2017-2018年广东省广州市荔湾区七年级(上)期末数学试卷和参考答案
- 格式:pdf
- 大小:471.12 KB
- 文档页数:13
2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.)1.2-等于( ) A .-2 B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y 4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70°B .90°C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°A B C D A B C第8题图 北O A B第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( )A .(1+50%)x×80%=x -28B .(1+50%)x×80%=x +28C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A.32428-=x xB .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500000用科学记数法表示应为_________________平方千米.18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.6 2 22 4 2 0 4 8 8 4 44 6 m10 …… 共43元 共94元三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ;(3)写出第五次移动后这个点在数轴上表示的数为 ;(4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x ο…3分 解得:x =80……5分 答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分 24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分(2)第二次移动后这个点在数轴上表示的数是4; …………2分(3)第五次移动后这个点在数轴上表示的数是7; ……………3分(4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分(5)54. ………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm .……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) .…8分所以王老师肯定搞错了.…9分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
广州市荔湾广雅人教版七年级上册数学期末试卷及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b - B .9b 9a -C .9aD .9a -6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个7.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×28.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山9.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元10.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个11.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠112.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.把5,5,35按从小到大的顺序排列为______.15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.16.单项式22ab -的系数是________.179________18.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 19.写出一个比4大的无理数:____________.20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________21.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、解答题25.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场? 26.数学问题:计算231111n m m mm++++(其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算2311112222n++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+212; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+212+312+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12 +212+312+…+12n =1﹣12n .探究二:计算13+213+313+…+13n . 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23+223; 第3次分割,把上次分割图中空白部分的面积继续三等分,…; …第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为23+223+323+…+23n ,最后空白部分的面积是13n . 根据第n 次分割图可得等式:23 +223+323+…+23n =1﹣13n , 两边同除以2,得13+213+313+…+13n =12﹣123n ⨯.探究三:计算14+214+314+…+14n.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m+21m+31m+…+1nm.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,1m+21m+31m+…+1nm=________.拓广应用:计算515-+22515-+33515-+…+515nn-.27.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?28.计算:(1)(﹣0.5)+(﹣32)﹣(+1)(2)2+(﹣3)2×(﹣1 12)(3)3825-+|﹣2|﹣(﹣1)201829.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.30.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?四、压轴题31.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.33.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得:(1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】试题分析:384 000=3.84×105. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.解析:B 【解析】 【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.5.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.6.C解析:C 【解析】 【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解. 