空间结构分析温度场ansys_命令流
- 格式:docx
- 大小:17.66 KB
- 文档页数:19
(完整版)ANSYS最常用命令流+中文注释(超级大全)ANSYS最常用命令流+中文注释VSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。
keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。
如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。
同理,将v换成a 及l是对面和线进行减操作!mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)co: 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数定义DP材料:首先要定义EX和泊松比:MP,EX,MA T,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MA T进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,degVSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP Type,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标!其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧!,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为14,17,19,21,23的五个实体VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦!Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0” 使用正负号“1”仅用绝对值下面是单元生死第一个载荷步中命令输入示例:!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SA VESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D, F,SF和BF命令得到更详细的解释。
ANSYS命令解释分享⼀下!BEGINNER'S GUIDE TO ANSYS COMMANDSThe symbol '*' corresponds to the following:* --> k, l, a, v, e, n, cm, et, mp, r where ==>k --> Keypointsl --> Linesa --> Areav --> Volumese --> Elementsn --> Nodescm --> componentet --> element typemp --> material propertyr --> real constant$ --> d, f, sf, bf, ic, where ==>d --> DOF constraint (ux... in Structural, Temp in thermal,f --> Force Load ( Heat in thermal)sf --> Surface load on nodesbf --> Body Force on NodesMore Commands can be generated by sensible combinations of " $* " family of commands. See the following list of $* possible options$* --> dk --> DOF constraints on KP (Vx,Vy,Pres... in CFD)dl --> DOF constraints on Linesda --> DOF constraints on Areasfk --> Force on Keypointssfl --> Surface load on Linessfa --> Surface load on Areassfe --> Surface load on element faces中国热模⽹⾸发bfk --> Body Force on Keypointsbfl --> Body Force on Linesbfa --> Body Force on Areabfv --> Body Force on Volumesbfe --> Body Force on Elementsic --> Initial Conditions ",p" --> If ",p" was issued at the end of the Command(in Input Window) the GUI based picking menu will be activated. Useful for listing, plotting, meshing, deleting, etc..**********************************************************1. Listing of picked Entities:COMMAND SYNTAX: *LIS,p & $*LIS,pA few Combinations of this command are:klis,p --> List KPllis,p --> Lists Linesalis,p --> Lists Areasvlis,p --> Lists Volumeselis,p --> Lists Elementsnlis,p --> Lists Nodescmlis,p --> Lists componentscslis,p --> Lists user created local co-ordinate systemsdlis,p --> Lists DOF constraints specfied on nodesdalis,p --> Lists DOF constraints applied on Areasflis,p --> Lists force on Nodes中国热模⽹⾸发sfllis,p --> Lists Surface Load on linesbfalis,p --> Lists body force load applied on Areasiclis,p --> Lists Initial condition on NodesIf ",p" was not issued, all entites currently selected will be listed.For certain commands ",p" cannot be issued. See the below mentioned commandsetlis --> Lists the different element types definedmplis --> Lists whatever Material propertiesrlis --> Lists whatever real constantscslis --> Lists all co-ordinate systemscmlis --> Lists all components*********************************************************2. Plotting of Entities: COMMAND SYNTAX: *plo KPLO / LPLO / APLO / VPLO / EPLO / NPLO / CMPLO / **********************************************************3. deleting of Entities:COMMAND SYNTAX: *DEL,p & $*DEL,pKDEL,p / LDEL,p / ADEL,p / VDEL,p / EDEL,p / NDEL,p / CMDEL,p / DDEL,p /DKDEL,p / DADEL,p / FDEL,p / SFDEL,p / SFEDEL,p / SFADEL,p / SFLDEL,p / 热点模具⽹BFADEL,p / ......The syntax for this command is very similar to LISTING command.**********************************************************4. distance between two entities:COMMAND SYNTAX: *DIS,pndis,p --> Distance between two nodeskdis,p --> Distance between two KPs**********************************************************5. Meshing of geometries:COMMAND SYNTAX: *MES,pKMES,p / LMES,p / AMES,p / VMES,p**********************************************************6. Size settings for Lines and Areas before meshing :COMMAND SYNTAX : *size,,p Lesiz,p / Aesize,p*********************************************************7. Clearing Meshes of already meshed geometries:COMMAND SYNTAX: *CLE,p KCLE,p / LCLE,p / ACLE,p / VCLE,p**********************************************************8. BOOLEAN Operations: IntersectCOMMAND SYNTAX : *IN* AINA,p / VINV,p / LINL,p / AINV,p / LINV,p / LINA,p 热点模具⽹**********************************************************9. BOOLEAN Operations: GLUECOMMAND SYNTAX : *GLUE VGLUE,p / AGLUE,p / LGLUE,p**********************************************************10. Boolean Operations: SUBTRACT/DIVIDE:COMMAND SYNTAX: *sb*,p See the following examples to understand how this works:asba,p --> Subtract Area from Areaasbl,p --> Divide Area by linevsba,p --> Divide volume by Arealsbw,p --> Divide line by Workplanevsbw,p --> Divide volume by Workplaneasbw,p --> Divide area by Workplanevsbv,p --> subtract Volume by another volumeMore combinations exist. The user needs to explore them for themselves --> forms a part of learning**********************************************************11. Boolean Operations: Overlap:COMMAND SYNTAX: *OVLAP,p AOVLAP,p / VOVLAP,p**********************************************************12. Concatenation of Lines / Areas --> for map meshing热点模具⽹COMMAND SYNTAX : *ccat,pLCCAT,p --> Concatenation of Lines for Map meshing AreaACCAT,p --> Concatenation of Areas for Map meshing Volume*********************************************************13. Dragging operationCOMMAND SYNTAX : *drag,pvdrag,p --> Drag areas along a line to create a new volumeadrag,p --> Drag line along a line to create a new arealdrag,p --> Drag KP along a line to create a new line**********************************************************14. Copy Geomtric entitiesCOMMAND SYNTAX : *GEN,,pKGEN,,p / LGEN,,p / AGEN,,p / VGEN,,pPlease note that *GEN commands are also used for MOVE operations. The difference lies in the value specified in the 10th field of these *GEN commands. By default it is 0 --> which does the COPY operation. If specfied as 1 --> it does the MOVE operation**********************************************************15. Bottom -to- Top modeling commands:COMMAND SYNTAX : *,p & **,p 热点模具⽹k,p ---> Allows user to pick KP in the Workplanel,p ---> Create lines from existing KPak,p ---> Create area from KPal,p ---> Create areafrom linesv,p ---> Create Volume from KPva,p ---> Create Volume from Arease,p ---> Create Elem from existing nodesen,p ---> Create Elem from nodes**********************************************************16. To apply common Boundary Conditions such as DOF constraint, Forces, Surface Loads, Bodyforce Loads and Initial conditions* --> is meant for the KLAVE entities only (KLAVEN stands for KP, Lines, Area, Volumes & ELem )16a. DOF constraint :COMMAND SYNTAX : $*,p ( Please Note: NOT all * are valid)See the valid combinations below:D,p --> To apply DOF on nodesDK,p --> To apply DOF on KeypointsDL,p --> Apply DOF on LinesDA,p --> Apply DOF on Areas ( symmetry or Anti-symmetry will be prompted)****************16b. FORCE Loading:COMMAND SYNTAX : $*,p 中国热模⽹⾸发See the valid combinations below:f,p --> Forces on nodesfk,p --> Force on Keypoints(fa,p or FV,p or FL,p ----> Since force cannot be applied on Lines or Area & volumes... this command does not exist.)