七年级初一数学 第六章 实数知识点及练习题含答案
- 格式:doc
- 大小:1021.50 KB
- 文档页数:19
七年级初一数学 第六章 实数知识点及练习题及答案(1)一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 25 15 20 2621 2728则第20行从左至右第10个数为( )A .425B .426C .427D .428 2.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 3.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个4.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .105.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 6.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .67.实数 )A3<<B.3<C3<< D3<<8.如图,若实数m+1,则数轴上表示m 的点应落在( )A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.估计7+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间10.下列各数中3.14,5,0.1010010001…,﹣17,2π,﹣38有理数的个数有()A.1个B.2个C.3个D.4个二、填空题11.[x)表示小于x的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x)–x有最大值是0;③[x)–x有最小值是-1;④x1-≤[x)<x,其中正确的是__________ (填编号).12.若x+1是125的立方根,则x的平方根是_________.13.一个数的平方为16,这个数是.14.如果一个有理数a的平方等于9,那么a的立方等于_____.15.若已知x-1+(y+2)2=0,则(x+y)2019等于_____.16.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是__________.17.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.若2x-+|2﹣x|=x+3,则x的立方根为_____.20.如图所示的运算程序中,若开始输入的x值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:3100010=31000000100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________.22.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.23.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 24.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23-+的平方根25.z是64的方根,求x y z26.计算:2-+--(1)|2|(3)+-(2)||2||1|【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.2.A解析:A【分析】直接利用负整数指数幂的性质结合x的取值范围得出答案.【详解】∵-1<x<0,∴x-1<x<x2,故选A.【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x的取值范围分析是解题的关键.3.C解析:C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可.【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误;③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误.所以错误的个数是3个.故答案为C【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.4.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.5.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n 行右边的数就是n 的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C .【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.6.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….7.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=>3<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.8.B解析:B【分析】+1的取值范围进而得出答案.【详解】解:∵实数m ,23<<∴﹣2<m <﹣1,∴在数轴上,表示m 的点应落在线段BC 上.故选:B .【点睛】9.B解析:B【分析】的范围,继而可求得答案.【详解】∵22=4,32=9,∴<3,∴+1<4,故选B.【点睛】本题考查了无理数的估算,熟练掌握是解题的关键.10.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 二、填空题11.③,④【分析】①[x) 示小于x 的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x 变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x 的最大整数,由定义得[x )<x≤[x )+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.【详解】解:这个数是 解析:【详解】解:2(4)16,±=∴这个数是4±14.±27【分析】根据a 的平方等于9,先求出a ,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a 的平方等于9,先求出a ,再计算a 3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.15.-1【分析】根据非负数的性质先求出x 与y ,然后代入求解即可.【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x 与y ,然后代入求解即可.【详解】(y+2)2=0∴1020x y -=+=⎧⎨⎩12x y =⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x 与y 是解题的关键.16.;【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律. 17.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】∴x﹣2≥0,解得:x≥2,﹣2=x+3,5,故x﹣2=25,解得:x=27,故x的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x=10时,第2次输出的结果为1105 2⨯=,x=5时,第3次输出的结果为5+3=8,x=8时,第4次输出的结果为184 2⨯=,x=4时,第5次输出的结果为142 2⨯=,x=2时,第6次输出的结果为121 2⨯=,x=1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.22.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1) =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.23.(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.24.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)9;(2)3-;(3)-3;(4)1【分析】(1)分别根据绝对值的代数意义、有理数的乘方以及算术平方根运算法则进行计算即可; (2)先去绝对值,再合并即可;(3)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解; (4)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解.【详解】(1)2|2|(3)-+-=2+9-2=9;(2)|2||1|+-=21=3-(3 =13+522- =-3;(4= =524433--+ =1.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解此题的关键.。