【详解】∵OA ⊥OC ,OB ⊥OD , ∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°, ∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确; ∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.7.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.8.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.10.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.11.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可.15.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.16.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 解析:12- 【解析】【分析】直接利用单项式的系数的概念分析得出即可.解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.17.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.18.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 19.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.20.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭ba b a a b a b a b a b=()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.22.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、解答题25.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【解析】【分析】(1)设这个球队胜x 场,则平(8﹣1﹣x )场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x 场,则平(8﹣1﹣x )场,依题意可得3x+(8﹣1﹣x )=17,解得x =5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场. 【点睛】 本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键. 26.【答题空1】2333331144444n n ++++=- 【答题空2】111(1)nm m m ---⨯ 【解析】【分析】探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m-1)即可得解; 拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.【详解】探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为34; 第2次分割,把上次分割图中空白部分的面积继续四等分, 阴影部分的面积之和为23344+; 第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:2333334444n ++++, 最后的空白部分的面积是14n, 根据第n 次分割图可得等式:2333334444n ++++=1﹣14n ,两边同除以3,得2311114444n ++++=11334n-⨯; 解决问题:231111n m m m m m m m m ----++++=1﹣1n m , 231111n m m m m ++++=()1111n m m m ---⨯; 故答案为2333334444n ++++=1﹣14n ,()1111n m m m ---⨯;拓广应用:2323515151515555n n ----++++, =1﹣15+1﹣215+1﹣315+…+1﹣15n , =n ﹣(15+215+315+…+15n ), =n ﹣(14﹣145n ⨯), =n ﹣14+145n ⨯. 【点睛】本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.27.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.【详解】解:(1)设所求数为x ,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.28.(1)﹣3;(2)54;(3)﹣6.【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣1 12)=2﹣3 4=54;(3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.29.(1)14个;(2)见解析;(3)33cm2【解析】【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.30.(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【解析】【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键四、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1) a =-24,b =-10,c =10;(2) 点P 的对应的数是-443或4;(3) 当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8,理由见解析【解析】【分析】 (1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P 的对应的数;(3)分类讨论:当P 点在Q 点的右侧,且Q 点还没追上P 点时;当P 在Q 点左侧时,且Q 点追上P 点后;当Q 点到达C 点后,当P 点在Q 点左侧时;当Q 点到达C 点后,当P 点在Q 点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a +24|+|b +10|+(c -10)2=0,∴a +24=0,b +10=0,c -10=0,解得:a =-24,b =-10,c =10;(2)-10-(-24)=14,①点P 在AB 之间,AP =14×221+=283, -24+283=-443, 点P 的对应的数是-443; ②点P 在AB 的延长线上,AP =14×2=28,-24+28=4,点P 的对应的数是4;(3)∵AB =14,BC =20,AC =34,。
