1-1 映射与函数
- 格式:ppt
- 大小:2.05 MB
- 文档页数:39
高一(上)数学单元同步练习及期末试题(三)(第三单元 映射与函数)[重点难点]1. 了解映射的概念及表示方法,能识别集合A 与B 之间的一种对应是不是从集合A 到集合B 的映射;了解一一映射的概念。
2. 理解函数的概念,明确确定函数的三个要素;掌握函数的三种表示方法;理解函数的定义域、函数值和值域的意义,会求某些函数的定义域、函数值和简单函数的值域。
3. 理解函数的单调性和奇偶性的概念;掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程。
4. 了解反函数的概念及互为反函数的函数图像间的关系;会求一些简单函数的反函数。
一、选择题1.已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( )(A )f ∶x →y=21x (B )f ∶x →y=x 31 (C )f ∶x →y=x 32(D )f ∶x →y=x2.下列命题中正确的是( )(A)若M={整数},N={正奇数},则一定不能建立一个从集合M 到集合N 的映射(B)若集合A 是无限集,集合B 是有限集,则一定不能建立一个从集合A 到集合B 的映射 (C)若集合A={a},B={1,2},则从集合A 到集合B 只能建立一个映射 (D)若集合A={1,2},B={a},则从集合A 到集合B 只能建立一个映射3.集合A={x R x x ∈≠,1}⋃{x R x x ∈≠,2},集合B=(-∞,-1)⋃(1,2)⋃(2,+∞),则A 、B 之间的关系是( ) (A )A=B (B )A ⊆B (C )A ⊇B (D )A ⊂B 4.下列函数中图像完全相同的是( ) (A )y=x 与y=2x (B )y=xx 与0x y = (C )y=(x )2与y=x (D )y=)1)(1(11-+=-⋅+x x y x x 与 5.f(x)是一次函数且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,则f(x)等于( )(A )9194+x (B )36x -9 (C )9194-x (D )9-36x 6.若f(x)=21x x+,则下列等式成立的是( )(A )f()()1x f x= (B )f(x 1)=-f(x)(C )f(x 1)=)(1x f (D ))(1)1(x f x f -= 7.函数y=2122--+-+x x xx的定义域是( ) (A )-21-≤≤x (B )-21≤≤x (C )x>2 (D )x 1≠ 8.函数y=122+-x x 的值域是( )(A )[0,+∞] (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]9.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图像是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图像是抛物线,其中正确的命题个数是( )(A )1 (B )2 (C )3 (D )410.已知g(x)=1-2x,f[g(x)]=)0(122≠-x xx ,则f(21)等于( ) (A )1 (B )3 (C )15 (D )3011.下列函数中值域是R +的是( )(A )y=132+-x x (B )y=2x+1(x>0) (C )y=x 2+x+1 (D )y=112-x12.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( ) (A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4) 13.函数y=13+-+x x 的值域是( )(A)(0,2] (B)[-2,0] (C)[-2,2] (D)(-2,2) 14.下列函数中在(-∞,0)上单调递减的是( ) (A )y =1-x x (B )y=1-x 2(C )y=x 2+x (D )y=-x -115.设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π)、f(3)的大小顺序是( )(A )f(-π)>f(3)>f(-2) (B )f(-π)>f(-2)>f(3) (C )f(-π)<f(3)<f(-2) (D )f(-π)<f(-2)<f(3)16.函数y=xx ++-1912是( ) (A )奇函数 (B )偶函数(C )既是奇函数又是偶函数 (D )非奇非偶数17.函数y=4(x+3)2-4的图像可以看作由函数y=4(x-3)2+4的图象,经过下列的平移得到( ) (A )向右平移6,再向下平移8 (B )向左平移6,再向下平移8 (C )向右平移6,再向上平移8 (D )向左平移6,再向上平移818.若函数f(x)=x 2+bx+c 对任意的实数t,都有f(2+t)=f(2-t),那么( ) (A )f(2)<f(1)<f(4) (B )f(1)<f(2)<f(4) (C )f(2)<f(4)<f(1) (D )f(4)<f(2)<f(1)19.f(x)=x 5+ax 3+bx-8且f(-2)=0,则f(2)等于( ) (A )-16 (B )-18 (C )-10 (D )10 20.命题(1)y=R x d cx b ax ∈++(且x c d -≠)与y=)(cax R x a cx b dx ≠∈-+-且互为反函数;(2)函数y=f(x)的定义域为A ,值域为C ,若其存在反函数,则f 必是A 到C 上的一一映射;(3)偶函数一定没有反函数;(4)f(x)与f -1(x )有相同的单调性,其中正确命题的个数是( ) (A )1 (B )2 (C )3 (D )4 二、填空题1.若一次函数f(x)的定义域为[-3,2],值域为[2,7],那么f(x)= 。
教学设计1第2课时映射与函数一、教学内容本节课的教学内容来自小学数学教材《数学》的第七章第一节,主要内容包括映射与函数的概念、特点和运用。
具体内容有:1. 映射的概念:介绍映射是一种数学关系,是一种从一种数学对象到另一种数学对象的规则。
2. 函数的概念:介绍函数是一种特殊的映射,具有输入和输出的关系,每个输入都对应一个唯一的输出。
3. 映射与函数的特点:介绍映射和函数的单射、满射和一一对应的特性。
4. 映射与函数的运用:介绍如何运用映射和函数解决实际问题,如坐标系中的点与坐标的对应关系。
二、教学目标1. 学生能够理解映射和函数的概念,掌握它们的基本性质。
2. 学生能够运用映射和函数解决实际问题,提高解决问题的能力。