七年级初一数学 第六章 实数知识点及练习题及答案(1)一、选择题1.设n 为正整数,且20191n n <<+,则n 的值为( ) A .42 B .43 C .44 D .452.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数3.在下列各数322 2,3,8, ,,36,0.10100100013π--⋯⋯ (两个1之间,依次增加1个0),其中无理数有( )A .6个B .5个C .4个D .3个4.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .105.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38-6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±97.下列各式中,正确的是( )A .()233-=-B .42=±C .164=D .393=8.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x9.下列各式中,正确的是( )A 4±2B 42=C 2(2)2-=-D 3644-=- 10.在实数:3.14159364,1.010010001....,4.21••,π,227中,无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.m 的平方根是n +1和n ﹣5;那么m +n =_____.13.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____.14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.18.已知2(21)10a b ++-=,则22004a b +=________.19.0.050.55507.071≈≈≈≈,按此规500_____________20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.观察下列各式﹣1×12=﹣1+12 ﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数).(2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯). 22.对于实数a,我们规定用{a}表示不小于a的最小整数,称{a}为 a的根整数.如{10}=4.(1)计算{9}=?(2)若{m}=2,写出满足题意的m的整数值;(3)现对a进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次{12}=4,再进行第二次求根整数{4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数,次后结果为2.23.探究:()()()211132432222122222222-=⨯-⨯=-==-==……(1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.24.对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2)若38y-和325y-互为相反数,且x+5的平方根是它本身,求x+y的立方根.25.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;(2)若一个圆的面积与一个正方形的面积都是22cmπ,设圆的周长为C圆,正方形的周长为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?26.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到44201945<<,再根据已知条件即可求得答案.【详解】解:∵193620192025<<∴2244201945<<. 2244201945<∴44201945<<∵n 为正整数,且20191n n <<+ ∴44n =.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A 、实数包括有理数和无理数,故此命题是假命题;B 、有理数就是有限小数或无限循环小数,故此命题是假命题;C 、无限不循环小数就是无理数,故此命题是假命题;D 、无论是无理数还是有理数都是实数,是真命题.故选:D .【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.D解析:D【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【详解】在下列各数22 , ,3π⋯⋯(两个1之间,依次增加1个0),其中有理数有:222,,63=-=-,π,0.1010010001……共3个.故选:D .【点睛】此题考查无理数的定义.解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 7.C解析:C【分析】对每个选项进行计算,即可得出答案.【详解】3=,原选项错误,不符合题意;2=,原选项错误,不符合题意;4=,原选项正确,符合题意;D. 3≠,原选项错误,不符合题意.【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.8.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.9.D解析:D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A=2,选项A错误;选项B2=±,选项B错误;选项C=,选项C错误;选项D4=-,选项D正确.故选D.【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.10.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.13.-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(解析:-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:20 20 xx-≥⎧⎨-≥⎩,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.2=-.故答案是:﹣2.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.403【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达 解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a -【解析】由数轴得,a +b <0,b-a >0,=-a-b +b-a =-2a.故答案为-2a.点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 17.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1, ∴,故答案为:.【点睛】本题考查了非负数解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a=12-,b=1,∴222004200411511244 a b⎛⎫+=-+=+=⎪⎝⎭,故答案为:54.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈.故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 三、解答题21.(1)1145-+,111n n -++;(2)20152016-. 【分析】(1)根据题目中的式子,容易得到式子的规律;(2)根据题目中的规律,将乘法变形为加法即可计算出所求式子的结果.【详解】解:(1)11114545-⨯=-+,1111-=-11n n n n +++, 故答案为:1145-+,111n n -++; (2)1111111(1)()()()2233420152016-⨯+-⨯+-⨯+⋯+-⨯ 11111111()()()2233420152016=-++-++-++⋯+-+ 112016=-+20152016=-. 【点睛】本题考查规律性:数字的变化类,解题的关键是明确题意,找出所求式子中数的变化的特点.22.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.23.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.24.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.25.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.26.(1)1022;(2)3066,2226;(3)67 36【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=q np n++,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=q np n++,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=q np n ++,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=61263= 50252++对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=636 5267= 342++∵6367 5236<故所有“特色数”的F(m)的最大值为:67 36.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.。