广东省广州市荔湾区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)数轴上表示﹣2和3的两点之间的距离是()A.1B.2C.3D.52.(2分)四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是()A.①②B.①③C.①④D.①③④3.(2分)26表示()A.2乘以6B.2个6相乘C.6个2相加D.6个2相乘4.(2分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=25.(2分)若3x n+5y与﹣x3y是同类项,则n=()A.2B.﹣5C.﹣2D.56.(2分)下列方程的变形中正确的是()A.由x+5=6x﹣7得x﹣6x=7﹣5B.由﹣2(x﹣1)=3得﹣2x﹣2=3C.由得D.由得2x=﹣127.(2分)如图所示,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是()A.CD=AD﹣BC B.CD=C.CD=AB﹣BD D.CD=AC﹣BD8.(2分)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°9.(2分)一个长方体从正面,上面看到的图形如图所示,则其从左面看得到的图形面积为()A.3B.4C.12D.1610.(2分)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)多项式的最高次项的系数是.12.(3分)若|a﹣2|+|b+3|=0,那么a+b=.13.(3分)若∠1=40°50′,则∠1的余角为.14.(3分)如图,甲从A点出发沿北偏东70°方向走50m到达点B,乙从A点出发沿南偏西15°方向走80m到达点C,则∠BAC=.15.(3分)已知12=1,112=121,1112=12321,…,则依据上述规律,的计算结果中,从左向右数第12个数字是.16.(3分)4个数a,b,c,d排列成,我们称之为二阶行列式,规定它的运算法法则为.若,则x=.三、解答题(本大题共7小题,共62分)17.(8分)计算:(1)﹣2﹣2008﹣(﹣10)(2)(﹣1)2×5+(﹣2)3÷4.18.(10分)计算:(1)|﹣2|÷×3+(﹣1)3(2)﹣23÷4﹣[24÷(﹣2)3﹣(﹣)2×9].19.(10分)计算:(1)﹣x﹣(2x﹣2)+4x﹣3(2)a﹣2(a﹣b2)+(﹣a+b2)20.(10分)解下列方程:(1)5x=2(x+3)(2)﹣x=1﹣.21.(6分)如图,AD=DB,E是BC的中点,BE=AB=2cm,求线段AC 和DE的长.22.(8分)已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB,OC重合时,求∠EOF的度数;(2)如图2,当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.23.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.广东省广州市荔湾区七年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题2分,共20分)1.D;2.C;3.D;4.A;5.C;6.D;7.B;8.C;9.A;10.A;二、填空题(本大题共6小题,每小题3分,共18分)11.﹣;12.﹣1;13.49°10′;14.125°;15.1;16.﹣9;三、解答题(本大题共7小题,共62分)17.;18.;19.;20.;21.;22.;23.;。
广州市荔湾广雅人教版七年级上册数学期末试卷及答案一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟3.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π4.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣37.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠28.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)15.化简:2x+1﹣(x+1)=_____.16.A 学校有m 个学生,其中女生占45%,则男生人数为________. 17.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.18.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.19.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.20.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.21.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .22.已知7635a ∠=︒',则a ∠的补角为______°______′.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.27.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2017-2018 学年广东省广州市荔湾区七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题 2 分,共 20 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分) 2017 的相反数是()A.﹣ 2017 B.2017 C.﹣D.2.(2分)﹣ 6 的绝对值是()A.﹣ 6 B.6 C.D.﹣3.(2分)在数1,0,﹣ 1,﹣ 2 中,最大的数是()A.﹣ 2 B.﹣ 1 C.0 D.14.(2 分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000 套,把3600000 用科学记数法表示应是()A.0.36× 107 B.3.6×106 C.3.6×107 D.36×105a,﹣ b,0 按照从5.( 2 分)实数 a,b 在数轴上的对应点的位置如图所示,把﹣小到大的顺序排列,正确的是()A.﹣ a<0<﹣ b B.0<﹣ a<﹣ b C.﹣ b< 0<﹣ a D.0<﹣ b<﹣ a 6.(2分)已知 a﹣b=1,则代数式 2a﹣2b﹣ 3 的值是()A.1 B.﹣ 1 C.5 D.﹣ 57.(2分)若 x=1 是关于 x 的方程 1﹣ 2( x﹣ a) =2 的解,则 a 的值为()A.﹣ 1 B.1 C.﹣D.8.(2分)某车间有26 名工人,每人每天可以生产800 个螺钉或 1000 个螺母,1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣ x) =800x B.1000(13﹣x)=800xC.1000(26﹣ x)=2×800x D.1000(26﹣x)=800x9.(2 分)一个立方体的表面展开图如图所示,将其折叠成立方体后,”你”字对面的字是()A.考B.试C.顺D.利10.( 2 分)如图,∠ AOD=90°,∠ COE=90°,图中互为余角的角有()对.A.2 B.3 C.4 D.5二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3分)单项式﹣ 3r2系数是,次数是.12.( 3分)计算= .13.( 3分)若 2x4y m与﹣ 3x n y3是同类项,则 m+n= .14.( 3分)如图所示,射线 OP 表示的方向是.15.( 3 分)如图是一组有规律的图案,第 1 个图案由 4 个基础图形组成,第 2 个图案由 7 个基础图形组成,⋯,第 n(n 是正整数)个图案中由个基础图形组成.16.( 3 分)已知一条射线OA 由点 O 引射线 OB, OC,∠ AOB=72°,∠ BOC=36°,则∠ AOC等于.三.解答题(本大题共7 小题,共 62 分,解答应写出文字说明,证明过程或演算步骤)17.( 8 分)计算:(1)﹣ 20+14﹣ 18﹣13(2) 3×(﹣)÷(﹣)18.( 10 分)计算:(1)3﹣6×(2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2] .19.( 10 分)( 1)化简: 2xy2﹣3xy2+6( 2)先化简再求值:(5x+y)﹣ 2(3x﹣4y),其中 x=1,y=3.20.( 10 分)解下列方程:(1) x﹣3=2﹣ 5x(2).21.( 6 分)如图,延长线段 AB 到 C,使 BC=3AB,点 D 是线段 BC的中点,如果CD=3cm,那么线段 AC 的长度是多少?22.( 8 分)列方程解应用题:一辆火车要以每秒 20 米的速度通过第一、第二两座铁桥(火车的长度忽略不计)过第二座铁桥比过第一座铁桥多 50 秒,已知铁桥的长度比第一座铁桥的长度的两倍短 500 米,求各铁桥的长.23.