液压传动工作介质的选用
- 格式:ppt
- 大小:2.81 MB
- 文档页数:56
液压传动的工作原理:以油液为工作介质,通过密封容积的变化来传递运动,通过油液内部压力传递动力。
液压传动所用的工作介质为液压油或其他合成液体。
气压传动所用的工作介质为空气。
在液压和气压传动中,工作压力取决于负载,而与流入的流体多少无关。
活塞的运动的速度取决于进入液压缸的流量,而与流体压力大小无关。
液压与气压传动系统主要由几个部分组成:1、能源装置(把机械能转换成流体的压力能的装置)2、执行装置(把流体的压力能转换成机械能的装置)3、控制调节装置4、辅助装置5、传动介质矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加。
液体在外力作用下流动时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦力,这种现象叫做液体的粘性。
可压缩性:液体受压力作用而发生体积减小的特性。
液体的粘度随液体的压力和温度而变。
(压力增大时,粘度增大。
温度升高,粘度下降。
)(液压油)工作介质的选用原则:1、液压系统的工作条件2、液压系统的工作环境3、综合经济分析液体静止:指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的或是匀速、匀加速运动都没有关系。
压力的表示方法有两种,一种是以绝对真空作为基准所表示的压力,称为绝对压力。
另一种是以大气压力作为基准所表示的压力,称为相对压力。
大多数测压仪表所测得的压力都是相对压力,故相对压力也称表压力。
真空度:液体中某点处的绝对压力小于大气压,这时在这个点上的绝对压力比大气压小的那部分数值在密封容器内,施加于静止液体上的压力将以等值同时传到各点静压传递原理或称帕斯卡原理。
把既无粘性又不可压缩的液体称为理想液体。
单位时间内通过某通流截面的液体的体积称为流量。
在流动的液体中,因某点处的压力低于空气分离压而产生气泡的现象,称为空穴现象。
在液压系统中,由于某种原因,液体压力在一瞬间会突然升高,产生很高的压力峰值,这种现象称为液压冲击。
液压动力元件是把原动机输入的机械能转变成液压能输出的装置。
液压传动的工作原理:以油液为工作介质,通过密封容积的变化来传递运动,通过油液内部压力传递动力。
液压传动所用的工作介质为液压油或其他合成液体。
气压传动所用的工作介质为空气。
在液压和气压传动中,工作压力取决于负载,而与流入的流体多少无关。
活塞的运动的速度取决于进入液压缸的流量,而与流体压力大小无关。
液压与气压传动系统主要由几个部分组成:1、能源装置(把机械能转换成流体的压力能的装置)2、执行装置(把流体的压力能转换成机械能的装置)3、控制调节装置4、辅助装置5、传动介质矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加。
液体在外力作用下流动时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦力,这种现象叫做液体的粘性。
可压缩性:液体受压力作用而发生体积减小的特性。
液体的粘度随液体的压力和温度而变。
(压力增大时,粘度增大。
温度升高,粘度下降。
)(液压油)工作介质的选用原则:1、液压系统的工作条件2、液压系统的工作环境3、综合经济分析液体静止:指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的或是匀速、匀加速运动都没有关系。
压力的表示方法有两种,一种是以绝对真空作为基准所表示的压力,称为绝对压力。
另一种是以大气压力作为基准所表示的压力,称为相对压力。
大多数测压仪表所测得的压力都是相对压力,故相对压力也称表压力。
真空度:液体中某点处的绝对压力小于大气压,这时在这个点上的绝对压力比大气压小的那部分数值在密封容器内,施加于静止液体上的压力将以等值同时传到各点静压传递原理或称帕斯卡原理。