****************16c. Surface Loads:COMMAND SYNTAX : $*,pSee the valid combinations below:sf,p --> Surface Load on a set of Nodessfl,p --> Surface Load on Linessfa,p --> Surface Load on Areasfe,p --> Surface Load on Element(SFk,p and SFV,p do not exist since pressure cannot be applied on a single Kp and neither can it be applied on a volume) ****************16d. BodyForce Load: COMMAND SYNTAX : bf*,pSee the valid combinations below:bf,p --> Bodyforce Load on a set of Nodesbfk,p --> Bodyforce Load on KPbfl,p --> Bodyforce Load on Linesbfa,p --> Bodyforce Load on Areasbfv,p --> Bodyforce Load on Volumesbfe,p --> Bodyforce Load on Element****************16e. Initial conditions:热点模具⽹ic,p --> Initial Conditions on Nodes(P.S: Initial Conditions can be applied only to nodes. )***********************************************************17. To refine a mesh :COMMAND SYNTAX : *ref,pkREF,p / kREF,p / aREF,p / eREF,p / nREF,p***********************************************************18. To TRANsfer loads from the Solid model to the FE model:COMMAND SYNTAX : $TRANdtran / ftran / sftran / bftran & SBCTRAN(SBCTRAN --> Transfers all solid model loads to FE model)***********************************************************19. Writing / Reading information to a file (ASCII)COMMAND SYNTAX : *read, & *write,NWRITE / MPWRITE / ETWRITE / RWRITE / EWRITE / CDWRITENREAD / MPREAD / ETREAD / RREAD / EREAD / CDREAD / LDREAD(Some of these commands ETWRITE/ETREAD , RWRITE/RREAD are undocumented. But they do work) The Commands CDWRITE and CDREAD are used to write/read all FE model related info (w or w/o geometry to ASCII files) Its recommended the user read the online help on these two commands before using them 热点模具⽹The LDREAD commands are used to read loads (LD) from other analysis types. For example: Tempfrom Thermal results file (*.rth) are applied onto Structural elements.好,我来补充⼀下楼上师兄的命令。
ANSYS计算温度场及应力场在ANSYS中计算温度场需要考虑的因素有很多,比如热源、热传导、边界条件等。
首先,我们需要在ANSYS中建立一个三维模型,包括几何形状、材料属性和初始条件。
然后,我们可以选择合适的求解器,比如热传导方程求解器,来解决温度场的传导问题。
在建立模型时,需要给定材料的热导率和密度等属性,这些参数可以通过实验测量或者文献资料获得。
对于复杂的几何形状,可以使用ANSYS 的建模工具,比如CAD软件,将实际的几何形状导入到ANSYS中。
然后,我们需要给定边界条件,比如边界上的温度和热通量。
这些条件可以通过实验测量或者根据实际情况进行估计。
在设置好模型后,我们可以选择求解器来解决温度场的传导问题。
ANSYS提供了多种求解器,包括有限元法、有限差分法和有限体积法等。
这些方法可以根据不同的情况选择合适的求解器,并通过迭代计算来获得温度场的分布。
在计算完温度场后,我们可以使用ANSYS的后处理工具来分析和可视化结果。
例如,可以绘制温度云图、温度剖面和温度梯度图,以展示温度场的分布情况。
此外,还可以计算温度场的平均值、最大值和最小值等统计量,以评估系统的性能和安全性。
另外,ANSYS还可以用于计算应力场。
在计算应力场时,需要考虑的因素包括材料的应变-应力关系、加载条件和几何形状等。
首先,我们需要在ANSYS中建立一个三维模型,包括几何形状、材料属性和初始条件。
然后,选择合适的求解器,比如有限元法求解器,来解决应力场的静力学问题。
在建立模型时,需要给定材料的弹性模量、泊松比和密度等属性。
这些参数可以通过实验测量或者文献资料获得。
对于复杂的几何形状,可以使用ANSYS的建模工具,比如CAD软件,将实际的几何形状导入到ANSYS 中。
然后,我们需要给定加载条件,比如施加在模型上的力和边界约束。
这些条件可以根据实际情况进行估计。
在设置好模型后,我们可以选择求解器来解决应力场的静力学问题。
ANSYS提供了多种求解器,包括有限元法、边界元法和模态分析等。
Ansys命令流大全ANSYS是一款广泛应用于工程领域的仿真软件,它能够对复杂工程问题进行建模、分析和优化。
本文将提供一个包含常用ANSYS命令的大全,帮助读者快速了解和掌握ANSYS软件的使用。
一、前言ANSYS是一款功能强大的工程仿真软件,它提供了丰富的建模和分析工具,适用于多个领域的工程问题。
掌握ANSYS的命令流能够有效提高工程师的工作效率,快速完成复杂问题的仿真和分析。
二、ANSYS常用命令1. 创建几何模型由于ANSYS提供了多种创建几何模型的工具,我们可以使用命令流来进行几何模型的创建和编辑。
以下是一些常用的几何模型命令:(1)BLOCK:创建矩形或立方体体素模型。
(2)CYLIND:创建圆柱体模型。
(3)SWEEP:创建沿路径扫掠的模型。
2. 定义材料属性在进行仿真分析之前,需要定义材料的物理属性。
以下是一些常用的材料属性命令:(1)MP: 定义材料的参数,如密度、弹性模量、泊松比等。
(2)EX: 定义材料的弹性模量。
(3)DENS: 定义材料的密度。
3. 设定网格划分网格划分对于仿真分析的准确性和计算效率非常重要。
以下是一些常用的网格划分命令:(1)SIZE:设定初始网格尺寸。
(2)MESH:进行自动的网格划分。
(3)ESIZE:设定特定区域的网格尺寸。
4. 定义边界条件在进行仿真分析之前,需要定义边界条件以模拟实际工程环境。
以下是一些常用的边界条件命令:(1)D:定义位移边界条件。
(2)S:定义约束条件。
(3)F:定义外部力或施加力。
5. 设置分析类型ANSYS提供了多种分析类型,如结构分析、热分析、流体分析等。
以下是一些常用的分析类型命令:(1)SOLVE:执行数值分析求解。
(2)ANTYPE:设定分析类型。
(3)FILE:设置解算文件名和保存路径。
6. 查看和后处理结果分析完成后,我们需要查看和后处理结果。
以下是一些常用的结果查看和后处理命令:(1)PLOT:绘制结果曲线或图像。
ANSYS结构分析单元功能与特性/可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取,* 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等NSEL的意思是node select,即选择节点。
s就是select,选择。
DIM是定义数组的意思。
array 数组。
MP命令用来定义材料参数。
K是建立关键点命令。
K,关键点编号,x坐标,y坐标,z坐标。
K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。
NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。
这个命令对于重复的线面都可以用。
这个很简单,压缩关键。
Ngen 复制节点e,节点号码:这个命令式通过节点来形成单元NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。
LNSRCH激活线性搜索PRED 激活自由度求解预测NEQIT指定一个荷载步中的最大子步数AUTOTS 自动求解控制打开自动时间步长.KBC -指定阶段状或者用跳板装载里面一个负荷步骤。
SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线)*DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称)【注】Par: 数组名Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableIMAX,JMAX,KMAX各维的最大下标号Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时)/config是设置ansys配置参数的命令格式为/CONFIG, Lab, V ALUELab为参数名称value为参数值例如:/config,MXEL,10000的意思是最大单元数为10000杆单元:LINK1、8、10、11、180梁单元:BEAM3、4、23、24,44,54,188,189管单元:PIPE16,17,18,20,59,602D实体元:PLANE2,25,42,82,83,145,146,182,1833D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209弹簧单元:COMBIN7,14,37,39,40质量单元:MASS21接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178矩阵单元:MATRIX27,50表面效应元:SURF153,154粘弹实体元:VISCO88,89,106,107,108,超弹实体元:HYPER56,58,74,84,86,158耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81,SOLID98,FLUID129,INFIN110,111,FLUID116,130界面单元:INTER192,193,194,195显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16杆单元单元名称简称节点数节点自由度特性备注LINK1 2D杆 2 Ux,Uy EPCSDGB常用杆元LINK8 3D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉或仅受压杆EDGB模拟缆索的松弛及间隙LINK11 3D线性调节器EGB模拟液压缸和大转动LINK180 3D有限应变杆EPCDFGB 另可考虑粘弹塑性E-弹性(Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent)等。
Ansys命令流大全(整理)1、A,P1,P2,P3,P4,P5,P6,P7,P8,P9此命令用已知的一组关键点点(P1~P9)来定义面(Area),最少使用三个点才能围成面,同时产生转围绕些面的线。
点要依次序输入,输入的顺序会决定面的法线方向。
如果超过四个点,则这些点必须在同一个平面上。
Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>Through KPs2、*ABBR,Abbr,String--定义一个缩略语.Abbr:用来表示字符串"String"的缩略语,长度不超过8个字符.String:将由"Abbr"表示的字符串,长度不超过60个字符.3、ABBRES,Lab,Fname,Ext-从一个编码文件中读出缩略语.Lab:指定读操作的标题,NEW:用这些读出的缩略语重新取代当前的缩略语(默认)CHANGE:将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语.Ext:如果"Fname"是空的,则缺省的扩展命是"ABBR".4、ABBSA V,Lab,Fname,Ext-将当前的缩略语写入一个文本文件里Lab:指定写操作的标题,若为ALL,表示将所有的缩略语都写入文件(默认)5、add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称6、Adele,na1,na2,ninc,kswp !kswp=0时只删除掉面积本身,=1时低单元点一并删除。
7、Adrag, nl1,nl2,nl3,nl4,nl5,nl6, nlp1,nlp2,nlp3,nlp4,nlp5,nlp6 !面积的建立,沿某组线段路径,拉伸而成。
8、Afillt,na1,na2,rad !建立圆角面积,在两相交平面间产生曲面,rad为半径。