( 10 分)已知,∠ AOD=160°,OB、OM、ON 是∠ AOD 内的射线( 1)如图 1,若 OM 平分∠ AOB,ON 平分∠ BOD,则∠ MON= °( 2)如图 2, OC是∠ AOD 内的射线,若∠ BOC=20°,OM 平分∠ AOC,ON 平分∠BOD,当射线 OB 在∠ AOC内时,求∠ MON 的大小;(3)如图 2,在( 2)的条件下,当∠ AOB=2t°时,∠ AOM:∠ DON=2:3,求 t 的值.2017-2018 学年广东省广州市荔湾区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 2 分,共 20 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2 分) 2017 的相反数是()A.﹣ 2017 B.2017 C.﹣D.【解答】解:∵ 2017+(﹣ 2017)=0,∴2017 的相反数是(﹣ 2017),故选: A.【点评】本题考查了相反数之和为 0 的特性,熟练掌握相反数特性是解题的关键.2.(2 分)﹣ 6 的绝对值是()A.﹣ 6 B.6 C.D.﹣【解答】解:﹣ 6 的绝对值是 6.故选: B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.3.(2 分)在数1,0,﹣ 1,﹣ 2 中,最大的数是()A.﹣ 2 B.﹣ 1 C.0 D.1【解答】解:﹣ 2<﹣ 1< 0< 1,所以最大的数是1,故选: D.【点评】本题考查了有理数大小比较的方法.( 1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于 0,负数小于 0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.4.(2 分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000 套,把3600000 用科学记数法表示应是()A.0.36× 107 B.3.6×106 C.3.6×107 D.36×105【解答】解: 3600000=3.6×106, ?故选: B.n 形式,其中 1≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.( 2 分)实数 a,b 在数轴上的对应点的位置如图所示,把﹣a,﹣ b,0 按照从小到大的顺序排列,正确的是()A.﹣ a<0<﹣ b B.0<﹣ a<﹣ b C.﹣ b< 0<﹣ a D.0<﹣ b<﹣ a 【解答】解:∵从数轴可知: a<0<b,∴﹣ a>﹣ b,﹣ b<0,﹣ a> 0,∴﹣ b<0<﹣ a,故选: C.b< 0 【点评】本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣<﹣ a,是解此题的关键.6.(2 分)已知 a﹣b=1,则代数式 2a﹣2b﹣ 3 的值是()A.1 B.﹣1 C.5 D.﹣ 5【解答】解:原式 =2(a﹣b)﹣ 3,当a﹣b=1 时,原式 =2﹣3=﹣ 1.故选: B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.(2 分)若x=1 是关于x 的方程1﹣ 2( x﹣ a) =2 的解,a 的值为()则A.﹣ 1 B.1 C.﹣D.【解答】解:把 x=1 代入 1﹣2(x﹣ a) =2 得:1﹣2(1﹣a)=2,解得: a= .故选: D.【点评】此题考查的是一元一次方程的解,关键是先把x=1 代入方程,然后解关于 a 的方程求出 a.8.(2 分)某车间有 26 名工人,每人每天可以生产800 个螺钉或 1000 个螺母,1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣ x) =800x B.1000(13﹣x)=800xC.1000(26﹣ x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排 x 名工人生产螺钉,则( 26﹣x)人生产螺母,由题意得1000(26﹣x) =2×800x,故 C 答案正确,故选: C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.9.(2 分)一个立方体的表面展开图如图所示,将其折叠成立方体后,”你”字对面的字是()A.考B.试C.顺D.利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故选: C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.( 2 分)如图,∠ AOD=90°,∠ COE=90°,图中互为余角的角有()对.A.2 B.3 C.4 D.5【解答】解:如图,∵∠ AOD=90°,∠ COE=90°,∴∠ 1+∠ 2=90°,∠ 2+∠3=90°,∠3+∠4=90°,∠ 1+∠ 4=90°,互为余角的角有 4 对.故选: C.【点评】本题考查了余角和补角,熟记概念并准确识图是解题的关键.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3 分)单项式﹣ 3r2 系数是﹣ 3 ,次数是 2 .【解答】解:该单项式的系数为:﹣3,次数为: 2故答案为:﹣ 3,2本题属【点评】本题考查单项式的概念,解题的关键是熟练运用单项式的概念,于基础题型.12.(3 分)计算= ﹣5 .【解答】解:=×(﹣ 12)﹣×(﹣ 12) + ×(﹣ 12)=﹣3+6﹣8=﹣5.故答案为:﹣ 5.【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.( 2)解答此题的关键还要注意乘法分配律的应用..(分)若 4 m 与﹣3x n 3 是同类项,则 m+n= 7 .13 3 2x y y【解答】解:由题意,得n=4, m=3,m+n=3+4=7,故答案是: 7.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.( 3 分)如图所示,射线OP 表示的方向是南偏西 65° .【解答】解;如图,由余角的性质,得∠POB=90°﹣∠ POA=65°,射线 OP 表示的方向是南偏西65°,故答案为: 65°.【点评】本题考查了方向角,利用了余角的性质,方向角的表示方法.15.( 3 分)如图是一组有规律的图案,第 1 个图案由 4 个基础图形组成,第 2个图案由 7 个基础图形组成,⋯,第 n(n 是正整数)个图案中由( 3n+1)个基础图形组成.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;⋯∴第 n 个图案基础图形的个数就应该为:( 3n+1).故答案为:( 3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.( 3 分)已知一条射线OA 由点 O 引射线 OB, OC,∠ AOB=72°,∠ BOC=36°,则∠ AOC等于36°或 108° .【解答】解:由题意可得,分两种情况,第一种情况如下图一所示,∵∠ AOB=72°,∠ BOC=36°,∴∠ AOC=∠AOB﹣∠ BOC=72°﹣36°=36°;第二种情况如下图二所示,∵∠ AOB=72°,∠ BOC=36°,∴∠ AOC=∠AOB+∠BOC=72°+36°=108°;故答案为: 36°或 108°.【点评】本题考查角的计算,解题的关键是明确题意,利用分类讨论的数学思想解答问题.三.解答题(本大题共7 小题,共 62 分,解答应写出文字说明,证明过程或演算步骤)17.( 8 分)计算:(1)﹣ 20+14﹣ 18﹣13(2) 3×(﹣)÷(﹣)【解答】解:(1)﹣ 20+14﹣ 18﹣13=(﹣ 20)+14+(﹣ 18)+(﹣ 13)=﹣37;( 2) 3×(﹣)÷(﹣)=3×=【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.( 10 分)计算:(1)3﹣6×(2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2] .