把既无粘性又不可压缩的液体称为理想液体。
单位时间内通过某通流截面的液体的体积称为流量。
在流动的液体中,因某点处的压力低于空气分离压而产生气泡的现象,称为空穴现象。
在液压系统中,由于某种原因,液体压力在一瞬间会突然升高,产生很高的压力峰值,这种现象称为液压冲击。
液压动力元件是把原动机输入的机械能转变成液压能输出的装置。
液压件的应用及选型液压件是指利用液体(通常为油)作为工作介质,通过液体的流动和压力传递,实现力的传递和控制的元件。
液压件具有传输力矩大、调速平稳、运动可变、控制精度高等优点,广泛应用于工程机械、冶金设备、船舶、航空航天、军事装备、汽车制造等领域。
液压件的应用可以分为以下几个方面:1. 工程机械:工程机械是液压件最主要的应用领域之一。
例如,挖掘机、装载机、起重机等都采用了液压传动系统。
液压件在工程机械中起到了传动力矩、调速和运动控制的重要作用,提高了机械的工作效率和可靠性。
2. 冶金设备:在冶金设备中,液压件主要用于金属压力加工和轧制过程中的辊压系统。
由于液压传动系统能够提供大的力矩和较小的速度波动,能够满足金属材料变形的需求,因此在冶金设备中得到了广泛应用。
3. 船舶:在船舶中,液压件主要用于船舶的起重装卸系统、舵机系统、推进器调节系统等。
液压传动系统具有传输力矩大、调速平稳等特点,在船舶中能够实现高效的力的传递和控制。
4. 航空航天:在航空航天领域,液压件主要应用于飞机的起落架、刹车系统、翼展控制系统等关键部位。
液压件在航空航天领域要求具有高的可靠性和安全性,能够在恶劣环境和高速飞行状态下保持系统的性能稳定。
5. 军事装备:液压件在军事装备中有广泛的应用,例如坦克、装甲车、工程车等。
液压传动系统能够提供大的力矩和较小的速度波动,在军事装备中起到了至关重要的作用。
液压件的选型主要依据以下几个方面:1. 工作压力:根据系统设计的工作压力确定液压件的承载能力。
工作压力是衡量液压件使用性能的重要指标,应根据实际工作压力要求选择合适的液压件。
2. 流量和流速:根据液压系统的流量要求确定液压件的尺寸和流体通道的直径。
流量和流速是液压件设计和选型的重要指标,也是液压系统性能和稳定性的关键参数。
3. 工作温度:根据液压系统的工作环境和工作温度范围选择具有适应性的液压件。
液压件在高温和低温环境下的工作性能可能会有较大的变化,应根据实际工作条件选择合适的液压件。
液压油的选用原则与正确使用随着现代化程度的逐步提高和控制技术的发展,液压传动系统由于其自身的优越性在各类行业当中得到了广泛的应用。
液压系统的工作介质是液压油,它被称为液压系统的“血液”,其品质的好坏将直接影响到整个系统的正常运行。
日常对油液正确的使用和维护管理是保证液压油能够长期运行的关键措施。
1.液压油应具备主要性质适宜的粘度和良好的粘温特性,优良的润滑性能(抗磨性能),优良的热、氧化安定性、水解安定性、剪切安定性,良好的抗乳化性,良好的防锈、抗腐蚀性,良好的抗泡性和空气释放性,良好的密封材料适应性,良好的清洁性和过滤性。
2.液压油的分类矿物性液压油:按照ISO规定,采用40℃时油液的运动粘度(mm2/s)作为油液粘度牌号,共分为10、15、22、32、46、68、100、150等8个等级。
难燃液压液:乳化液、高水基液压液、海水或淡水。
根据我国矿物型和合成烃型液压油的产品标准GB*****.1-94,液压油又包括HL、HM、HG、HV、HS五个品种的技术规格。
介绍如下:L-HL液压油抗氧防锈型液压油;L-HM液压油抗磨液压油,在HL基础上改善了抗磨性;L-HG液压油液压导轨油,在HM基础上添加减摩剂改善粘滑性;L-HV液压油低温液压油,在HM基础上改善了低温特性;L-HS液压油低温液压油,比HV有更低的倾点。
高压抗磨液压油在HM液压油优等品基础上增强了抗磨性,通过了高压泵台架试验。
3.液压油的选用原则液压油的种类繁多,但每种液压油都有其适应的应用场合,液压油选用不当会影响到整个系统的正常运行或带来巨大的经济损失,因此正确选用液压油及其重要。