一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表这里不考虑温度:TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:afun,deg三、单元生死载荷步第一个载荷步TIME,... 设定时间值静力分析选项NLGEOM,ON 打开大位移效果NROPT,FULL 设定牛顿-拉夫森选项ESTIF,... 设定非缺省缩减因子可选ESEL,... 选择在本载荷步中将不激活的单元EKILL,... 不激活选择的单元ESEL,S,LIVE 选择所有活动单元NSLE,S 选择所有活动结点NSEL,INVE 选择所有非活动结点不与活动单元相连的结点D,ALL,ALL,0 约束所有不活动的结点自由度可选NSEL,ALL 选择所有结点ESEL,ALL 选择所有单元D,... 施加合适的约束F,... 施加合适的活动结点自由度载荷SF,... 施加合适的单元载荷BF,... 施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释;后继载荷步在后继载荷步中,用户可以随意杀死或重新激活单元;象上面提到的,要正确的施加和删除约束和结点载荷;用下列命令杀死单元:Command:EKILLGUI: Main Menu>Solution>-Load Step Opts-Other>Kill Elements用下列命令重新激活单元:Command: EALIVEGUI: Main Menu>Solution>-Load Step Opts-Other>Activate Elem第二个或后继载荷步:TIME,...ESEL,...EKILL,... 杀死选择的单元ESEL,...EALIVE,... 重新激活选择的单元...FDELE,... 删除不活动自由度的结点载荷D,... 约束不活动自由度...F,... 在活动自由度上施加合适的结点载荷DDELE,... 删除重新激活的自由度上的约束SAVESOLVE四、u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标五、Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值六、VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用七、VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择s,补选a,不选,全选all、反选inv等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如 volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为 14,17,19,21,23的五个实体u rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc 将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1.定义参数、数组,并赋值.2. /prep7进入前处理定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号;设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表存盘3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1通用后处理5./post26 时间历程后处理菜单命令7.参数化设计语言8.理论手册Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维缺省char 字符串组每个元素最多8个字符tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane当type为table时2 /prep7进入前处理定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系以Y轴为轴心n 已定义的局部坐标系u numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝;“1”不拷贝节点和单元imove:“0”生成拷贝“1”移动原关键点至新位置,并保持号码,此时itime,kinc,noelem被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPEu A, P1, P2, ……… P18 由关键点生成面u AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向;线需在某一平面内坐标值固定的面内u vsba, nv, na, sep0,keep1,keep2 用面分体u vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点非公用u vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove: 0:拷贝体1:移动体u cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型volu, area, line, kp, elem, nodeu cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称u cmlist,nameu cmdele,nameu cmplot, label1定义几个所关心的节点,以备后处理时调用节点号;u n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号;设材料线弹性、非线性特性u mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数u Tb, lab, mat, ntemp,npts,tbopt,eosopt 定义非线性材料特性表Lab: 材料特性表之种类Bkin: 双线性随动强化Bis 双线性等向强化Mkin: 多线性随动强化最多5个点Mis 多线性等向强化最多100个点Dp: dp模型Mat: 材料号Ntemp: 数据的温度数对于bkin: ntemp缺省为6mis ntemp缺省为1,最多20bis ntemp缺省为6,最多为6dp: ntemp, npts, tbopt 全用不上Npts: 对某一给定温度数据的点数u TBTEMP,temp,kmod 为材料表定义温度值temp: 温度值kmod: 缺省为定义一个新温度值如果是某一整数,则重新定义材料表中的温度值注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序若Kmod为crit, 且temp为空,则其后的tbdata数据为solid46,shell99,solid191中所述破坏准则如果kmod为strain,且temp为空,则其后tbdata数据为mkin中特性;u TBDATA, stloc, c1,c2,c3,c4,c5,c6给当前数据表定义数据配合tbtemp,及tb使用stloc: 所要输入数据在数据表中的初始位置,缺省为上一次的位置加1 每重新发生一次tb或tbtemp命令上一次位置重设为1,发生tb后第一次用空闲此项,则c1赋给第一个常数u tbpt, oper, x,y 在应力-应变曲线上定义一个点oper: defi 定义一个点dele 删除一个点x,y:坐标设置单元类型及相应KEYOPTu ET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数u Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果 ,则必须使用keyopt命令,否则也可在ET命令中输入设置网格划分,划分网格映射网格划分1.面映射网格划分条件:a. 3或4条边b.面的对边必须划分为相同的单元或其划分与一个过渡形网格的划分相匹配c. 该面如有3条边,则划分的单元不必须为偶数,并且各边单元数相等d. mahkeye. mshpattern如果多于四条边,可将线合并成Lcomb可用amap命令,先选面,再选4个关键点即可指定面的对边的分割数,以生成过渡映射四边形网格,只适用于有四条边的面2. 体映射网格划分1若将体划分为六面体单元,必须满足以下条件a. 该体的外形为块状六面体、楔形或棱形五面体、四面体b. 对边必须划分为相同的单元数,或分割符合过渡网格形式c. 如果体是棱形或四面体,三角形面上的单元分割数必须是偶数2 当需要减少围成体的面数以进行映射网格划分时,可以对面相加或连接;如果连接而有边界线,线也必须连接在一起;3体扫掠生成网格步骤:a. 确定体的拓扑是否能够进行扫掠;侧面不能有孔;体内不能有封闭腔;源面与目标面必须相对b. 定义合适的单元类型c. 确定扫掠操作中如何控制生成单元层的数目 lesized. 确定体的哪一个边界面作为源面、目标面e. 有选择地对源面、目标面和边界面划分网格3. 关于连接线和面的一些说明连接仅是映射网格划分的辅助工具4. 用desize定义单元尺寸时单元划分应遵守的级别高:lesizekesizeesizedesize用smartzing定义单元尺寸时单元划分应遵守的级别高:lesizekesizesmartsizeu LESIZE,NL1,Size, Angsiz,ndiv,space,kforc,layer1,layer2,kyndiv 为线指定网格尺寸NL1: 线号,如果为all,则指定所有选中线的网格;Size: 单元边长,程序据size计算分割份数,自动取整到下一个整数Angsiz: 弧线时每单元跨过的度数Ndiv: 分割份数Space: “+”: 最后尺寸比最先尺寸“-“: 中间尺寸比两端尺寸free: 由其他项控制尺寸kforc 0: 仅设置未定义的线,1:设置所有选定线,2:仅改设置份数少的,3:仅改设置份数多的kyndiv: 0,No,off 表示不可改变指定尺寸1,yes,on 表示可改变u ESIZE,size,ndiv 指定线的缺省划分份数已直接定义的线,关键点网格划分设置不受影响u desize, minl, minh,……控制缺省的单元尺寸minl: n 每根线上低阶单元数缺省为3defa 缺省值stat 列出当前设置off 关闭缺省单元尺寸minh: n 每根线上高阶单元数缺省为2u mshape, key, dimension 指定单元形状key: 0 四边形2D,六面体3D1 三角形 2D, 四面体3DDimension: 2D 二维3D 三维u smart,off 关闭智能网格u mshkey, key 指定自由或映射网格方式key: 0 自由网格划分1 映射网格划分2 如果可能的话使用映射,否则自由即使自由smartsizing也不管用了u Amesh, nA1,nA2,ninc 划分面单元网格nA1,nA2,ninc 待划分的面号,nA1如果是All,则对所有选中面划分u SECTYPE, ID, TYPE, SUBTYPE, NAME, REFINEKEY定义一个截面号,并初步定义截面类型ID: 截面号TYPE: BEAM:定义此截面用于梁SUBTYPE: RECT 矩形CSOLID:圆形实心截面CTUBE: 圆管I: 工字形HREC: 矩形空管ASEC: 任意截面MESH: 用户定义的划分网格NAME: 8字符的截面名称字母和数字组成REFINEKEY: 网格细化程度:0~5对于薄壁构件用此控制,对于实心截面用SECDATA控制u SECDATA, VAL1, VAL2, …….VAL10 描述梁截面说明:对于SUBTYPE=MESH, 所需数据由SECWRITE产生,SECREAD读入u SECNUM,SECID 设定随后梁单元划分将要使用的截面编号u LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM为准备划分的线定义一系列特性MAT: 材料号REAL: 实常数号TYPE: 线单元类型号KB、KE: 待划分线的定向关键点起始、终止号SECNUM: 截面类型号u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分SECID:由SECTYPE命令分配的截面编号MESHKEY:0:不显示网格划分1:显示网格划分u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元SCALE: 0:简单显示线、面单元1:使用实常数显示单元形状u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元xnode: 仅为产生surf151 或surf152单元时使用tlab: 仅用来生成接触元或目标元top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向Shape: 空与所覆盖单元形状相同Tri 产生三角形表面的目标元注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上u Nummrg,label,toler, Gtoler,actiontch 合并相同位置的itemlabel: 要合并的项目node: 节点, Elem,单元,kp: 关键点也合并线,面及点mat: 材料,type: 单元类型,Real: 实常数cp:耦合项,CE:约束项,CE: 约束方程,All:所有项toler: 公差Gtoler:实体公差Action: sele 仅选择不合并空合并注意:可以先选择一部分项目,再执行合并;如果多次发生合并命令,一定要先合并节点,再合并关键点;合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题;u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneuunselectinve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元u Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值u NSLL,type, nkey 选择与所选线相联系的节点u nsla, type, nkey: 选择与选中面相关的节点type:s 选一套新节点r 从已选节点中再选a 附加一部分节点到已选节点u 从已选节点中去除一部分nkey: 0 仅选面内的节点1 选所有和面相联系的节点如面内线,关键点处的节点u esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元Type: S: 选择一组单元缺省R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item: Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号u ALLSEL, LABT, ENTITY 选中所有项目LABT: ALL: 选所有项目及其低级项目BELOW: 选指定项目的直接下属及更低级项目ENTITY: ALL: 所有项目缺省VOLU:体高级AREA:面LINE :线KP:关键点ELEM:单元NODE:节点低级u Tshap,shape 定义接触目标面为2D、3D的简单图形Shape: line:直线Arc:顺时针弧Tria:3点三角形Quad:4点四边形………….根据需要耦合某些节点自由度u cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotznode1-node17: 待耦合的节点号;如果某一节点号为负,则此节点从该耦合组中删去;如果node1=all,则所有选中节点加入该耦合组;注意:1,不同自由度类型将生成不同编号2,不可将同一自由度用于多套耦合组u CPINTF, LAB, TOLER 将相邻节点的指定自由度定义为耦合自由度LAB:UX,UY,UZ,ROTX,ROTY,ROTZ,ALLTOLER: 公差,缺省为说明:先选中欲耦合节点,再执行此命令定义单元表说明:1,单元表仅对选中单元起作用,使用单元表之前务必选择一种类型的单元2,单元表各行为选中各单元,各列为每单元的不同数据u ETABLE, LAB, ITEM, COMP 定义单元表,添加、删除单元表某列LAB:用户指定的列名REFL, STAT, ERAS 为预定名称ITEM: 数据标志查各单元可输出项目COMP: 数据分量标志存盘u save, fname, ext,dir, slab 存盘fname : 文件名最多32个字符缺省为工作名ext: 扩展名最多32个字符缺省为dbdir: 目录名最多64个字符缺省为当前slab: “all”存所有信息“model”存模型信息“solv”存模型信息和求解信息3 /soluu /solu 进入求解器加边界条件u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab: ux,uy,uz,rotx,roty,rotz,allValue,value2: 自由度的数值缺省为0Nend, ninc: 节点范围为:node-nend,编号间隔为nincLab2-lab6: 将lab2-lab6以同样数值施加给所选节点;注意:在节点坐标系中讨论设置求解选项u antype, status, ldstep, substep, actionantype: static or 1 静力分析buckle or 2 屈曲分析modal or 3 模态分析trans or 4 瞬态分析status: new 重新分析缺省,以后各项将忽略rest 再分析,仅对static,full transion 有效ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数指分析点的最后一步substep: 