【解答】解:(1)3﹣ 6×=3﹣3+2=2;( 2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2]=﹣1﹣[ 3﹣9]=﹣1﹣×(﹣ 6)=﹣1+1=0.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.( 10 分)( 1)化简: 2xy2﹣3xy2+6(2)先化简再求值:(5x+y)﹣ 2(3x﹣4y),其中 x=1,y=3.【解答】解:(1)原式 =﹣xy2+6;(2)原式 =5x+y﹣ 6x+8y=﹣x+9y,当x=1、y=3 时,原式 =﹣1+27=26.【点评】本题主要考查整式的加减,解题的关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.20.( 10 分)解下列方程:(1) x﹣3=2﹣ 5x(2).【解答】解:(1)x﹣ 3=2﹣5x,移项合并得: 6x=5,(2).去分母得: 3(y﹣ 3)﹣ 6=2(2y+1),去括号得: 3y﹣9﹣6=4y+2移项合并得:﹣ y═17,解得: y=﹣ 17.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.( 6 分)如图,延长线段 AB 到 C,使 BC=3AB,点 D 是线段 BC的中点,如果CD=3cm,那么线段 AC 的长度是多少?【解答】解:因为 D 是线段 BC中点所以 BC=2CD=2×3=6,因为 BC=3AB所以 AB= BC= ×6=2,所以 AC=AB+BC=2+6=8.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.22.( 8 分)列方程解应用题:一辆火车要以每秒 20 米的速度通过第一、第二两座铁桥(火车的长度忽略不计)过第二座铁桥比过第一座铁桥多 50 秒,已知铁桥的长度比第一座铁桥的长度的两倍短 500 米,求各铁桥的长.【解答】解:设第一铁桥的长为x 米,那么第二铁桥的长为( 2x﹣500)米,火车车头在第一铁桥所需的时间为秒.火车车头在第二铁桥所需的时间为秒.依题意,可列出方程+50= ,解方程 x+1000=2x﹣ 500,∴2x﹣500=2× 1500﹣ 500=2500.答:第一铁桥长 1500 米,第二铁桥长 2500 米.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.( 10 分)已知,∠ AOD=160°,OB、OM、ON 是∠ AOD 内的射线( 1)如图 1,若 OM 平分∠ AOB,ON 平分∠ BOD,则∠ MON= 80 °(2)如图 2, OC是∠ AOD 内的射线,若∠ BOC=20°,OM 平分∠ AOC,ON 平分∠BOD,当射线 OB 在∠ AOC内时,求∠ MON 的大小;(3)如图 2,在( 2)的条件下,当∠ AOB=2t°时,∠ AOM:∠ DON=2:3,求 t 的值.【解答】解:(1)∵ OM 平分∠ AOB,ON 平分∠ BOD,∴∠ BOM= ∠ AOB,∠ BON= ∠BOD,∴∠ MON=∠ BOM+∠BON= (∠ AOB+∠BOD),∵∠ AOD=∠AOB+∠ BOD=160°,∴∠ MON= × 160°=80°;故答案为: 80;(2)设∠ AOB=x,则∠ BOD=160°﹣x,∵OM 平分∠ AOC,ON 平分∠ BOD,∴∠ COM= ∠ AOC= (x+20°),∠ BON= ∠ BOD= (160°﹣x),∴∠ MON=∠ COM+∠BON﹣∠ BOC= ( x+20°)+ (160°﹣x)﹣ 20°=70°;(3)由∠ AOB=2t°,∠ BOC=20°,则∠ AOC=2t°+20°,∠ BOD=160°﹣2t °,∴∠ AOM= ∠ AOC=t°+10°,∠ DON= ∠BOD=80°﹣t °,∵∠ AOM:∠ DON=2:3,∴= ,解得: t=26.【点评】本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.。
广东省广州市荔湾区 2017-2018 学年八年级上期末质量检测数学试题一、选择题(本大题共 10 小题,每小题 2 分,共 20 分)1.在①角、②等边三角形、③平行四边形、④梯形中是轴对称图形的是()A.①②B.③④C.②③D.②④【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.解:①角、②等边三角形、③平行四边形、④梯形中是轴对称图形的是①②,故选:A.【点评】此题主要考查了轴对称图形,关键是找到图形的对称轴.2.计算4x2•x3 的结果是()A.4x6 B.4x5 C.x6 D.x5【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解:4x2•x3=4x5.故选:B.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.若x,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是()A. B. C. D.【分析】根据分式的基本性质即可求出答案.解:A、原式=,与原来的分式的值不同,故本选项错误;B、原式=,与原来的分式的值不同,故本选项错误;C、原式=,与原来的分式的值不同,故本选项错误;D、原式==,与原来的分式的值相同,故本选项正确.故选:D.【点评】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.下列计算中,正确的是()A.2a3÷a3=6 B.(a﹣b)2=﹣a2﹣b2C.2a6÷a2=a3D.(﹣ab)2=a2b2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:∵2a3÷a3=2,故选项A 错误,∵(a﹣b)2=a2﹣2ab+b2,故选项B 错误,∵2a6÷a2=a4,故选项C 错误,∵(﹣ab)2=a2b2,故选项D 正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.5.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2 和 7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.解:由三角形三边关系定理得 7﹣2<x<7+2,即 5<x<9.因此,本题的第三边应满足 5<x<9,把各项代入不等式符合的即为答案. 4,5,9 都不符合不等式 5<x<9,只有 6 符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的 360°,从而可根据外角和等于内角和列方程求解.解:设所求n 边形边数为n,则 360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.【点评】本题主要考查了多边形的内角和与外角和、方程的思想,关键是记住内角和的公式与外角和的特征,比较简单.7.如图,点P是∠AOB 平分线I C 上一点,PD⊥OB,垂足为D,若P D=3,则点P到边O A 的距离是()A. B.2 C.3 D.4【分析】作PE⊥OA 于E,根据角平分线的性质解答.解:作PE⊥OA 于E,∵点P 是∠AOB 平分线OC 上一点,PD⊥OB,PE⊥OA,∴PE=PD=3,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D 均正确,而AB、CD 不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.9.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交A B 于E,垂足为D,如果E D=5,则E C 的长为()A.5 B.8 C.9 D.10【分析】先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.