由于系统工况、环境条件及温度、液压泵及液压阀的类型等条件都影响到液压油的正确选用,选用液压油时应细致。
3.1 液压油粘度的选择选用液压油液首先考虑的是粘度。
不同种类的液压油有着不同的粘温特性。
粘温特性好的液压油,粘度随温度的变化较小。
粘温特性通常用粘度指数表示。
液压系统基础知识§1 工作介质——液压油液压油是液压传动系统中的传动介质,而且还对液压装置的机构、零件起这润滑、冷却和防锈作用。
液压传动系统的压力、温度和流速在很大的范围内变化,因此液压油的质量优劣直接影响液压系统的工作性能。
故此,合理的选用液压油也是很重要的。
一、工作介质的性质1、密度ρρ = m/V [kg/ m3]一般矿物油的密度为850~950kg/m32、重度γγ= G/V [N/ m3]一般矿物油的重度为8400~9500N/m3因G = mg 所以γ= G/V=ρg3、液体的可压缩性当液体受压力作用二体积减小的特性称为液体的可压缩性。
体积压缩系数β= - ▽V/▽pV0▽体积弹性模量K = 1 /β4、流体的粘性液体在外力作用下流动时,由于液体分子间的内聚力而产生一种阻碍液体分子之间进行相对运动的内摩擦力,液体的这种产生内摩擦力的性质称为液体的粘性。
由于液体具有粘性,当流体发生剪切变形时,流体内就产生阻滞变形的内摩擦力,由此可见,粘性表征了流体抵抗剪切变形的能力。
粘性所起的作用为阻滞流体内部的相互滑动,在任何情况下它都只能延缓滑动的过程而不能消除这种滑动。
粘性的大小可用粘度来衡量,粘度是选择液压用流体的主要指标,是影响流动流体的重要物理性质。
二、对工作介质的要求液压油是液压传动系统的重要组成部分,是用来传递能量的工作介质。
除了传递能量外,它还起着润滑运动部件和保护金属不被锈蚀的作用。
液压油的质量及其各种性能将直接影响液压系统的工作。
从液压系统使用油液的要求来看,有下面几点:1.适宜的粘度和良好的粘温性能。
2.应具有良好的润滑性能。
为了改善液压油的润滑性能,可加入添加剂以增加其润滑性能。
3.良好的化学稳定性,即对热、氧化、水解、相容都具有良好的稳定性。
4.对液压装置及相对运动的元件具有良好的润滑性5.对金属材料具有防锈性和防腐性6.抗泡沫性好,抗乳化性好7.油液纯净,含杂质量少8.流动点和凝固点低,闪点(明火能使油面上油蒸气内燃,但油本身不燃烧的温度)和燃点高三、工作介质的分类及选用1、分类普通液压油专用液压油1)、石油基液压油抗磨液压油高粘度指数液压油合成液压油——磷酸酯液压油2)、难燃液压油水——乙二醇液压油含水液压油油包税乳化液乳化液水包油乳化油3)乳化液乳化液属抗燃液压油,它由水、基础油和各种添加剂组成。
液压介质
液压介质的分类:
液压油类产品分组:
液压传动系统所用工作介质,根据其使用特性和化学组成的不同分成若干组,其组别名称和组别代号见下表:
液压油类产品的代号
液压介质分类:
液压介质的ISO分类法:
国际标准化组织(ISO)将液压介质分为矿油型液压油和抗燃型液压油两大类。
各类液压介质的组别代号以及和我国组别代号对照见下表:
液压油性质: 液压油密度:
液压油的密度与温度的关系为:
式中:
、
o--温度为t 和to 时的液体密度。
当to=20o
C 时,ß和
o 的关
系见下表: o kg/m
液压油的粘度:
液压油的粘度常用的油动力粘度µ、运动粘度v 和恩氏粘度ºE。
恩氏粘度ºE 与运动粘度v 之间的换算为:
当ºE>3.2时
当1.35<=ºE<=3.2时
恩氏粘度ºE 与运动粘度v 之间的换算可在此查出 粘度与温度的关系:
对于液压系统常用的矿油型液压油,当40o C 的运动粘度小于135mm 2
/s ,温度在30-150o
C 范围内,可用下列公式计算不同温度时的液压油的运动粘度:
式中:v 40--温度为40o
C 时液压油的运动粘度
n--指数,见下表:。
1液压与气压传动的工作介质液压与气压传动是以流体(液压液或压缩空气)作为工作介质对能量进行传递和控制的一种传动形式。
工作介质在传动及控制中起传递能量和信号的作用。