指定从哪个子步开始继续分析;缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep说明:继续以前的分析因某种原因中断有两种类型singleframe restart: 从停止点继续需要文件:必须在初始求解后马上存盘单元矩阵或 .osav : 如果.esav坏了,将.osav改为.esavresults file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件;必须删除再做后继分析步骤: 1进入anasys 以同样工作名2进入求解器,并恢复数据库3antype, rest4指定附加的荷载5指定是否使用现有的矩阵缺省重新生成kuse: 1 用现有矩阵6求解multiframe restart:从以有结果的任一步继续用不着u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器sskey: off 不作预测当有旋转自由度时或使用solid65时缺省为offon 第一个子步后作预测除非有旋转自由度时或使用solid65时缺省为on -- :未使用变量区lskey: off 跨越荷载步时不作预测缺省on 跨越荷载步时作预测此时sskey必须同时on注意:此命令的缺省值假定solcontrol为onu autots, key 是否使用自动时间步长key:on: 当solcontrol为on时缺省为onoff: 当solcontrol为off时缺省为off1: 由程序选择当solcontrol为on且不发生autots命令时在 .log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长u NROPT, option,--,adptky 指定牛顿拉夫逊法求解的选项OPTION: AUT程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON: 使用自适应下降因子OFF:不使用自适应下降因子u NLGEOM,KEYKEY: OFF:不包括几何非线性缺省ON:包括几何非线性u ncnv, kstop, dlim, itlim, etlim, cplim 终止分析选项kstop: 0 如果求解不收敛,也不终止分析1 如果求解不收敛,终止分析和程序缺省2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为itlim: 累积迭代次数限制,缺省为无穷多etlim:程序执行时间秒限制,缺省为无穷cplim:cpu时间秒限制,缺省为无穷u solcontrol ,key1, key2,key3,vtol 指定是否使用一些非线性求解缺省值key1: on 激活一些优化缺省值缺省CNVTOL Toler=%Minref=对力和弯矩NEQIT 最大迭代次数根据模型设定在15~26之间ARCLEN 如用弧长法则用较更先进的方法PRED 除非有rotx,y,z或solid65,否则打开LNSRCH 当有接触时自动打开CUTCONTROL Plslimit=15%, npoint=13SSTIF 当NLGEOM,on时则打开NROPT,adaptkey 关闭除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在AUTOS 由程序选择off 不使用这些缺省值key2: on 检查接触状态此时key1为on此时时间步会以单元的接触状态据keyopt7的假定为基础当keyopt2=on 时,保证时间步足够小key3: 应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括查nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化查vtol:u outres, item, freq, cname 规定写入数据库的求解信息item: all 所有求解项basic 只写nsol, rsol, nload, strsnsol 节点自由度rsol 节点作用荷载nload 节点荷载和输入的应变荷载strs 节点应力freq: 如果为n,则每n步包括最后一步写入一次none: 则在此荷载步中不写次项all: 每一步都写last: 只写最后一步静力或瞬态时为缺省定义载荷步u nsubst, nsbstp, nsbmx, nsbmn, carry 指定此荷载步的子步数nsbstp: 此荷载步的子步数如果自动时间步长使用autots,则此数定义第一子步的长度;如果solcontrol打开,且3D面-面接触单元使用,则缺省为1-20步;如果solcontrol打开,并无3D接触单元,则缺省为1子步;如果solcontrol关闭,则缺省为以前指定值;如以前未指定,则缺省为1nsbmx, nsbmn:最多,最少子步数如果自动时间步长打开u time, time 指定荷载步结束时间注意:第一步结束时间不可为“0”u f, node, lab, value, value2, nend, ninc 在指定节点加集中荷载node:节点号lab: Fx,Fy,Fz,Mx,My,Mzvalue: 力大小value2: 力的第二个大小如果有复数荷载nend,ninc:在从node到nend的节点增量为ninc上施加同样的力注意:1节点力在节点坐标系中定义,其正负与节点坐标轴正向一致u sfa, area, lkey, lab, value, value2 在指定面上加荷载area: n 面号all 所有选中号lkey: 如果是体的面,忽略此项lab: presvalue: 压力值u SFBEAM, ELEM, LKEY, LAB, VALI, VALJ, VAL2I, VAL2J, IOFFST, JOFFST 对梁单元施加线荷载ELEM: 单元号,可以为ALL,即选中单元LKEY: 面载类型号,见单元介绍;对于BEAM188,1为竖向;2为横向;3为切向VALI,VALJ: I, J节点处压力值VAL2I,VAL2J: 暂时无用IOFFST, JOFFST: 线载距离I, J 节点距离u lswrite, lsnum 将荷载与荷载选项写入荷载文件中lsnum :荷载步文件名的后缀,即荷载步数当 stat 列示当前步数init 重设为“1”缺省为当前步数加“1”注意1. 尽量加面载,不加集中力,以免奇异点2. 面的切向荷载必须借助面单元求解载荷步u lssolve, lsmin, lsmax, lsinc 读入并求解多个荷载步lsmin, lsmax, lsinc :荷载步文件范围4 /post1通用后处理u set, lstep, sbstep, fact, king, time, angle, nset 设定从结果文件读入的数据lstep :荷载步数sbstep:子步数,缺省为最后一步time:时间点如果弧长法则不用nset: data set numberu dscale, wn, dmult 显示变形比例wn: 窗口号或all,缺省为1dmult, 0或auto : 自动将最大变形图画为构件长的5%u pldisp, kund 显示变形的结构kund: 0 仅显示变形后的结构1 显示变形前和变形后的结构2 显示变形结构和未变形结构的边缘u get, par, node, n, u, xy,z 获得节点n的xy,z位移给参数par等价于函数 ux,uy,uznodex,y,z: 获得x,y,z节点号arnodex,y,z:获得和节点n相连的面注意:此命令也可用于/solu模块u fsum, lab, item 对单元之节点力和力矩求和lab: 空在整体迪卡尔坐标系下求和rsys 在当前激活的rsys坐标系下求和item: 空对所有选中单元不包括接触元求和cont: 仅对接触节点求和u PRSSOL, ITEM, COMP 打印BEAM188、BEAM189截面结果说明:只有刚计算完还未退出ANSYS时可用,重新进入ANSYS时不可用item comp 截面数据及分量标志S COMP X,XZ,YZ应力分量PRIN S1,S2,S3主应力SINT应力强度,SEQV等效应力EPTO COMP 总应变PRIN 总主应变,应变强度,等效应变EPPL COMP 塑性应变分量PRIN 主塑性应变,塑性应变强度,等效塑性应变u plnsol, item, comp, kund, fact 画节点结果为连续的轮廓线item: 项目见下表comp: 分量kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘fact: 对于接触的2D显示的比例系数,缺省为1item comp discriptionu x,y,z,sum 位移rot x,y,z,sum 转角s x,y,z,xy,yz,xz 应力分量1,2,3 主应力Int,eqv 应力intensity,等效应力epeo x,y,z,xy,yz,xz 总位移分量1,2,3 主应变Int,eqv 应变intensity,等效应变epel x,y,z,xy,yz,xz 弹性应变分量1,2,3 弹性主应变Int,eqv 弹性intensity,弹性等效应变eppl x,y,z,xy,yz,xz 塑性应变分量u PRNSOL, item, comp 打印选中节点结果item: 项目见上表comp: 分量u PRETAB, LAB1, LAB2, ……LAB9 沿线单元长度方向绘单元表数据LABn : 空:所有ETABLE命令指定的列名列名:任何ETABLE命令指定的列名u PLLS, LABI, LABJ, FACT, KUND 沿线单元长度方向绘单元表数据LABI:节点I的单元表列名LABJ:节点J的单元表列名FACT: 显示比例,缺省为1kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘5 /post26 时间历程后处理u nsol, nvar, node, item, comp,name在时间历程后处理器中定义节点变量的序号nvar:变量号从2到nv根据numvar定义node: 节点号item compu x, y,zrot x, y,zu ESOL, NVAR, ELEM, NODE, ITEM, COMP, NAME 将结果存入变量NVAR: 变量号,2以上ELEM: 单元号NODE: 该单元的节点号,决定存储该单元的哪个量,如果空,则给出平均值ITEM:COMP:NAME: 8字符的变量名, 缺省为ITEM加COMPu rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标u prvar, nvar1, ……,nvar6 列出要显示的变量6 PLOTCONTROL菜单命令u pbc, ilem, ……,key, min, max, abs 在显示屏上显示符号及数值item: u 所加的位移约束rot 所加的转角约束key: 0 不显示符号1 显示符号2 显示符号及数值u /SHOW, FNAME, EXT, VECT, NCPL 确定图形显示的设备及其他参数FNAME: X11:屏幕文件名:各图形将生成一系列图形文件JPEG: 各图形将生成一系列JPEG图形文件说明:没必要用此命令,需要的图形文件可计算后再输出7 参数化设计语言u do, par, ival, fval, inc 定义一个do循环的开始par: 循环控制变量ival, fval, inc:起始值,终值,步长正,负u enddo 定义一个do循环的结束u if,val1, oper, val2, base: 条件语句val1, val2: 待比较的值也可是字符,用引号括起来oper: 逻辑操作当实数比较时,误差为1e-10eq, ne, lt, gt, le, ge, ablt, abgtbase: 当oper结果为逻辑真时的行为lable: 用户定义的行标志stop: 将跳出anasysexit: 跳出当前的do循环cycle: 跳至当前do循环的末尾then: 构成if-then-else结构。
一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg三、单元生死载荷步!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释。
《史上最全的ANSYS 命令流查询与解释》【 1 】*************************************************************************************对ansys 主要命令的解释1,/PREP7 ! 加载前处理模块2,/CLEAR,NOSTART ! 清除已有的数据, 不读入启动文件的设置(不加载初始化文件)初始化文件是用于记录用户和系统选项设置的文本文件/CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置/FILENAME, EX10.5 ! 定义工程文件名称/TITLE, EX10.5 SOLID MODEL OF AN AXIAL BEARING ! 指定标题4,F,2,FY,-1000 ! 在2号节点上施加沿着-Y 方向大小为1000N 的集中力6,FINISH ! 退出模块命令7,/POST1 ! 加载后处理模块8,PLDISP,2 ! 显示结构变形图,参数“2”表示用虚线绘制出原来结构的轮廓9,ETABLE,STRS,LS,1 ! 用轴向应力SAXL 的编号”LS,1定”义单元表STRS ETABLE, MFORX,SMISC,1 ! 以杆单元的轴力为内容, 建立单元表MFORX ETABLE, SAXL, LS, 1 ! 以杆单元的轴向应力为内容, 建立单元表SAXLETABLE, EPELAXL, LEPEL, 1 ! 以杆单元的轴向应变为内容, 建立单元表EPELAXLETABLE,STRS_ST,LS,1 ! 以杆件的轴向应力“LS,1为”内容定义单元表STRS_STETABLE, STRS_CO, LS,1 ! 以杆件的轴向应力“LS,1定”义单元表STRS_CO ETABLE,STRSX,S,X ! 定义X 方向的应力为单元表STRSXETABLE,STRSY,S,Y ! 定义Y 方向的应力为单元表STRSY *GET,STRSS_ST,ELEM,STEEL_E, ETAB, STRS_ST ! 从单元表STRS_ST 中提取STEEL_E 单元的应力结果,存入变量STRSS_ST;*GET, STRSS_CO,ELEM,COPPER_E,ETAB,STR”S_CO 从单元表STRS_CO 中提取COPPER_E 单元的应力结果,存入变量STRSS_CO10 FINISH ! 退出以前的模块11, /CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置12 /UNITS, SI ! 申明采用国际单位制14 /NUMBER, 2 ! 只显示编号, 不使用彩色/NUMBER, 0 ! 显示编号, 并使用彩色15 /SOLU ! 进入求解模块:定义力和位移边界条件,并求解ANTYPE, STATIC ! 申明分析类型是静力分析(STATIC 或者0) OUTPR, BASIC, ALL ! 在输出结果中, 列出所有荷载步的基本计算结果OUTPR,BASIC,ALL ! 指定输出所有节点的基本数据OUTPR,BASIC,LAST ! 选择基本输出选项,直到最后一个荷载步OUTPR,,1 ! 输出第 1 个荷载步的基本计算结果OUTPR,BASIC,1 ! 选择第 1 荷载步的基本输出项目OUTPR,NLOAD,1 ! 指定输出第 1 荷载步的内容OUTRES,ALL,0 ! 设置将所有数据不记录到数据库。
实验名称:温度场有限元分析一、实验目的1. 掌握Ansys分析温度场方法2. 掌握温度场几何模型二、问题描述井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。
井式炉炉壁体材料的各项参数见表1。
表1 井式炉炉壁材料的各项参数三、分析过程1. 启动ANSYS,定义标题。
单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine”2.定义单位制。
在命令流窗口中输入“/UNITS, SI”,并按Enter 键3. 定义二维热单元。
单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE554.定义材料参数。
单击Main Menu→Preprocessor→Material Props→Material Models菜单5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。