解:∵在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E,ED=5,∴BE=CE,∴∠B=∠DCE=30°,在 Rt△CDE 中,∵∠DCE=30°,ED=5,∴CE=2DE=10.故选:D.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图,AD 是△ABC 的中线,E,F 分别是AD 和AD 延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD 和△ACD 面积相等;②∠BAD =∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.解:∵AD 是△ABC 的中线,∴BD=CD,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF 和△CDE 中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点评】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.(3 分)计算:40+2﹣1= 1 .【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.解:∵40+2﹣1=1+ =1.故答案为:1.【点评】此题主要考查了零指数幂的性质以及负指数幂的性质,正确化简各数是解题关键.12.(3 分)要使分式有意义,则x的取值范围为x≠﹣3 .【分析】根据分式有意义,分母不等于 0 列不等式求解即可.解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.13.(3 分)若x2﹣2ax+16 是完全平方式,则a= ±4 .【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x 和4 这两个数的平方,那么中间一项为加上或减去x 和4 积的 2 倍.解:∵x2﹣2ax+16 是完全平方式,∴﹣2ax=±2×x×4∴a=±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的 2 倍,就构成了一个完全平方式.注意积的 2 倍的符号,避免漏解.14.(3 分)若一个等腰三角形的周长为26,一边长为6,则它的腰长为 10 .【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.解:①当6 为腰长时,则腰长为 6,底边=26﹣6﹣6=14,因为 14>6+6,所以不能构成三角形;②当 6 为底边时,则腰长=(26﹣6)÷2=10,因为 6﹣6<10<6+6,所以能构成三角形;故腰长为10.故答案为:10.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15.(3 分)如图,在△ABC 中,CD,BE 分别是AB,AC 边上的高,且CD,BE 相交于点P,若∠A=70°,则∠BPC=110 °.【分析】根据四边形的内角和等于 360°,求出∠DPE 的度数,再根据对顶角相等解答.解:∵CD、BE 分别是AB、AC 边上的高,∴∠DPE=360°﹣90°×2﹣70°=110°,∴∠BPC=∠DPE=110°.故答案为:110°.【点评】本题考查了多边形的内角和,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.16.(3 分)如图,在锐角三角形ABC 中,AC=6,△ABC 的面积为 15,∠BAC 的平分线交BC 于点D,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 5 .【分析】如图,作N 关于AD 的对称点N′,连接MN′,作BN″⊥AC 于N″ 交AD 于M′.因为BM+MN=BM+MN′≤BN″,所以当M 与M′,N 与N″重合时,BN″最小,求出BN″即可解决问题.解:如图,作N 关于AD 的对称点N′,连接MN′,作BN″⊥AC 于N″交AD 于M′.∵BM+MN=BM+MN′≤BN″,∴当M 与M′,N 与N″重合时,BN″最小,∵×AC×BN″=15,AC=6,∴BN″=5,∴BM+MN 的最小值为 5,故答案为:5.【点评】本题考查轴对称﹣最短问题、垂线段最短等知识,解题的关键是重合利用对称,垂线段最短解决最值问题,属于中考常考题型.三、解答题(本大题共 7 题,共 62 分,解答应写出文字说明.17.(8 分)计算:(1)(x+2)(2x﹣1)(2)(﹣2x3)2﹣3x2(x4﹣y2)【分析】(1)根据多项式的乘法解答即可;(2)根据整式的混合计算解答即可.解:(1)原式=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)原式=4x6﹣3x6+3x2y2=x6+3x2y2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序和法则解答.18.(8 分)分解因式:(1)2a2﹣8(2)(x﹣1)2﹣2(x﹣1)﹣3【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用十字相乘法分解即可.解:(1)原式=2(a2﹣4)=2(a+2)(a﹣2);(2)原式=(x﹣1﹣3)(x﹣1+1)=x(x﹣4).【点评】此题考查了因式分解﹣十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(8 分)计算:(1)+(2)•(1+ )【分析】(1)先通分,再根据同分母分式的加法法则计算可得;(2)先利用乘法分配律展开计算,再进一步计算可得.解:(1)原式=+=;(2)原式=+ •=+1=+=.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(8 分)如图,平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,3),B(3,3),C(4,﹣1).(1)画出△ABC 关于x 轴对称的△A1B1C1,写出点A1,B1 ,C1 的坐标;(2)求△A1B1C1 的面积.【分析】(1)分别作出点A、B、C 关于x 轴的对称点,再顺次连接可得;(2)结合图形,利用三角形的面积公式计算可得.解:(1)如图所示,△A1B1C1即为所求,其中A1的坐标为(1,﹣3),B1的坐标为(3,﹣3),C1的坐标为(4,1);(2)△A1B1C1 的面积为×2×4=4.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及三角形的面积公式.21.(10 分)如图,AE⊥DB,CF⊥DB,垂足分别是点E,F,DE=BF,AE=CF,求证:∠A=∠C.【分析】欲证明∠A=∠C,只要证明△AEB≌△CFD 即可.证明∵AE⊥BD,CF⊥BD,∴∠AEB=∠DFC=90°,∵DE=BF,∴DF=BE,在△AEB 和△CFD 中,,△AEB≌△CFD(SAS),∴∠A=∠C.【点评】本题考查全等三角形的判定和性质、平行线的性质和判定等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.22.(10 分)某美术社团为练习素描需要购买素描本,第一次用 600 元购买了若干本素描本,用完后再花了 1200 元继续在同一家商店购买同样分素描本,但这次的单价是第一次单价的 1.2 倍,购买的数量比第一次多了 40 本,求第一次的素描本单价是多少元?【分析】设第一次的素描本单价是x 元,根据结果比上次多买了 40 本列出方程解答即可解:设第一次的素描本单价是x 元,依题意得:﹣=40解得x=10经检验x=10 是原方程的解答:第一次的素描本单价是 10 元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.23.(10 分)如图,在等腰 Rt△ABC 中,角ACB=90°,P 是线段BC 上一动点(与点B,C 不重合)连接AP,延长BC 至点Q,使CQ=CP,过点Q 作QH ⊥AP 于点H,交AB 于点M.(1)∠APC=α,求∠AMQ 的大小(用含α的式子表示);(2)在(1)的条件下,过点M 作ME⊥QB 于点E,试证明PC 与ME 之间的数量关系,并证明.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)由AAS 证明△APC≌△QME,得出PC=ME,解:(1)∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB 是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α;(2)结论:PC=ME.理由:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC 和△QME 中,,∴△APC≌△QME(AAS),∴PC=ME,【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解决问题的关键.。