流体传动及控制(包括液压与气动),它在工作、性能特点上和机械、电气传动之间的差异主要取决于载体的不同,前者采用工作介质。
液压与气压传动系统,特别是液压传动系统能否可靠、有效地工作,在很大程度上取决于系统中所使用的工作介质。
因此,掌握液压与气动技术之前,必须先对其工作介质有一清晰的了解。
1.1 液压传动的工作介质1.1.1 液压传动工作介质的基本要求和种类在液压系统中,工作介质传递动力和信号。
同时,它还起到润滑、冷却和防锈的作用。
液压系统能否可靠、有效地工作,在很大程度上取决于系统中所用的工作介质。
工作介质应当具备的性质如下:①可压缩性可压缩性尽可能小,响应性好。
②粘性温度及压力对粘度影响小,具有适当的粘度,粘温特性好。
③润滑性能对液压元件滑动部位充分润滑。
④安定性不因热、氧化或水解而变质,剪切稳定性好,使用寿命长。
⑤防锈和抗腐蚀性对铁及非铁金属的锈蚀性小。
⑥抗泡沫性介质中的气泡容易逸出并消除。
⑦抗乳化性除含水液压液外的油液,油水分离要容易。
⑧阻燃性燃点高,挥发性小,最好具有阻燃性。
⑨洁净性质地要纯净、尽可能不含污染物,当污染物从外部侵入时能迅速分离。
⑩相容性对金属、密封件、橡胶软管、涂料等有良好的相容性。
⑪其它无毒性和臭味;比热容和热导率要大;体胀系数要小等。
能够同时满足上述各项要求的理想的工作介质是不存在的。
液压系统中使用的工作介质按国际标准组织(ISO)的分类如表1.1所示。
目前大多数液压设备采用的是石油级液压油液。
矿物油型液压油是以机械油为基料,为了改善液压油液的性能,往往在油液中加入各种各样的添加剂。
添加剂有两类:一类是用以改善油液物理性能的,如增粘剂、抗泡剂、抗磨剂等;另一类是用以改善油液化学性能的,如抗氧化剂、防腐剂、防锈剂等。
液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。
首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。
二.液压系统的组成液压传动系统通常由以下五部分组成。
1.动力装置部分。
其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。
简单地说,就是向系统提供压力油的装置。
如各类液压泵。
2.控制调节装置部分。
包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。
3.执行机构部分。
其作用是将液体的压力能转化为机械能以带动工作部件运动。
包括液压缸和液压马达。
4.自动控制部分。
主要是指电气控制装置。
5.辅助装置部分。
除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。
它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。
三.液压缸液压缸是把液压能转换为机械能的执行元件。
液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。
1.液压缸爬行故障分析及处理(1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。
(2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。
(3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。
(4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。
(5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。
(6)导轨或滑块夹得太紧或与液压缸不平行,处理方法:调整导轨或滑块的压紧(条)的松紧度,既保证运动部件的精度,又保证滑动阻力要小;若调整无效,应检查缸与导轨的平行度,并修刮接触面加以校正。