6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。
7.建立模型。
单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。
在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。
8.重复第7步,输入RAD1=0.86-0.065,RAD2=0.86-0.245,单击APPL Y;输入RAD1=0.86-0.245,RAD2=0.86-0.36,单击OK。
1、A,P1,P2,P3,P4,P 5,P6,P7,P8,P9欧阳学文此命令用已知的一组关键点点(P1~P9)来定义面(Area),最少使用三个点才能围成面,同时产生转围绕些面的线。
点要依次序输入,输入的顺序会决定面的法线方向。
如果超过四个点,则这些点必须在同一个平面上。
Menu Paths:MainMenu>Preprocessor>Create>A rbitrary>Through KPs 2、*ABBR,Abbr,String--定义一个缩略语.Abbr:用来表示字符串"String"的缩略语,长度不超过8个字符.String:将由"Abbr"表示的字符串,长度不超过60个字符.3、ABBRES,Lab,Fname,Ext-从一个编码文件中读出缩略语.Lab:指定读操作的标题,NEW:用这些读出的缩略语重新取代当前的缩略语(默认)CHANGE:将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语.Ext:如果"Fname"是空的,则缺省的扩展命是"ABBR".4、ABBSAV,Lab,Fname,Ext-将当前的缩略语写入一个文本文件里Lab:指定写操作的标题,若为ALL,表示将所有的缩略语都写入文件(默认)5、add, ir, ia,ib,ic,name,,,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称6、Adele,na1,na2,ninc,kswp !kswp=0时只删除掉面积本身,=1时低单元点一并删除。
7、Adrag, nl1,nl2,nl3,nl4,nl5,nl6, nlp1,nlp2,nlp3,nlp4,nlp5,nlp6 !面积的建立,沿某组线段路径,拉伸而成。
8、Afillt,na1,na2,rad !建立圆角面积,在两相交平面间产生曲面,rad为半径。
9、*AFUN,Lab在参数表达式中,为角度函数指定单位.Lab:指定将要使用的角度单位.有3个选项.RAD:在角度函数的输入与输出中使用弧度单位(默认)DEG:在角度函数的输入与输出中使用度单位.STAT:显示该命令当前的设置(即是度还是弧度).10、Agen,itime,na1,na2,ninc,dx,dy,dz,kinc, noelem,imove !面积复制命令。
!XXXXXXXXXXXXXXXXXX!定义单元类型!XXXXXXXXXXXXXXXXXXFINI/CLE/TITLE,QSHang Pylon Test/UNITS,SICSYS,0!*afun,deg/PREP7/triad,on/view,1,1,1,1 !定义ISO查看/NERR,1000000et,1,plane55 !定义二维热单元et,2,surf153mp,kxx,1,3.3mp,kyy,1,3.3 !设定砼的导热系数mp,kzz,1,3.3!mp,dens,1,2400 !定义砼的密度mp,c,1,925 !定义砼的比热mp,prxy,1,0.2 !泊松比C50mp,ex,1,3.45e10 !混凝土的弹性模量C50 mp,alpx,1,1e-5!mptemp,1,0,2643,2750,2875 !定义铸钢的热性能!mpdata,kxx,2,1.44,1.54,1.22,1.22!mpdata,enth,2,0,128.1,163.8,174.2!mpplot,kxx,2!mpplot,enth,2!XXXXXXXXXXXXXXXXXXX!建立混凝土几何模型!XXXXXXXXXXXXXXXXXXX!************plane1K,1,0,0,0k,2,0,3.5,0k,3,6.885,3.5k,4,6.885,4k,5,21.2,4k,6,23.7,0l,1,2l,2,3l,3,4l,4,5local,11,1,21.2,0,0,,,,4/2.5,1 l,5,6CSYS,0k,7,18.9,0k,8,18.9,2k,9,19.4,2.5k,10,21,2.5k,11,22.2,0l,1,7l,7,8l,8,9l,9,10local,12,1,21,0,0,,,,2.5/1.2,1 l,10,11CSYS,0l,11,6al,all!************plane2 asel,nonelsel,nonek,12,0.8,0.25k,13,0.3,0.75k,14,0.3,2k,15,0.8,2.5k,16,5.2,2.5k,17,5.7,2k,18,5.7,0.75k,19,5.2,0.25a,12,13,14,15,16,17,18,19k,20,6.8,0.25k,21,6.3,0.75k,22,6.3,2k,23,6.8,2.5k,24,11.2,2.5k,25,11.7,2k,26,11.7,0.75k,27,11.2,0.25a,20,21,22,23,24,25,26,27k,28,12.8,0.25k,29,12.3,0.75k,30,12.3,2k,31,12.8,2.5k,32,15.3,2.5k,33,15.8,2k,34,15.8,0.75k,35,15.3,0.25a,28,29,30,31,32,33,34,35asel,scm,plane,areaallsasba,1,plane!************画网格aatt,1,1,AESIZE,all,0.02 !将所有面网格划分时的单元尺寸设置为0.02m MSHAPE,0,2D !利用四边形单元进行网格划分MSHKEY,2 !采用映射网格划分单元AMESH,ALL !对所有网格进行划分单元allscm,area1,areaarsym,x,area1,,,,0,0allsarsym,y,all,,,,0,0asel,allaglue,all!Nummrg,elem!Nummrg,node!Nummrg,kpnummrg,allnumcmp,all!**************定义组件allslsel,s,length,,6.885lsel,a,length,,0.5lsel,a,length,,14.32lsel,r,loc,y,0,100cm,Eligne,linensll,scm,Enode,nodeTYPE,2ESURFallslsel,s,length,,6.885lsel,a,length,,0.5lsel,a,length,,14.32lsel,r,loc,y,-100,0cm,Wligne,linensll,scm,Wnode,nodeTYPE,2ESURFallslsel,s,length,,5.173lsel,r,loc,x,0,100cm,Sligne,linensll,scm,Snode,nodeTYPE,2ESURFallslsel,s,length,,5.173lsel,r,loc,x,-100,0cm,Nligne,linensll,scm,Nnode,nodeALLSTYPE,2ESURF!**************计算日照时间内,即14个小时内的空气的温度值*DIM,t_outdoor,,13 !定义室外空气温度数组为t_outdoor*DO,t,6,18 !给室外空气温度数组t_outdoor赋值*SET,t_outdoor(t-5),31.5+5.5*sin(3.1415926535898*(t-9)/12)*ENDDO!**************日照强度*DIM,E_insolation,,13 !东边日照*DIM,S_insolation,,13 !东边日照*DIM,W_insolation,,13 !西边日照*DIM,N_insolation,,13 !北边日照E_insolation(1) =240 $S_insolation(1) =33 $ W_insolation(1) = 28 $ N_insolation(1) =89E_insolation(2) =521 $S_insolation(2) =80 $W_insolation(2) =69 $ N_insolation(2) = 160E_insolation(3) =629 $S_insolation(3) = 115 $W_insolation(3) =99 $ N_insolation(3) = 166E_insolation(4) =640 $S_insolation(4) =148 $W_insolation(4) = 127 $ N_insolation(4) = 152E_insolation(5) =536 $S_insolation(5) =184 $W_insolation(5) = 142 $ N_insolation(5) = 142E_insolation(6) =374 $S_insolation(6) =229 $W_insolation(6) = 153 $ N_insolation(6) = 153E_insolation(7) =178 $S_insolation(7) =240 $W_insolation(7) = 153 $ N_insolation(7) = 153E_insolation(8) =178 $S_insolation(8) =229 $W_insolation(8) = 322 $ N_insolation(8) = 153E_insolation(9) =165 $S_insolation(9) =184 $W_insolation(9) = 461 $ N_insolation(9) = 142E_insolation(10) =148 $S_insolation(10) =148 $W_insolation(10) =550 $ N_insolation(10) = 152E_insolation(11)=115 $S_insolation(11)=115 $W_insolation(11) =541 $ N_insolation(11) =166E_insolation(12)=80 $S_insolation(12)=80 $W_insolation(12)= 448 $ N_insolation(12) = 160E_insolation(13)=33 $S_insolation(13)=33 $W_insolation(13)= 206 $ N_insolation(13) = 89!**************综合换热系数h=12.47+3.33*1.5!**************综合大气温度*DIM,Et_synthetiser,,13*DIM,St_synthetiser,,13*DIM,Wt_synthetiser,,13*DIM,Nt_synthetiser,,13*DO,x,1,13,1*SET,Et_synthetiser(x),t_outdoor(x)+(E_insolation(x)/17.465)*0.65*SET,St_synthetiser(x),t_outdoor(x)+(S_insolation(x)/17.465)*0.65*SET,Wt_synthetiser(x),t_outdoor(x)+(W_insolation(x)/17.465)*0.65*SET,Nt_synthetiser(x),t_outdoor(x)+(N_insolation(x)/17.465)*0.65*ENDDO!**************求解/soluantype,trans !设置求解类型瞬态热分析trnopt,full ! 指定瞬态分析的求解方法为完全法timint,on ! 打开时间积分效应tunif,27.6 !设置构件的初始温度为20摄氏度!tref,20outres,all ! 将除SV AR和LOCI以外的所有计算数据写入数据库和文件中!antype,4!autots,on!trnopt,full!lnsrch,on!outres,basic,last!outpr,basic,lastl=0*do,m,1,13,1*do,r,3600,3600,3600time,(m-1)*3600+rl=l+1nsubst,1,100,1 !设置每个荷载的子步数数为1,最大值为100,最小值为1 autots,on ! 打开自动时间步长跟踪eqslv,JCG !指定方程求解器为JCGkbc,0 !使用递增方式加载线性荷载!施加对流荷载!alls!nsel,s,,,Enode!d,all,temp,Et_synthetiser(m)!alls!nsel,s,,,Wnode!d,ALL,temp,Wt_synthetiser(m)!alls!nsel,s,,,Snode!d,ALL,temp,St_synthetiser(m)!alls!nsel,s,,,Nnode!d,ALL,temp,Nt_synthetiser(m)!bf,Enode,hgen,E_insolation(m)!bf,Wnode,hgen,W_insolation(m)!bf,Snode,hgen,S_insolation(m)!bf,Nnode,hgen,N_insolation(m)allsSFl,Eligne,conv,17.456,,Et_synthetiser(m) SFL,Wligne,conv,17.456,,Wt_synthetiser(m) SFL,Sligne,conv,17.456,,St_synthetiser(m) SFL,Nligne,conv,17.456,,Nt_synthetiser(m)allslsel,s,,,Eligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*E_insolation(m)allslsel,s,,,Wligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*W_insolation(m)allslsel,s,,,Sligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*S_insolation(m)allslsel,s,,,Nligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*N_insolation(m)!alls!nsel,s,,,Enode!esln,s!esel,r,type,,1!sfe,all,,conv,,0.65*E_insolation(m)!alls!nsel,s,,,Wnode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*W_insolation(m)!alls!nsel,s,,,Snode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*S_insolation(m)!alls!nsel,s,,,Nnode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*N_insolation(m)!sfa,5,,conv,10,t_outdoor(m) !给面5定义当前荷载步的对流换热系数及周围环境温度!sfa,21,,conv,10,t_outdoor(m) !给面21定义当前荷载步的对流换热系数及周围环境温度!sfa,18,,conv,10,t_outdoor(m) !给面18定义当前荷载步的对流换热系数及周围环境温度!sfa,10,,conv,10,t_outdoor(m) !给面10定义当前荷载步的对流换热系数及周围环境温度!施加太阳辐射荷载!bfv,1,HGEN,heat_eq(1,m)+long_wave(1) !给体1施加当前荷载步的等效生热率!bfv,4,HGEN,heat_eq(2,m)+long_wave(2) !给体4施加当前荷载步的等效生热率!bfv,3,HGEN,heat_eq(3,m)+long_wave(3) !给体3施加当前荷载步的等效生热率!bfv,2,HGEN,heat_eq(4,m)+long_wave(4) !