七年级初一数学第六章 实数知识点及练习题及答案(1)一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.设n 为正整数,且20191n n <<+,则n 的值为( )A .42B .43C .44D .453.将不大于实数a 的最大整数记为[]a ,则33⎡⎤-=⎣⎦( )A .3-B .2-C .1-D .04.若|x-2|+3y +=0,则xy 的值为( )A .8B .2C .-6D .±25.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C .42=±D .()515-=-6.估算381-的值( )A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间7.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上 B .线段BC 上C .线段CD 上D .线段DE 上8.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣19.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上 10.252的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.若实数a 、b 满足20a +=,则ab=_____.13.与0.5_____0.5.(填“>”、“=”、“<”)14.+(y+2)2=0,则(x+y)2019等于_____. 15.观察下列各式:5=;11=;19=;a =,则a =_____.16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.17.将2π这三个数按从小到大的顺序用“<”连接________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.19.35.12=0.3512=-,则x =_____________.20.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________三、解答题21.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯⎪ ⎪⎝⎭⎝⎭22.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为,又由203<19000<303,猜想19683的立方根十位数为,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
第六章 实数知识点及练习题及答案一、选择题1.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20192.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()a a=④C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数. 3.下列结论正确的是( ) A .64的立方根是±4 B .﹣18没有立方根 C .立方根等于本身的数是0 D .327-=﹣3 4.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( ) A .1个B .2个C .3个D .4个5.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1237.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个8.已知,x y 为实数且|1|10x y ++-=,则2012x y ⎛⎫⎪⎝⎭的值为( )A .0B .1C .-1D .20129.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个10.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12+B .22+C .221-D .221+二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.13.23(2)0y x --=,则y x -的平方根_________.14116的算术平方根为_______.15.比较大小:512-__________0.5.(填“>”“<”或“=”)16.规定用符号[]x表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____.17.已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++=_____.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,那么O'点对应的数是______.你的理由是______.19.已知2(21)10a b++-=,则22004a b+=________.20.如图,数轴上的点A能与实数15,3,,22---对应的是_____________三、解答题21.观察下列三行数:(1)第①行的第n个数是_______(直接写出答案,n为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a,化简计算求值:(5a2-13a-1)-4(4-3a+54a2) 22.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭(253532323.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b a ba b a b->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小 ∵224-= << 则45<< ∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小. 24.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a ﹣3的整数部分,b ﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.25.(1)计算:321|2(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子即可. 【详解】根据题意得,a +4=0,b ﹣3=0,解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1, 故选:B . 【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.2.C解析:C 【解析】 【分析】根据定义依次计算判定即可. 【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 故选:C . 【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.3.D解析:D 【分析】利用立方根的定义及求法分别判断后即可确定正确的选项. 【详解】解:A 、64的立方根是4,原说法错误,故这个选项不符合题意; B 、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意; C 、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D =﹣3,原说法正确,故这个选项符合题意; 故选:D . 【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.B解析:B【分析】利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①无理数是无限不循环小数,正确;②平方根与立方根相等的数只有0,故错误;③在同一平面内,过一点有且只有一条直线与这条直线平行,故错误;④邻补角是相等的角,故错误;⑤实数与数轴上的点一一对应,正确.所以,正确的命题有2个,故选B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解无理数、平方根与立方根的定义、两直线的位置关系等知识,难度不大.5.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.B解析:B【分析】依照题意分别求出a l=26,n2=8,a2=65,n3=11,a3=122,n4=5,a4=26…然后依次循环,从而求出结果.【详解】解:∵n1=5,a l=52+1=26,n2=8,a2=82+1=65,n3=11,a3=112+1=122,n 4=5,…,a 4=52+1=26… ∵20183=6722÷∴20182=65=a a . 故选:B . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.7.B解析:B 【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可. 【详解】 ①正确;②在两直线平行的条件下,内错角相等,②错误; ③正确;④反例:两个无理数π和-π,和是0,④错误; ⑤坐标平面内的点与有序数对是一一对应的,正确; 故选:B . 【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.8.B解析:B 【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可. 【详解】 由题意,得 x+1=0,y-1=0, 解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.9.D解析:D利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.10.D解析:D【分析】设点C所对应的实数是x,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C所对应的实数是x.则有x﹣(﹣1),解得+1.故选D.【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.13.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y -3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.14.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可.. 【详解】 ∵,,∴的算术平方根为; 故答案为:. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.-3先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.18.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.19.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b−1=0,∴a=,b=1,∴,故答案为:.【点睛】本题考查了非负数解析:5 4【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