七年级上学期数学期末试卷一、单选题(共10题;共20分)1.单项式的系数和次数分别是()A. -9,6B. 9,6C. -1,6D. -9,32.下列计算正确的是()A. 3a+2a=5a2B. 3a-a=3C. 2a3+3a2=5a5D. -a2b+2a2b=a2b3.在中,负数的个数是()A. l个B. 2个C. 3个D. 4个4.下列判断正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5.解方程,去分母得()A. B.C. D.6.如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC的长为()A. 2cmB. 4cmC. 8cmD. 13cm7.如图,OC是的平分线,,则的度数为()A. B. C. D.8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.9.某商场周年庆期间,对销售的某种商品按成本价提高后标价,又以9折(即按标价的)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x元,根据题意,可得到的方程是()A. B.C. D.10.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到,第2次移动到,第3次移动到,……,第n次移动到,则△O 的面积是()A. 504B.C.D. 505二、填空题(共6题;共6分)11.亚洲陆地面积约为万平方千米,将用科学记数法表示为________.12.已知3x-8与2互为相反数,则x=________.13.若,则=________.14.如图,射线OA的方向是北偏西65 ,射线OB的方向是南偏东20°,则的度数为________.15.若,则的值为________.16.延长线段AB到点C,使BC= AB,反向延长AC到点D,使AD= ,若AB=8 cm,则CD=________cm.三、解答题(共7题;共60分)17.计算:(1)-2.4+(-3.7)-4.6+5.7(2)-318.计算:(1)-4-12(2)19.解方程:(1)5x+2=3(x+2)(2)20.已知A= ,B=(1)化简A-2B;(2)若,求A-2B的值.21.如图,A,O,B三点在一条直线上,=3 ,OE平分,=80 ,求的度数.22.列方程解应用题:某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?一共可以配成多少套?23.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD 的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm, 4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM-BM=OM,求的值.答案解析部分一、单选题1.【解析】【解答】解:单项式的系数为-9,次数为6.故答案为:A.【分析】直接利用单项式的系数与次数的定义分析得出答案.2.【解析】【解答】A、3a+2a=5a≠5a2,故A不符合题意;B、3a-a=2a≠3,故B不符合题意;C、2a3与3a2不能合并,故C不符合题意;D、-a2b+2a2b=a2b,故D符合题意;故答案为:D.【分析】根据同类项合并的法则进行计算即可得到答案。
广州市荔湾广雅人教版七年级上册数学期末试卷及答案一、选择题1.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,32.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒3.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④4.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°5.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣37.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 8.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)9.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<010.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱 B .赚了10钱C .赚了20元钱D .亏了20元钱12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.已知x=5是方程ax ﹣8=20+a 的解,则a= ________ 15.若3750'A ∠=︒,则A ∠的补角的度数为__________. 16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.15030'的补角是______.18.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.4是_____的算术平方根.22.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.23.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.24.用度、分、秒表示24.29°=_____.三、解答题25.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90︒).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60︒,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.26.计算(132527(2)333527.已知方程313752xx-=+与关于x 的方程3a-8=2(x+a)-a的解相同.(1)求a 的值;(2)若a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c)2018的值.28.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111 234x yx y-+⎧+=⎪⎨⎪+=⎩29.已知:∠AOD=150°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON= °;(2)OC也是∠AOD内的射线,如图2,若∠BOC=m°,OM平分∠AOC,ON平分∠BOD,求∠MON的大小(用含m的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC在∠AOD内部绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.30. 计算: (1)(﹣16+34﹣512)×36 (2)(﹣3)2124÷×(﹣23)+4+22×8()3-四、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.33.