给体2施加当前荷载步的等效生热率!bfe,all,hgen,1,1e10allssolve*enddo*enddo!*************************进入热应力求解/PREP7ETCHG,TTS !热到结构分析转换/SOLantype,4 !瞬态timint,1,struct !Turns on transient effectstimint,0,thermtimint,0,magtimint,0,elecautots,on !打开自动时间步长,有利于非线性收敛tref,20trnopt,full !完全瞬态nropt,full !设置牛顿-拉普森选项kbc,0 !渐变荷载nlgeom,on !打开大变形效应LUMPM,0PSTRES,ONNROPT,FULL, ,on!定义热应力计算参考温度TREF,20,!*************************边界条件DSYM,SYMM,Z,0csys,0LSEL,ALLDL,ALL,,UX,0DL,ALL,,UY,0DL,ALL,,UZ,0*DO,I,1,1355LDREAD,TEMP,,,1*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,1*iDELTIM,1,1,1SOLVE*ENDDO*DO,I,1,500LDREAD,TEMP,,,1355+10*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,1355+10*iDELTIM,10,10,10SOLVE*ENDDO*DO,I,1,300LDREAD,TEMP,,,6355+50*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,6355+50*iDELTIM,50,50,50SOLVE*ENDDO*DO,I,1,300LDREAD,TEMP,,,21355+100*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,21355+100*iDELTIM,100,100,100 SOLVE*ENDDOSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,0,0,0.17PPA TH,2,,0,0.7,0.17 PDEF,,S,xPLPATH,Sx/IMAGE,SA VE,zpath1,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,-1.72,0.4,0.17 PPA TH,2,,1,0.4,0.17 PDEF,,S,xPLPATH,Sx/IMAGE,SA VE,zpath2,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,0,0.7,0PPA TH,2,,0,0.7,0.35 PDEF,,S,zPLPATH,Sz/IMAGE,SA VE,zpath3,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,-1.72,0.7,0.17 PPA TH,2,,1,0.7,0.17 PDEF,,S,zPLPATH,Sz/IMAGE,SA VE,zpath4,BMPvsel,s,,,1 !选择编号为1的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(1),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(1))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(1))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(1,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,4 !选择编号为4的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(2),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(2))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(2))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(2,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,3 !选择编号为3的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(3),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(3))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(3))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(3,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,2 !选择编号为2的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(4),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(4))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(4))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(4,l),value_4/0.03 !计算长波辐射净强度的等效生热率allsel*enddo*enddo。
ansys——ANSYS命令流(Ⅰ)1. A,P1,P2,…,P17,P18(以点定义面)2. AADD,NA1,NA2,…NA8,NA9(面相加)3. AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性)【注】ESYS为坐标系统号、SECN为截面类型号。
4. *ABBR,Abbr,String(定义一个缩略词)5. ABBRES,Lab,Fname,Ext(从文件中读取缩略词)6. ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件)7. ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值)【注】*************8. ACCAT,NA1,NA2(连接面)9. ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度)10. ACLEAR,NA1,NA2,NINC(清除面单元网格)11. ADAMS,NMODES,KSTRESS,KSHELL【注】*************12. ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC【注】*************13. ADD,IR, IA, IB, IC, Name, --,-- , FACTA, FACTB, FACTC(变量加运算)14. ADELE,NA1,NA2,NINC,KSWP(删除面)【注】KSWP =0删除面但保留面上关键点、1删除面及面上关键点。
15. ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面)16. AESIZE,ANUM,SIZE(指定面上划分单元大小)17. AFILLT,NA1,NA1,RAD(两面之间生成倒角面)18. AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元)19. *AFUN, Lab(指定参数表达式中角度单位)20. AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE(复制面)21. AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接)22. AINA,NA1,NA2,…,NA8,NA9(被选面的交集)23. AINP,NA1,NA2,…,NA8,NA9(面集两两相交)24. AINV,NA,NV(面体相交)25. AL,L1,L2,…,L9,L10(以线定义面)26. ALIST,NA1,NA2,NINC,Lab(列表显示面的信息)【注】Lab=HPT时,显示面上硬点信息,默认为空。
ANSYS温度场命令流简介ANSYS是一种通用的有限元分析软件,可用于进行各种各样的工程仿真。
在ANSYS中,温度场是一种重要的分析对象,通过模拟和分析温度场,可以帮助工程师评估和改进产品的耐热性能。
本文将介绍ANSYS中用于创建和处理温度场的命令流。
创建网格在进行温度场分析之前,首先需要创建一个网格。
网格可以通过ANSYS中的多种方法生成,例如利用CAD软件导入几何体、手动定义节点和单元、利用自动网格生成工具等等。
在这里,我们将使用ANSYS中的自动网格生成工具来创建一个简单的二维矩形网格。
!创建一个2D矩形区域B1OCK,0,1,0,1,0j0.1!划分网格MESH,1!输出网格信息∕PREP7ET,1,P1ANE42MP,EX,1,100000MP,DENS,1,7800上述命令流首先创建了一个2D矩形区域,坐标范围为(0,0]到(1,0.1]o然后使用MESH命令将该区域划分为网格。
最后,使用ET 命令定义了一个平面应力单元,使用MP命令设置了该单元的材料属性。
定义边界条件一旦网格创建完毕,我们需要定义温度场的边界条件。
在ANSYS中,我们可以通过在边界上定义温度或者通过定义热通量来设置边界条件。
以下是一个设置边界条件的示例命令流:!在左侧边界定义一个恒定温度DJ1,TEMPER,200ESIZE j0.05!在右侧边界定义一个恒定热通量D,2,F1UX,500上述命令流中,我们使用D命令分别在左侧和右侧边界定义了边界条件。
在左侧边界上,我们将温度设置为200度。
在右侧边界上,我们定义了一个恒定热通量,其值为500o定义材料属性在进行温度场分析之前,我们还需要定义材料的热传导性质。
以下是一个定义材料属性的示例命令流:!定义材料属性MAT,1MP,E,100000MP,PRXY,0.3MP,CoNDJ50!指定单元材料属性REA1,1TYPE,1MAT,1上述命令流中,我们首先使用MAT命令定义了一个材料,并使用MP命令分别设置了该材料的弹性模量、泊松比和热导率。
=====【热力耦合分析单元简介】======SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
LINK33-三维传导杆用于节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
精品文档Instruction of Ansys temperature field calculationQuestion 1: Con sider an infin ite (in one directio n) plate with in itial temperature T 0. One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s.问题1考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。
12 24Basic parameters基本物性参数Geometry 几何:a=1 m, b=0.1 mo 3 oMaterial 材料:2=54 W/m • C,尸7800 kg/m , c p=465 J/kg C Loads载荷:T0=0 °C, T e=1000 o C, h=50 W/m2 o CJobname and directory setting设置文件名、存储路径Menu | File | Change Job nameMenu | File | Change DirectoryPreprocessinc前处理⑴Define Element Type定义单元类型Preprocessor | Eleme nt Type | Add/Edit/DeleteAdd: Thermal Mass | Solid | Quad 4node 55(2) Set Material Properties 设置材料属性Preprocessor | Material Props | Material ModelsThermal: Co nductivity: Isotropic KXX=54Thermal: Den sity=7800Thermal: Specific Heat=465精品文档Modeling 建模(1) Create Node 1 建立节点1Preprocessor | Modeling | Create | Nodes | In Active CS No.: 1, (x, y, z) = (0,0,0)(2) Create Node 12建立节点12 Preprocessor | Modeling | Create | Nodes | In Active CS No.: 2, (x, y, z) = (0,1,0)(3) Fill Between Node 1 and 12在节点1,12 间填充其余节点Preprocessor | Modeling | Create | Nodes | Fill Between Nds Number of nodes to fill: 10Spacing ratio: 1(均匀网格)(4) Create Node 13~24 by copying复制生成节点13〜24Preprocessor | Modeling | Copy | Nodes | Copy Pick All 选择所有节点Total number of copies: 2复制2 份(包含原先的1 份) X-offset: 0.1 设置X 方向偏移量(5) Create Element 1 生成单元1Preprocessor | Modeling | Create | Elements | Auto Numbered | Thru Nodes Select 1, 13, 14, 2(with mouse)(6) Copy Element 2~10 by copying复制生成其余单元Preprocessor | Modeling | Copy | Elements | Auto Numbered Pick All 选择所有单元Total number of copies: 11复制11 份(包含原先的1 份)Node number increment: 1设置节点增量Applying Loads加载(设置边界条件和初始条件)(1) Apply convention loads on Node 12 and 2在4 节点12,24 上加对流载荷Preprocessor | Loads | Define Loads | Apply | Thermal | Convection | On Nodes Pick 12, 24VALI Film coefficient: 50 换热系数VAL2L Bulk temperature: 1000 环境温度(2) Set initial temperature(uniform temperature)设置初始条件(均匀温度)Solution | Define Loads | Settings | Uniform Temp Uniform Temperature: 0Solution 求解(1) Set Analysis Type as Transien t置分析类型为瞬态分析Solution | Analysis Type | New Analysis Transient精品文档(2) Set solution control设置分析控制参数Solution | Analysis Type | So'ln Controls”Transient”Label: Stepped Loading”Basic”Label: Time at