七年级初一数学第六章 实数知识点及练习题附解析一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥2.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .63.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019- 4.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n5.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 6.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +7.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( )A .-4B .14C .-14D .18.在3.14,237,2-,327,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上10.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③33是3的立方根;④无理数是带根号的数;⑤2的算术平方根是2. A .2个 B .3个 C .4个 D .5个 二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.15.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 16.写出一个大于3且小于4的无理数:___________. 17.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是52)⊕3=___. 18.3是______的立方根;81的平方根是________32=__________.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.20.若实数x ,y 满足()2230x y +++=,则()22xy --的值______.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.你能找出规律吗?(1)计算:49⨯= ,49⨯= ;1625⨯= ,1625⨯= . 结论:49⨯ 49⨯;1625⨯ 1625⨯.(填“>”,”=”,“<”).(2)请按找到的规律计算: ①520⨯; ②231935⨯. (3)已知:a =2,b =10,则40= (可以用含a ,b 的式子表示). 24.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数. (1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可. 【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.B解析:B 【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案. 【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B . 【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.3.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1, ∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.4.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案. 【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,. 故选:D . 【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.5.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
七年级初一数学第六章 实数知识点及练习题附解析一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=. 得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a -D .20191a -2.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa =④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.3.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( )A .1个B .2个C .3个D .4个 4.若23(2)0m n -++=,则m+n 的值为( )A .-1B .1C .4D .75.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x6.下列各式中,正确的是( )A 91634B 91634;C 91638D 91634 7.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个 8.在下列实数:2π、3、4、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个9.若m 、n 满足()21150m n -+-=,则m n +的平方根是( )A .4±B .2±C .4D .210.若a 、b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.13.27的立方根为 .14.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.15.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.16.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.19.若x、y分别是811-的整数部分与小数部分,则2x-y的值为________.20.若实数x,y满足()2230x y+++=,则()22x y--的值______.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a,b是有理数,并且满足等式253a2b3a3-=+-,求a,b的值.解:因为253a2b3a3-=+-所以()253a2b a33-=-+所以2b a52a3-=⎧⎪⎨-=⎪⎩解得2a313b6⎧=⎪⎪⎨⎪=⎪⎩()2已知x,y是有理数,并且满足等式2x2y2y1742--=-,求x y+的值.22.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm?23.先阅读内容,然后解答问题:因为:11111111111 1,,12223233434910910 =-=-=-=-⨯⨯⨯⨯所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…=1﹣1111111 22334910 +-+-+-=1﹣19 1010=问题:(1)请你猜想(化为两个数的差):120152016⨯=;120142016⨯=;(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求111(1)(1)(2)(2)ab a b a b+++++++…+1(2018)(2018)a b ++的值. 24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 例如:比较192-与2的大小∵1922194--=- 又∵161925<< 则4195<< ∴19221940--=-> ∴1922->请根据上述方法解答以下问题:比较223-与3-的大小.25.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据题意,设M=1+a+a2+a3+a4+…+a2014,求出aM的值是多少,然后求出aM-M的值,即可求出M的值,据此求出1+a+a2+a3+a4+…+a2019的值是多少即可.【详解】∵M=1+a+a2+a3+a4+…+a2018①,∴aM=a+a2+a3+a4+…+a2014+a2019②,②-①,可得aM-M=a2019-1,即(a-1)M=a2019-1,∴M=201911 aa--.故选:B.【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.3.B解析:B【分析】利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①无理数是无限不循环小数,正确;②平方根与立方根相等的数只有0,故错误;③在同一平面内,过一点有且只有一条直线与这条直线平行,故错误;④邻补角是相等的角,故错误;⑤实数与数轴上的点一一对应,正确.