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】π的系数和次数分别是π,3;解:单项式2r h故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.2.D解析:D【解析】【分析】⊥,利用垂直定义以及对顶角相等进行分析计算得出选由题意分两种情况过点O作OE AB项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.3.A解析:A 【解析】 【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案. 【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为2554045n n ++=,③正确,②错误; 所以正确的是①③. 故选A . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.4.D解析:D 【解析】 【分析】根据题意画出图形,再分别计算即可. 【详解】根据题意画图如下; (1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.5.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB , 故②正确.③在△ADC 中,∠ADC+∠CAD+∠ACD=180°, ∵CD 平分△ABC 的外角∠ACF , ∴∠ACD=∠DCF , ∵AD ∥BC ,∴∠ADC=∠DCF ,∠ADB=∠DBC ,∠CAD=∠ACB ∴∠ACD=∠ADC ,∠CAD=∠ACB=∠ABC=2∠ABD ,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°, ∴∠ADC+∠ABD=90° ∴∠ADC=90°−∠ABD , 故③正确;④∵∠BAC+∠ABC=∠ACF , ∴12∠BAC+12∠ABC=12∠ACF , ∵∠BDC+∠DBC=12∠ACF , ∴12∠BAC+12∠ABC=∠BDC+∠DBC , ∵∠DBC=12∠ABC , ∴12∠BAC=∠BDC ,即∠BDC=12∠BAC. 故④错误. 故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.6.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.7.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.8.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.9.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.10.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.11.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.15.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.18.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、解答题25.(1)ON平分∠AOC (2)∠BOM=∠NOC+30°【解析】试题分析:(1)由角平分线的定义可知∠BOM=∠MOC,由∠NOM=90°,可知∠BOM+∠AON=90°,∠MOC+∠NOC=90°,根据等角的余角相等可知∠AON=∠NOC;(2)根据题意可知∠NOC+∠NOB=60°,∠BOM+∠NOB=90°,由∠BOM=90°﹣∠NOB、∠BON=60°﹣∠NOC可得到∠BOM=∠NOC+30°.试题解析:解:(1)ON 平分∠AOC .理由如下:∵OM 平分∠BOC ,∴∠BOM =∠MOC .∵∠MON =90°,∴∠BOM +∠AON =90°.又∵∠MOC +∠NOC =90°∴∠AON =∠NOC ,即ON 平分∠AOC .(2)∠BOM =∠NOC +30°.理由如下:∵∠BOC =60°,即:∠NOC +∠NOB =60°,又因为∠BOM +∠NOB =90°,所以:∠BOM =90°﹣∠NOB =90°﹣(60°﹣∠NOC )=∠NOC +30°,∴∠BOM 与∠NOC 之间存在的数量关系是:∠BOM =∠NOC +30°.点睛:本题主要考查的是角的计算、角平分线的定义,根据等角的余角相等证得∠AON =∠NOC 是解题的关键.26.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.27.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±= 【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.28.(1)x=12 ;(2)15x y =-⎧⎨=⎩. 【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x ﹣1)=2(1﹣x )﹣1,6x ﹣3=2﹣2x ﹣1, x=12, (2)111234x y x y -+⎧+=⎪⎨⎪+=⎩, 整理得:3x+2y=72x+2y=8①②⎧⎨⎩, ②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15x y =-⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.29.(1)75;(2)(75-12m)°;(3)t 为19秒. 【解析】【分析】(1)根据角平分线的定义,以及角度和的关系,可得∠MON=12∠AOD 即可得出; (2)根据角平分线的定义,得出∠MOC=12∠AOC ,∠BON=12∠BOD ,利用角度和与差的关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;(3)由题意知,∠AOM=12(10+2t+20°),∠DON=12(150﹣10﹣2t)°,根据3∠AOM=2∠DON,列出方程求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×150°,=75°,故答案为:75;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×(150°+m°)﹣m°=(75-12 m)°,故答案为:(75-12 m)°;(3)∵∠AOM=12∠AOC=12(10+2t+20°)=(15+t)°,∠DON=12∠BOD=12(150﹣10﹣2t)°=(70-t)°,又∵3∠AOM=2∠DON,∴3(15+t)=2(70﹣t),得t=19.答:t为19秒,故答案为:19秒.【点睛】本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.30.(1)6;(2)﹣283.【解析】【分析】第一题利用乘法分配律进行计算第二题按照混合运算的法则进行逐步计算【详解】(1)原式=135363636627156 6412-⨯+⨯-⨯=-+-=(2)原式=42883228 9444933333⎛⎫⎛⎫⨯⨯-++⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭【点睛】关于有理数的运算,运用运算律可以简便运算,对于混合运算,要严格按照运算的先后顺序进行运算.四、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25. 分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 33.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++(3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.。