end of loadstep: 10000; Automatic time stepping: on; Time increment: 10; Frequency: Write every substep⑶Solve求解Solution | Solve | Current LSViewing Results 查看结果(1) TimeHist Postpro时间历程后处理器Add data 添加数据:TimeHist Postpro | Add data: Nodal Solution: DOF Solution: Nodal Temperature:Variable Name: T1; Node 1Variable Name: T5; Node 5Variable Name: T9; Node 9Variable Name: T11; Node 11(2) List/Graph 列表/作图Select the variables选择变量:List data/ Graph data⑶Save image保存图片Menu | PlotCtrls | Capture Image: File | Save as(4) General Postpro通用后处理器Select the data of certain time选择某一时刻的数据:General Postpro | Read Results | By pickPlot the con tour map of temperature distribution 绘制该时刻温度分布等值线图:General Postpro | Plot Results | Contour Plot | Nodal Solu | Nodal Solution: DOF Solution:Temperature(5) Save image保存图片Menu | PlotCtrls | Capture Image: File | Save as(6) Animate 生成动画Menu | PlotCtrls | Animate | Over TimeNumber of animation frames: 100Question 2: Consider a solid cylinder with initial temperature T0. The top surface of the cylinder is exposed to the environment of which the temperature is T e (III type boundary condition) and the other surfaces are heat insulation (II type boundary condition). Analyze the temperature distribution in the cylinder during the period of 1000s.问题2:考虑一个初始温度为T o的圆柱体,一段暴露在温度为T e的环境中,其余界面视为绝热,分析其在1000s内温度分布情况。
!此APDL程序为本书第六章《太阳辐射作用下钢结构温度场分析》中例题6.2的相关程序!(1)建立工作文件名和工作标题/CLEAR !清除目前ANSYS中所有数据/COM,Thermal !过滤ANSYS的图形截面/FILENAME, TEMP_FIELD !定义工作文件名/TITLE, TEMPERATURE FIELD ANAL YSIS OF A STEEL MEMBER !定义工作标题*AFUN,DEG !设置程序中角单位为度!(2)定义单元类型/PREP7 !进入前处理模块ET,1,SOLID70 !定义热分析单元ET,2,MESH200 !定义网格划分单元KEYOPT,2,1,6 !定义单元2的第一个关键选项KEYOPT,2,2,0 !定义单元2的第二个关键选项!(3)定义材料性能参数MP,KXX,1,45 !定义钢材KXX方向的导热系数MP,KYY,1,45 !定义钢材KYY方向的导热系数MP,KZZ,1,45 !定义钢材KZZ方向的导热系数MP,DENS,1,7850 !定义钢材的密度MP,C,1,465 !定义钢材的比热容!(4)创建有限元模型LOCAL,11,0,0,0,0,0,0,30 !定义局部坐标系11CSYS,11 !激活局部坐标系11K,1,0,0,0 !定义矩形钢管的中心轴线中的关键点1K,2,0,1,0 !定义矩形钢管的中心轴线中的关键点2L,1, 2 !连接关键点1和2,生成矩形钢管的中心轴线k,3,0.5,0,0.5 !定义矩形钢管截面的关键节点3k,4,-0.5,0,0.5 !定义矩形钢管截面的关键节点4k,5,-0.5,0,-0.5 !定义矩形钢管截面的关键节点5k,6,0.5,0,-0.5 !定义矩形钢管截面的关键节点6k,7,0.48,0,0.48 !定义矩形钢管截面的关键节点7k,8,-0.48,0,0.48 !定义矩形钢管截面的关键节点8k,9,-0.48,0,-0.48 !定义矩形钢管截面的关键节点9k,10,0.48,0,-0.48 !定义矩形钢管截面的关键节点10k,11,0.5,0,0.48 !定义矩形钢管截面的关键节点11k,12,-0.5,0,0.48 !定义矩形钢管截面的关键节点12k,13,-0.5,0,-0.48 !定义矩形钢管截面的关键节点13k,14,0.5,0,-0.48 !定义矩形钢管截面的关键节点14!定义矩形钢管截面,为便于网格划分,分四部分创建A,3,4,12,11 !利用关键点3、4、12、11,生成面1A,5,6,14,13 !利用关键点5、6、14、13,生成面2A,11,7,10,14 !利用关键点11、7、10、14,生成面3A,8,12,13,9 !利用关键点8、12、13、9,生成面4!对矩形钢管截面进行网格划分AESIZE,all,0.02 !将所有面网格划分时的单元尺寸设置为0.02m MSHAPE,0,2D !利用四边形单元进行网格划分MSHKEY,1 !采用映射网格划分单元AMESH,ALL !对所有网格进行划分单元TYPE,1 ! 定义单元属性EXTOPT,ESIZE,10,1, !在体生成的方向上单元分割为10份EXTOPT,ACLEAR,1 !在体生成时清除面单元网格EXTOPT,ATTR,0,0,0 !使用有MA T命令定义的材料属性赋给单元MA T,1 !定义单元的材料属性VDRAG,1,2 ,3 , 4, , ,1 !拉伸建立体并形成SOLID70实体单元CSYS,0 ! 激活笛卡尔坐标系!(5)计算日照时间内,即14个小时内的空气的温度值*DIM,t_outdoor,,14 !定义室外空气温度数组为t_outdoor*DO,t,6,19 !给室外空气温度数组t_outdoor赋值*SET,t_outdoor(t-5),35+5*sin(15*(t-5)-45)*ENDDO!(6)计算日照时间内,即14个小时内地面的温度值*DIM,t_earth,,14 !定义地面的温度值数组为t_earth*DO,t,6,19 !给日照时间内地面温度值数组赋值*SET,t_earth(t-5),36+8*sin(15*(t-5)-45)*ENDDO!(7)定义14个时刻太阳高度角正弦数组altitudea1=23.44 !定义太阳赤纬角23.44a2=36.26 !定义地理纬度为北纬36.26*DIM,altitude,,14 !定义日照时间内太阳高度角的正弦值数组为altitude *DO,i,1,14,1aa=cos(a2)*cos(15*(i-1)-90)*cos(a1)aa1=sin(a2)*sin(a1) !根据书中公式()计算太阳高度角正弦值*SET,altitude(i),aa+aa1*ENDDO!(8)定义14个时刻的太阳方位角余弦数组azimuth并赋值,*DIM,azimuth,,14*DO,i,1,14,1aa=sin(a1)*cos(a2)-cos(a1)*sin(a2)*cos(15*(i-1)-90)aa2=sqrt(1-altitude(i)**2)*SET,azimuth(i),aa/aa2*ENDDO!(9)定义14个时刻的太阳方位角角度数组angle并赋值*DIM,angle,,14*DO,i,1,7,1*SET,angle(i),acos(azimuth(i))*ENDDO*DO,i,8,14,1*SET,angle(i),2*180-acos(azimuth(i))*ENDDO!(11)太阳辐射强度计算的基本参数设置*SET,factorc,0.138 !太阳散射辐射系数*SET,pg,0.35 !地面或者水平面的太阳辐射反射率*SET,factor_a,1370*(1+0.034) !地外太阳直射辐射值*SET,factor_b,0.42 !定义大气消光系数!(12)定义14个时刻的地面太阳辐射直射强度数组GND并赋值*DIM,GND,,14*DO,m,1,14,1*SET,GND(m),factor_a/exp(factor_b/altitude(m))*ENDDO!(13)定义14个时刻结构表面太阳辐射荷载的几何参数*DIM,cos_surf,,4 !表面方位角余弦值*DIM,cos_angle,,4 !表面方位角角度值*DIM,cos_title,,4 !倾角余弦值*DIM,title_angle,,4 !倾角角度值!利用面5上的三个关键点,计算面5的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=4 !将面5中的关键点4的编号赋给参数kp_1kp_2=3 !将面5中的关键点3的编号赋给参数kp_2kp_3=16 !将面5中的关键点16的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点4的X坐标值k1y=ky(kp_1) !提取关键点4的Y坐标值k1z=kz(kp_1) !提取关键点4的Z坐标值k2x=kx(kp_2) !提取关键点3的X坐标值k2y=ky(kp_2) !提取关键点3的Y坐标值k2z=kz(kp_2) !提取关键点3的Z坐标值k3x=kx(kp_3) !提取关键点16的X坐标值k3y=ky(kp_3) !提取关键点16的Y坐标值k3z=kz(kp_3) !提取关键点16的Z坐标值!参考空间解析几何相关知识,计算面5的a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(1),acos(cos_surf(1))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(1),acos(cos_surf(1))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(1),180-acos(cos_surf(1))*else*set,cos_angle(1),360-acos(cos_surf(1))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(1),cosz*set,title_angle(1),acos(cosz)!利用面21上的三个关键点,计算面21的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=13 !将面21中的关键点13的编号赋给参数kp_1kp_2=12 !将面21中的关键点12的编号赋给参数kp_2kp_3=22 !将面21中的关键点22的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点13的X坐标值k1y=ky(kp_1) !提取关键点13的Y坐标值k1z=kz(kp_1) !提取关键点13的Z坐标值k2x=kx(kp_2) !提取关键点12的X坐标值k2y=ky(kp_2) !提取关键点12的Y坐标值k2z=kz(kp_2) !提取关键点12的Z坐标值k3x=kx(kp_3) !提取关键点22的X坐标值k3y=ky(kp_3) !提取关键点22的Y坐标值k3z=kz(kp_3) !提取关键点22的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(2),acos(cos_surf(2))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(2),acos(cos_surf(2))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(2),180-acos(cos_surf(2))*else*set,cos_angle(2),360-acos(cos_surf(2))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(2),cosz*set,title_angle(2),acos(cosz)!利用面18上的三个关键点,计算面18的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=11 !将面18中的关键点11的编号赋给参数kp_1kp_2=14 !将面18中的关键点14的编号赋给参数kp_2kp_3=21 !将面18中的关键点21的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点11的X坐标值k1y=ky(kp_1) !提取关键点11的Y坐标值k1z=kz(kp_1) !提取关键点11的Z坐标值k2x=kx(kp_2) !提取关键点14的X坐标值k2y=ky(kp_2) !提取关键点14的Y坐标值k2z=kz(kp_2) !提取关键点14的Z坐标值k3x=kx(kp_3) !提取关键点21的X坐标值k3y=ky(kp_3) !提取关键点21的Y坐标值k3z=kz(kp_3) !提取关键点21的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(3),acos(cos_surf(3))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(3),acos(cos_surf(3))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(3),180-acos(cos_surf(3))*else*set,cos_angle(3),360-acos(cos_surf(3))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(3),cosz*set,title_angle(3),acos(cosz)!利用面10上的三个关键点,计算面10的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=6 !将面10中的关键点6的编号赋给参数kp_1kp_2=5 !将面10中的关键点5的编号赋给参数kp_2kp_3=19 !将面10中的关键点19的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点6的X坐标值k1y=ky(kp_1) !提取关键点6的Y坐标值k1z=kz(kp_1) !提取关键点6的Z坐标值k2x=kx(kp_2) !提取关键点5的X坐标值k2y=ky(kp_2) !提取关键点5的Y坐标值k2z=kz(kp_2) !提取关键点5的Z坐标值k3x=kx(kp_3) !提取关键点19的X坐标值k3y=ky(kp_3) !提取关键点19的Y坐标值k3z=kz(kp_3) !提取关键点19的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(4),acos(cos_surf(4))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(4),acos(cos_surf(4))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(4),180-acos(cos_surf(4))*else*set,cos_angle(4),360-acos(cos_surf(4))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(4),cosz*set,title_angle(4),acos(cosz)!(14)定义日照时间内14个时刻的构件表面太阳方位角数组并计算赋值*dim,angle_surf,,4,14 !