所以,正确的命题有2个,故选B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解无理数、平方根与立方根的定义、两直线的位置关系等知识,难度不大.4.B解析:B【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵23(2)0m n -++=∴m-3=0,n+2=0,解得:m=3,n=-2,∴m+n=1故选B.【点睛】此题考查非负数的性质:偶次方,非负数的性质:绝对值,解题关键在于掌握其性质.5.C解析:C【分析】根据点E ,F ,M ,N 表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x <2<y ,∴x +y >0,2+y >0,x ﹣2<0,2+x >0,故选:C .【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.6.A解析:A【解析】=±34 ,所以可知A 选项正确;故选A. 7.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.8.C解析:C【分析】根据“无理数”的定义进行分析判断即可.【详解】∵在实数:π2、227、-1.010010001…中,属于无理数的是:?-1.010*******,∴上述实数中,属于无理数的有3个.故选C.【点睛】本题考查了无理数,熟记“无理数”的定义:“无限不循环小数叫做无理数”是解答本题的关键.9.B解析:B【分析】根据非负数的性质列式求出m 、n ,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.10.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.二、填空题11.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算14.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339.故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.15.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 16.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.17.【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.18.3【分析】利用平方根、立方根的定义求出x与y的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.【分析】估算出的取值范围,进而可得x ,y 的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x =4,小数部分y =,∴2x-y =8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x ,y 的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x =4,小数部分y =448=∴2x -y =8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.23.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.24.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<, ∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.25.(1)1011,1101;(2)①12,65,97,见解析,②38【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+故答案为:1011,1101()2①()()222301,1210M M ==,()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,,()()()222652310,652300M M M +=+=()()()22265236523M M M +≠+,65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=,()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有12个(28、48、68不符合)当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合)当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
七年级初一数学第六章 实数知识点及练习题及答案一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N >C .M ND .M N ≥ 2.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .53.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=±4.在下列结论中,正确的是( ).A .255-44=±() B .x 2的算术平方根是xC .平方根是它本身的数为0,±1D .64 的立方根是25.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( ) A .-4 B .14 C .-14 D .16.若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x )=1时,x =1;②对于正数x ,f (x )>f (﹣x )均成立;③f (x ﹣1)+f (1﹣x )=0;④当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是( )A .①②B .①③C .①②④D .①③④7.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个10.已知实数x ,y 满足关系式241x y -++|y 2﹣9|=0,则6x y +的值是( ) A .±3 B .3 C .﹣3或3 D .3或3二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.如果一个数的平方根和它的立方根相等,则这个数是______. 17116的算术平方根为_______. 18.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根. ()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.23.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)24.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 25.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)a 的整数部分为b ,求a +b 的值;26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法: 设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++=________;(2)220333+++=_________; (3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C.【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.3.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则. 4.D解析:D【分析】利用算术平方根、平方根、立方根的定义解答即可.【详解】54=,错误;B. x2的算术平方根是x,错误;C. 平方根是它本身的数为0,错误;=8,8的立方根是2,正确;故选D.【点睛】此题考查算术平方根、平方根、立方根的定义,正确理解相关定义是解题关键.5.C解析:C【分析】根据(),2f a b ab =,()22(1)g m m m =-+,代入求解即可. 【详解】解(),2f a b ab =,()22(1)g m m m =-+∴()1,2g f ⎡⎤-⎣⎦=()()244241-14g -=---+=故选C.【点睛】本题考查了新定义的有理数运算,利用(),2f a b ab =,()22(1)g m m m =-+,代入求值是解答本题的关键.6.C解析:C【分析】首先理解新定义运算的算法,再根据新定义运算方法列出所求式子,计算得到结果【详解】∵f (x )=1,∴3x ﹣2=1,∴x =1,故①正确,f (x )﹣f (﹣x )=3x ﹣2﹣(﹣3x ﹣2)=6x ,∵x >0,∴f (x )>f (﹣x ),故②正确,f (x ﹣1)+f (1﹣x )=3(x ﹣1)﹣2+3(1﹣x )﹣2=﹣4,故③错误,∵f (a ﹣x )=3(a ﹣x )﹣2=3a ﹣3x ﹣2,a ﹣f (x )=a ﹣(3x ﹣2),∵a =2,∴f (a ﹣x )=a ﹣f (x ),故④正确.故选:C .【点睛】本题考查新定义运算,理解运算方法是重点,并且注意带入数据7.A解析:A【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.8.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.B解析:B【详解】解:①实数和数轴上点一一对应,本小题错误;②π不带根号,但π是无理数,故本小题错误;③负数有立方根,故本小题错误;④17的平方根,本小题正确,正确的只有④一个,故选B.