KP背包问题的建模及其遗传算法求解张琴)潘大志pb(西华师范大学a.数学与信息学院A.计算方法与应用研究所,四川南充637009)摘要:在SD]0-11KP的基础上对项集中的物品数由两个扩展为三个,提出扩展SD]0-11KP问题。
在扩展问题中,各项集中物品组合选择情况采取三元组进行编码表示,建立扩展SD10-3KP模型,再将贪心策略与遗传算法融合构造求解模型的算法。
为验证算法的求解效果,随机生成四种扩展SD]0-11KP大规模数据实例。
求解结果表明:该算法适合求解扩展SD]0-11KP大规模数据,且效果较好。
关键词:简化折扣0-11背包问题;扩展SD]0-11KP模型;遗传算法;贪心策略;价值密度中图分类号:TP17文献标志码:A文章编号5673都472(2020)02都214都7折扣)0-11背包问题(D{0-3KP)是经典0-1背包问题的一个扩展形式,由GudeO3和Guldai2■提出。
它是将待装入背包的物品两两分组构成项集,当项集内两物品同时选择时,给两物品的重量和一个折扣率,而价值和不变。
该问题的目标是在不超过背包容量的前提下选择物品,使所装物品的价值之和最大。
针对D0-1}KP,RONG等⑶构造出动态规划的递推关系,设计动态规划算法进行求解。
贺毅朝等人针对D{0-1KP问题构造了精确和近似步骤相结合的求解方法⑷,随后又利用遗传算法构造求解D{0-3KP 问题[5]的方法,通过四类算例验证算法的有效性,均取得了较好的效果。
之后,很多学者利用粒子群算法[5]、蝙蝠算法[/、细菌觅食算法[]、布谷鸟算法[7]、帝王蝶算法[4]等多种智能算法设计求解D)0-3KP问题的方法。
“遗传算法”解决“背包问题”遗传算法基本思想:1) ⼀个种群有多个个体,每个个体有染⾊体和对应的基因为了繁殖进⾏:2) 选择:在残酷的世界中,适者⽣存,优胜略汰。
3) 重组:染⾊体交叉,基因重组4) 突变:染⾊体上的基因⼩概率的突变(⼀般给⼩数点后两位)背包问题:背包只能容得下⼀定重量b的物品,物品有m种,每种物品有⾃⼰的重量w(i)和价值v(i)(0<i<=m),从这些物品中选择装⼊背包,是背包不超过重量b,但价值⼜要最⼤。
运⽤动态规划,分⽀限界都可以达到效果,但不佳。
我⽤遗传算法解决:⼀般⼈有多条染⾊体,但对于背包问题,⼀个解我们将看成⼀个个体,所以,⼀个个体只有⼀个染⾊体,⼀个染⾊体对应多个基因。
如:100101010100111 表⽰装⼊背包的可能解。
(具体情况具体分析)遗传所做准备:1) ⽤0表⽰“不选择装⼊”,1表⽰“装⼊”,形成⼀条基因链;100101010100111则表⽰“15种物品”装⼊或不装⼊背包的可能解。
------- 此处⽤chrom[]存放基因,代表染⾊体2) ⼀个基因对应⼀个个体。
------- 此处⽤Population类或结构体声明其含有chrom[]等信息3) 可能的解有很多,构成⼀个种群。
------- ⽤Population类定义⼀个数组代表个体构成的种群newPop[]:存放新⽣代,oldPop[]:存放上⼀代4) 适应度:适应度和⽬标函数是正相关的,所以需要物品价值和重量。
------- fitness,weight包含在Population类中最⼤适应度:maxFitness,最⼩适应度:minFitness,总适应度:sumFitness,(帮助求突变和交叉的染⾊体)平均适应度:avgFitness遗传算法的函数:基本:1) InitPop() 初始化个体,使每个个体都有基因组2) Statistics(*pop) 计算适应度(最⼤,最⼩,总的,平均的)3) Selection(*pop) 通过选择种群中符合要求的⽗母去繁殖新代,返回这对⽗母的位置4) crossover(*parent1,*parent2,pos) 传⼊要改的个体位置,随机产⽣交叉位置,⽤优良⽗母繁殖优良后代并替代传⼊个体位置5) mutation(i) i为基因组基因的位置,逐个基因看是否要变异6) generation() 对个体进⾏判断,若不符合要求,进⾏选择,重组,突变。