3. 学生能够培养逻辑思维能力,提高对数学概念的理解和运用能力。
三、教学难点与重点1. 教学难点:映射和函数的概念及其性质的理解和运用。
2. 教学重点:掌握映射和函数的概念,能够运用映射和函数解决实际问题。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:通过生活中的实际例子,如地图上的位置对应关系,引导学生思考数学中的映射和函数概念。
2. 概念讲解:讲解映射和函数的概念,引导学生理解映射和函数的基本性质。
3. 例题讲解:通过具体的例题,解释映射和函数的概念及其运用。
4. 随堂练习:学生独立完成随堂练习,巩固映射和函数的概念。
5. 小组讨论:学生分组讨论如何运用映射和函数解决实际问题,分享解题思路。
7. 课后作业:布置相关的作业题目,让学生进一步巩固映射和函数的概念。
六、板书设计板书设计如下:映射与函数1. 映射的概念:数学关系,从一种数学对象到另一种数学对象的规则。
2. 函数的概念:特殊的映射,具有输入和输出的关系,每个输入都对应一个唯一的输出。
3. 映射与函数的特性:单射、满射、一一对应。
4. 映射与函数的运用:解决实际问题,如坐标系中的点与坐标的对应关系。
一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。
例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。
3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|, 半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。
第2课时映射与函数【学习要求】1.了解映射、一一映射的概念;2.初步了解映射与函数间的关系;3.会判定一些对应关系是不是映射、一一映射.【学法指导】通过对教材上实例的研究,引入映射的概念. 通过映射与函数的对比,加深对函数概念的理解,进一步体会特殊与一般的辩证关系.填一填:知识要点、记下疑难点1.映射的概念设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x在映射f的作用下的象,记作f(x).于是y=f(x),x 称作y的原象.2.映射的定义域、值域集合A到B的映射f可记为f:A→B或x→f(x).其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A).3.一一映射的概念如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射 .4.函数与映射的关系由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,特殊在构成函数的两个集合A、B 必须是数集.研一研:问题探究、课堂更高效[问题情境] 大家想一想,如果我们都没有名字了,这个世界将会怎样?一个人可以有小名,有笔名,有外号,有学名,是一人多名,也可能是多人一名,但为了便于管理,政府部门规定,每人只能有一个法定的名字,这样,每个人都有了唯一确定的身份证上的名字,人与名字的关系是居民集合到声音符号集合的一种确定的对应.在数学里,把这种集合到集合的确定性的对应说成映射.探究点一映射的概念及应用问题1 初中已经学习过的一些对应,或者日常生活中的一些对应实例,你能举出几个?问题3 数轴上的点集与实数集R,通过怎样的法则构成一种对应?问题4函数关系实质上是两个集合之间的一种对应关系,这两个集合有什么特点?问题5 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的两集合中的元素之间的对应关系,即映射.你能给映射下个定义吗?问题6 映射与函数存在怎样的关系?例1 在下面的图(1)(2)(3)中,用箭头所标明的A 中元素与B 中元素的对应法则,试判断由A 到B 是不是映射?是不是函数关系?跟踪训练1 以下给出的对应是不是从集合A 到集合B 的映射?(1)集合A ={P|P 是平面直角坐标系中的点},集合B ={(x ,y)|x∈R,y∈R},对应法则f :平面直角坐标系中的点与它的坐标对应;(2)集合A ={x|x 是三角形},集合B ={x|x 是圆},对应法则f :每一个三角形都对应它的内切圆;(3)集合A ={x|x 是新华中学的班级},集合B ={x|x 是新华中学的学生},对应法则f :每一个班级都对应班里的学生.例2 已知集合A =R ,B ={(x ,y)|x ,y∈R},f :A→B 是从A 到B 的映射,f :x→(x+1,x 2+1),求A 中元素2的象和B 中元素⎝ ⎛⎭⎪⎫32,54的原象.跟踪训练2 已知f :A→B 是映射,且f :(x ,y)→(x+y ,xy),则(-2,3)在f 作用下对应B 中的元素是________,则________________在f 作用下对应B 中的元素是(2,-3).探究点二 一 一 映射的概念问题1 根据映射的定义,说出在探究点一的问题2、问题3中,是什么集合到什么集合的映射?问题2 对于“数轴上的点集”到“实数集R”的映射,除满足对于点集中的任意一个点在R 中都有唯一的实数与之对应外,还同时满足对于R 中任意一个实数在点集中也有唯一的点与之对应,我们称这个映射为一一映射.那么,如何定义一一映射?例3 已知A={1,2,3,m},B={4,7,n4,n2+3n},且n∈N+,f:x→y=px+q是从A到B的一个一一映射,已知1的象是4,7的原象是2,求p,q,m,n的值.跟踪训练3 下列映射是不是A到B上的一一映射?为什么?练一练:当堂检测、目标达成落实处1.下列集合A到集合B的对应中,构成映射的是( )2.已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素是A中元素在映射f:A→B下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是 ( )A.4 B.5 C.6 D.73.设集合A={2,4,6,8,10},B={1,9,25,49,81,100},下面的对应法则f能构成A到B的映射的是 ( ) A.f:x→(2x-1)2 B.f:x→(2x-3)2C.f:x→x2-2x-1 D.f:x→(x-1)24.集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.课堂小结:1.判断对应是否是集合A到集合B的映射,首先应看A中的每一个元素是否都在B中有且有唯一的象,对于映射f:A→B,A中元素与B中元素的对应关系,可以是一对一,多对一,但不能一对多.2.函数、映射与对应的关系可用下面的图形形象的表示。