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y=±3,x=2,∴y+6=9或y+6=3,3=【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169; 第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8; 第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8. 13.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 16.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.17.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.18.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.19.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.22.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a﹣b|=a+1+2(b﹣1)+(a﹣b)=a+1+2b﹣2+a﹣b=2a+b﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.23.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.24.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051 =2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.25.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a2, ∵∴6b =, ∴a b +264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1²= 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² =36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】 (1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
七年级初一数学 第六章 实数知识归纳总结含答案一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或13.若24a =,29b =,且0ab <,则-a b 的值为( ) A .5±B .2-C .5D .5-4.下列计算正确的是( ) A 42=±B .1193= C .2(5)5= D 382=±5.将不大于实数a 的最大整数记为[]a ,则33⎡⎤=⎣⎦( )A .3-B .2-C .1-D .06.若2a a a -=,则实数a 在数轴上的对应点一定在( ) A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4m B .4m +4n C .4n D .4m ﹣4n 8.下列选项中的计算,不正确的是( )A 42=±B 382-=-C .93±=±D 164= 9.若一个正数x 的平方根为27a -和143a -,则x =( )A .7B .16C .25D .4910.下列实数中,..31-4π0-8647,3,,,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.任何实数a ,可用[a]表示不大于a的最大整数,如[4]=4,1=,现对72进行如下操作:72→=8→2=→=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 17.规定运算:()a b a b *=-,其中b a 、为实数,则4)+=____ 18.如果一个数的平方根和它的立方根相等,则这个数是______. 19.对任意两个实数a ,b 定义新运算:a ⊕b=()()a ab b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是2)⊕3=___.20.用“*”表示一种新运算:对于任意正实数a,b ,都有*1a b.例如8914*=,那么*(*16)m m =__________.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 22.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 23.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 24.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M 表示数m ,点N 表示数n ,点M 与点N 互为基准等距变换点.I .若m=3,则n= ;II .用含m 的代数式表示n= ;②对点M 进行如下操作:先把点M 表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N ,若点M 与点N 互为基准等距变换点,求点M 表示的数; ③点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度,对Q 点做如下操作: Q 1为Q 的基准等距变换点,将数轴沿原点对折后Q 1的落点为Q 2这样为一次变换: Q 3为Q 2的基准等距变换点,将数轴沿原点对折后Q 3的落点为Q 4这样为二次变换: Q 5为Q 4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.25.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下: (1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ; 因为22=4,所以22个位上的数字是4; 因为23=8,所以23个位上的数字是8; 因为24= _____ ,所以24个位上的数字是_____; 因为25= _____ ,所以25个位上的数字是_____; 因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____. 26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.C解析:C【解析】【分析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.3.A解析:A【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.5.B解析:B【分析】3-的范围,即可得出答案【详解】解:∵12∴﹣23<﹣1∴3⎤=⎦﹣2故答案为B【点睛】.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.C解析:C【分析】根据题意得到m ,n 的相反数,分成三种情况⑴m ,n ;-m ,-n ⑵m ,-m ;n ,-n ⑶m ,-n ;n ,-m 分别计算,最后相加即可. 【详解】解:依题意,m ,n (m <n )的相反数为﹣m ,﹣n ,则有如下情况: m ,n 为一组,﹣m ,﹣n 为一组,有A =|m +n |+|(﹣m )+(﹣n )|=2m +2n m ,﹣m 为一组,n ,﹣n 为一组,有A =|m +(﹣m )|+|n +(﹣n )|=0 m ,﹣n 为一组,n ,﹣m 为一组,有A =|m +(﹣n )|+|n +(﹣m )|=2n ﹣2m 所以,所有A 的和为2m +2n +0+2n ﹣2m =4n 故选:C . 【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.8.A解析:A 【分析】根据平方根与立方根的意义判断即可. 【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意. 故选:A. 【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.9.D解析:D 【解析】 【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值. 【详解】∵一个正数x 的平方根为27a -和143a -, ∴(27a -)+(143a -)=0, 解得:a=7.∴27a -=7,143a -=-7, ∴x=(±7)2 =49. 故选D. 【点睛】此题考查平方根,解题关键在于求出a 的值.10.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可. 【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.二、填空题 11.. 【解析】 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “解析:12++n n . 【解析】 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a中n的取值.12.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.13.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…, ∴1()2019f 2019, ∴1(2019)()2019f f 2018-2019=-1. 故答案为:-1.