表面太阳方位角计算*do,m,1,14*do,j,1,4,1*set,angle_surf(j,m),abs(cos_angle(j)-angle(m))*enddo*enddo!(15)定义日照时间内14个时刻的构件表面太阳入射角数组并计算赋值*dim,cos_ps,,4,14!计算入射角*do,m,1,14cosp=sqrt(1-altitude(m)**2)*do,j,1,4,1dd1=altitude(m)*cos(title_angle(j))dd2=cosp*cos(angle_surf(j,m))*sin(title_angle(j))*set,cos_ps(j,m),dd1+dd2*enddo*enddo!(16)定义日照时间内14个时刻的构件表面与水平面之间夹角的余弦值数组并计算赋值*dim,cos_ph,,4!表面与水平面之间的夹角的余弦!利用面5上的三个关键点,计算面5水平面之间的夹角的余弦值并赋值给cos_ph(1)kp_1=4 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=3 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=16 !将面21中的三个关键点22的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点4的X坐标值k1y=ky(kp_1) !提取关键点4的Y坐标值k1z=kz(kp_1) !提取关键点4的Z坐标值k2x=kx(kp_2) !提取关键点3的X坐标值k2y=ky(kp_2) !提取关键点3的Y坐标值k2z=kz(kp_2) !提取关键点3的Z坐标值k3x=kx(kp_3) !提取关键点16的X坐标值k3y=ky(kp_3) !提取关键点16的Y坐标值k3z=kz(kp_3) !提取关键点16的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(1),abs(a3)/a4!利用面21上的三个关键点,计算面21水平面之间的夹角的余弦值并赋值给cos_ph(2) kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点13的X坐标值k1y=ky(kp_1) !提取关键点13的Y坐标值k1z=kz(kp_1) !提取关键点13的Z坐标值k2x=kx(kp_2) !提取关键点12的X坐标值k2y=ky(kp_2) !提取关键点12的Y坐标值k2z=kz(kp_2) !提取关键点12的Z坐标值k3x=kx(kp_3) !提取关键点22的X坐标值k3y=ky(kp_3) !提取关键点22的Y坐标值k3z=kz(kp_3) !提取关键点22的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(2),abs(a3)/a4!利用面18上的三个关键点,计算面18水平面之间的夹角的余弦值并赋值给cos_ph(3) kp_1=11 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=14 !将面21中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面21中的三个关键点21的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点11的X坐标值k1y=ky(kp_1) !提取关键点11的Y坐标值k1z=kz(kp_1) !提取关键点11的Z坐标值k2x=kx(kp_2) !提取关键点14的X坐标值k2y=ky(kp_2) !提取关键点14的Y坐标值k2z=kz(kp_2) !提取关键点14的Z坐标值k3x=kx(kp_3) !提取关键点21的X坐标值k3y=ky(kp_3) !提取关键点21的Y坐标值k3z=kz(kp_3) !提取关键点21的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(3),abs(a3)/a4!利用面10上的三个关键点,计算面10水平面之间的夹角的余弦值并赋值给cos_ph(4) kp_1=6 !将面21中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面21中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面21中的三个关键点19的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点6的X坐标值k1y=ky(kp_1) !提取关键点6的Y坐标值k1z=kz(kp_1) !提取关键点6的Z坐标值k2x=kx(kp_2) !提取关键点5的X坐标值k2y=ky(kp_2) !提取关键点5的Y坐标值k2z=kz(kp_2) !提取关键点5的Z坐标值k3x=kx(kp_3) !提取关键点19的X坐标值k3y=ky(kp_3) !提取关键点19的Y坐标值k3z=kz(kp_3) !提取关键点19的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(4),abs(a3)/a4!(17)定义日照时间内的14个时刻的4个面的太阳直射强度数组并计算赋值*dim,vertical,,4,14!定义表面太阳辐射直射强度数组*do,m,1,14,1*do,j,1,4,1*if,cos_ps(j,m),gt,0,then*set,vertical(j,m),gnd(m)*cos_ps(j,m)*else*endif*enddo*enddo!(18)定义日照时间内的14个时刻的4个面的太阳辐射散射强度数组并计算赋值*dim,diffuse,,4,14!定义表面太阳辐射散射强度数组*DIM,fuhao,,4 !定义*do,m,1,14,1!利用面5上的三个关键点,计算当前时刻的面5的太阳辐射散射强度并赋值给diffuse(1,m) kp_1=4 !将面5中的三个关键点4的编号分别赋给参数kp_1kp_2=3 !将面5中的三个关键点3的编号分别赋给参数kp_2kp_3=16 !将面5中的三个关键点16的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(1,m),gnd(m)*factorc*(1+cos_ph(1))/2*else*set,diffuse(1,m),0*set,fuhao(1),0*endif*enddo*do,m,1,14,1kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(2,m),gnd(m)*factorc*(1+cos_ph(2))/2*else*set,diffuse(2,m),0*set,fuhao(2),0*endif*enddo*do,m,1,14,1kp_1=11 !将面18中的三个关键点11的编号分别赋给参数kp_1kp_2=14 !将面18中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面18中的三个关键点21的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,diffuse(3,m),gnd(m)*factorc*(1+cos_ph(3))/2*else*set,diffuse(3,m),0*set,fuhao(3),0*endif*enddo*do,m,1,14,1kp_1=6 !将面10中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面10中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面10中的三个关键点19的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(4,m),gnd(m)*factorc*(1+cos_ph(4))/2*else*set,diffuse(4,m),0*set,fuhao(4),0*endif*enddo!(19)定义日照时间内的14个时刻的4个面的太阳辐射反射强度数组并计算赋值*dim,reflect,,4,14!表面太阳辐射反射强度*do,m,1,14,1kp_1=4 !将面5中的三个关键点4的编号分别赋给参数kp_1kp_2=3 !将面5中的三个关键点2的编号分别赋给参数kp_2kp_3=16 !将面5中的三个关键点16的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(1,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(1))/2*else*set,reflect(1,m),0*endif*enddo*do,m,1,14,1kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(2,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(2))/2*else*set,reflect(2,m),0*endif*enddo*do,m,1,14,1kp_1=11 !将面18中的三个关键点11的编号分别赋给参数kp_1kp_2=14 !将面18中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面18中的三个关键点21的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(3,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(3))/2*else*set,reflect(3,m),0*endif*enddo*do,m,1,14,1kp_1=6 !将面10中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面10中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面10中的三个关键点19的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(4,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(4))/2*else*set,reflect(4,m),0*endif*enddo!(20)定义日照时间内的14个时刻的4个面的太阳辐射总强度数组并计算赋值*dim,radi_all,,4,14!表面辐射总强度*do,m,1,14,1*do,j,1,4,1*set,radi_all(j,m),(vertical(j,m)+diffuse(j,m)+reflect(j,m))*0.55*enddo*enddo!(21)定义日照时间内的14个时刻的4个面的太阳辐射等效生热率数组并计算赋值!等效生热率*dim,heat_eq,,4,14*do,m,1,14,1*do,j,1,4,1*set,heat_eq(j,m),radi_all(j,m)/0.02*enddo*enddofinish!(21) 进入求解器,设置求解选项进行数值计算/soluantype,trans !设置求解类型瞬态热分析trnopt,full ! 指定瞬态分析的求解方法为完全法timint,on ! 打开时间积分效应tunif,32.5 !设置构件的初始温度为32.5摄氏度outres,all ! 将除SV AR和LOCI以外的所有计算数据写入数据库和文件中!求解参数设定value_1=0.8 ! 定义构件的辐射发射率参数value_2=5.67e-8 !定义斯蒂芬-玻尔慈曼常数参数value_3=value_1*value_2 !将value_1和value_2相乘并赋值给value_3*dim,long_wave,,4,840 !求解过程中,每个荷载步中给四个外表面所施加的长波辐射强度*dim,node_num1,,2000 !拱上实体包含的节点编号数组*dim,node_temp1,,2000 !拱上实体包含节点的温度值数组l=0*do,m,1,14,1*do,r,3600,3600,3600time,(m-1)*3600+rl=l+1nsubst,1,100,1 !设置每个荷载的子步数数为1,最大值为100,最小值为1autots,on ! 打开自动时间步长跟踪eqslv,JCG !指定方程求解器为JCGkbc,0 !使用递增方式加载!施加对流荷载sfa,5,,conv,10,t_outdoor(m) !给面5定义当前荷载步的对流换热系数及周围环境温度sfa,21,,conv,10,t_outdoor(m) !给面21定义当前荷载步的对流换热系数及周围环境温度sfa,18,,conv,10,t_outdoor(m) !给面18定义当前荷载步的对流换热系数及周围环境温度sfa,10,,conv,10,t_outdoor(m) !给面10定义当前荷载步的对流换热系数及周围环境温度!施加太阳辐射荷载bfv,1,HGEN,heat_eq(1,m)+long_wave(1) !给体1施加当前荷载步的等效生热率bfv,4,HGEN,heat_eq(2,m)+long_wave(2) !给体4施加当前荷载步的等效生热率bfv,3,HGEN,heat_eq(3,m)+long_wave(3) !给体3施加当前荷载步的等效生热率bfv,2,HGEN,heat_eq(4,m)+long_wave(4) !给体2施加当前荷载步的等效生热率solvevsel,s,,,1 !选择编号为1的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(1),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(1))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(1))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(1,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,4 !选择编号为4的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(2),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(2))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(2))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(2,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,3 !选择编号为3的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(3),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(3))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(3))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(3,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,2 !选择编号为2的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(4),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(4))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(4))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(4,l),value_4/0.03 !计算长波辐射净强度的等效生热率allsel*enddo*enddo在土木工程结构中,温度应力在很多情况下对结构的影响很大。