【点睛】 本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 16.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.17.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.18.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.19.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.23.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.24.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点;(2)由基准点的定义可知,22m n +=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n;【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1,∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4,∴n=4-m;故答案为:4-m②设点M表示的数是m,先乘以23,得到23m,再沿着数轴向右移动2个单位长度得到点N为23m+2,∵点M与点N互为基准等距变换点,∴23m+2+m=4,∴m=1 12;③设P点表示的数是m,则Q点表示的数是m+8,如图,由题可知Q1表示的数是4-(m+8),Q2表示的数是-4+(m+8),Q3表示的数是8-(m+8),Q4表示的数是-8+(m+8),Q5表示的数是12-(m+8),Q6表示的数是-12+(m+8)…∴当n为偶数,Q n表示的数是-2n+(m+8),∵若P与Q n两点间的距离是4,∴|m-[-2n+(m+8)]|=4,∴n=2或n=6.【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q的变换规律是解题的关键.25.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++(201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
七年级初一数学第六章 实数知识点及练习题及答案一、选择题1.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b = 2.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④3.下列各组数中,互为相反数的是( ) A .2-与12- B .|2|-与2C .2(2)-与38-D .38-与38- 4.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①②B .①③C .②③D .①②③ 5.若一个正数x 的平方根为27a -和143a -,则x =( )A .7B .16C .25D .49 6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±97.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13B .23C .231-D .2318.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .89.2a+b b-4=0,则a +b 的值为( )A .﹣2B .﹣1C .0D .210.下列说法不正确的是( )A 813B .12-是14的平方根 C .带根号的数不一定是无理数D .a 2的算术平方根是a二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 . 13.如果某数的一个平方根是﹣5,那么这个数是_____. 14.27的立方根为 .15.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.16.3是______的立方根;81的平方根是________;32-=__________.17.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.18.将2π,933-272这三个数按从小到大的顺序用“<”连接________. 19.若x <0323x x ____________.20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭23.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.24.定义☆运算:观察下列运算:☆两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.26.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.2.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.3.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.4.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a 与b 交换,a 2b+b 2c+c 2a 变为ab 2+a 2c+bc 2.故a 2b+b 2c+c 2a 不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A .【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.5.D解析:D【解析】【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值.【详解】∵一个正数x 的平方根为27a -和143a -,∴(27a -)+(143a -)=0,解得:a=7.∴27a -=7,143a -=-7,∴x=(±7)2 =49.故选D.【点睛】此题考查平方根,解题关键在于求出a 的值.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 7.D解析:D【分析】根据线段中点的性质,可得答案.【详解】∵,A,∴C,故选:D.【点睛】此题考查实数与数轴,利用线段中点的性质得出AC的长是解题关键.8.D解析:D【分析】n的值.【详解】∴89,∵n n+1,∴n=8,故选;D.【点睛】9.D解析:D【分析】根据绝对值与算术平方根的非负性,列出关于a、b的方程组,解之即可.【详解】b-4=0,∴2a+b=0,b﹣4=0,∴a=﹣2,b=4,∴a+b=2,故选D.【点睛】本题考查了绝对值与算术平方根的非负性,正确列出方程是解题的关键.10.D解析:D【分析】根据平方根的定义,判断A与B的正误,根据无理数的定义判断C的正误,根据算术平方根的定义判断D的正误.【详解】±3,故A 正确;211()24-=,则12-是14的平方根,故B 正确;2=是有理数,则带根号的数不一定是无理数,故C 正确;∵a 2的算术平方根是|a|,∴当a≥0,算术平方根为a ,当a <0时,算术平方是﹣a ,故a 2的算术平方根是a 不正确.故D 不一定正确;故选:D .【点睛】本题主要考查了平方根,算术平方根,无理数的定义,熟记几个定义是解题的关键.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169; 第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1; 第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.13.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.14.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.16.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.17.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解<2π 【分析】先根据数的开方法则计算出3的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π<2π,<2π 【点睛】的值是解题关键. 19.0【分析】 分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.20.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.22.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-5 2【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则;(2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算;(3)根据(1)归纳出的运算法则对a的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加;异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值;(2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.26.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯ ()1321=--+- =-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.。