飞机的起飞性能讲义
- 格式:ppt
- 大小:7.12 MB
- 文档页数:86
第4章起飞性能第一节起飞性能的限制一、速度的定义V mo/M mo最大操作限制速度,是在任何飞行阶段(爬升、巡航或下降)都不能故意超过的速度。
V mcg地面最小控制速度,是起飞滑跑时的校准空速,在这个速度时,当关键发动机突然不工作时,仅靠主要空气动力控制就可以对飞机保持控制(不用前轮转弯),使用正常驾驶技术就可以安全起飞。
V mca空中最小操纵速度,是校准空速,在这个速度时,当一台关键发动机突然不工作时,在该发动机保持不工作的状态,仍能够保持飞机的控制,并且可以利用不大于5度的坡度角保持飞机平直飞行。
V mcl进近和着陆的最小控制速度,是校准空速,在这个速度时,当关键发动机突然不工作时,仍可以利用工作的发动机对飞机保持控制,并且可以以不大于5度的坡度角保持飞机的平直飞行。
V mu最小不擦尾速度/最小离地速度,是校准空速,当等于或高于它时,飞机可以安全离开地面并继续起飞。
V s是校准的失速速度,是以海里/小时为单位的最小稳定飞行速度,在这个速度上,在失速速度时零推力或发动机在慢车时,飞机可以控制。
V EF发动机故障速度,是校准空速,假定关键发动机发生故障时的速度。
V1行动速度,是校准空速,是机组能够决定并作出减速动作,使飞机中断起飞的最大速度,并且可以保证将飞机停在跑道的限制范围内。
“JAR/FAR 25.107(a)(2) V1,由校准空速表示,由申请人选择;不过,V1 不得小于VEF 加上在加速--停止实验中,从关键发动机故障发生开始到飞行员发现故障并开始采取第一个措施动作(例如:刹车、收油门、放减速板)期间的速度增加值”。
V R抬前轮速度,是飞行员开始抬前轮的速度,正常抬轮速率约为3°/秒。
V LOF离地速度,是指飞机主轮离地时的校准空速。
V2起飞安全速度,是在发动机发生故障时,在高出跑道表面35英尺处必须达到的最小速度。
V MBE刹车能量限制速度,由于能量守恒,在中断起飞时,刹车必须吸收对应的飞机动能,并将其转化为热能。
第4章起飞性能第一节起飞性能的限制一、速度的定义V mJ M m最大操作限制速度,是在任何飞行阶段(爬升、巡航或下降)都不能故意超过的速度。
V mcg地面最小控制速度,是起飞滑跑时的校准空速,在这个速度时,当关键发动机突然不工作时,仅靠主要空气动力控制就可以对飞机保持控制(不用前轮转弯),使用正常驾驶技术就可以安全起飞。
V mc空中最小操纵速度,是校准空速,在这个速度时,当一台关键发动机突然不工作时,在该发动机保持不工作的状态,仍能够保持飞机的控制,并且可以利用不大于5度的坡度角保持飞机平直飞行。
V mcl进近和着陆的最小控制速度,是校准空速,在这个速度时,当关键发动机突然不工作时,仍可以利用工作的发动机对飞机保持控制,并且可以以不大于5度的坡度角保持飞机的平直飞行。
V mu最小不擦尾速度/最小离地速度,是校准空速,当等于或高于它时,飞机可以安全离开地面并继续起飞。
V s是校准的失速速度,是以海里/小时为单位的最小稳定飞行速度,在这个速度上,在失速速度时零推力或发动机在慢车时,飞机可以控制。
V EF发动机故障速度,是校准空速,假定关键发动机发生故障时的速度。
V i行动速度,是校准空速,是机组能够决定并作出减速动作,使飞机中断起飞的最大速度,并且可以保证将飞机停在跑道的限制范围内。
“ JAR/FAR 25.107(a)(2) V1 ,由校准空速表示,由申请人选择;不过,V1不得小于VEF加上在加速--停止实验中,从关键发动机故障发生开始到飞行员发现故障并开始采取第一个措施动作(例如:刹车、收油门、放减速板)期间的速度增加值”。
V R抬前轮速度,是飞行员开始抬前轮的速度,正常抬轮速率约为3° /秒。
V LO离地速度,是指飞机主轮离地时的校准空速。
V2起飞安全速度,是在发动机发生故障时,在高出跑道表面35英尺处必须达到的最小速度。
V MB刹车能量限制速度,由于能量守恒,在中断起飞时,刹车必须吸收对应的飞机动能,并将其转化为热能。
第二讲飞机的基本飞行性能讲义一、引言飞机的基本飞行性能是指飞机在不同飞行阶段中的各种性能指标。
了解和掌握飞机的基本飞行性能对于飞行员和飞机设计师来说都是十分重要的。
本讲义将介绍飞机的基本飞行性能指标及其计算方法。
二、起飞性能起飞性能是飞机在地面开始起飞到到达安全飞行高度之间的性能指标。
主要包括起飞距离、起飞速度和最大爬升率。
1. 起飞距离起飞距离是指飞机从起飞开始到离地面50英尺高时所需的距离。
起飞距离计算公式如下:起飞距离 = 加速距离 + 抬轮距离 + 离地距离其中,加速距离是指飞机从静止到达起飞速度所需的距离;抬轮距离是指飞机从离地面50英尺高到离地面100英尺高所需的距离;离地距离是指飞机离开地面100英尺高时所需的距离。
2. 起飞速度起飞速度是指飞机在起飞时所需的最低速度。
起飞速度取决于飞机的重量和机翼的亮度。
一般来说,起飞速度随飞机重量的增加而增加,随机翼的亮度的增加而减小。
3. 最大爬升率最大爬升率是指飞机在起飞过程中爬升的最大速率。
最大爬升率取决于飞机的发动机推力、机翼提供的升力和飞机的阻力。
飞机的最大爬升率在不同高度下可能会有所不同。
三、巡航性能巡航性能是指飞机在巡航飞行阶段的性能指标。
主要包括巡航速度、巡航升力系数和巡航推力。
1. 巡航速度巡航速度是指飞机在巡航飞行阶段所保持的恒定速度。
巡航速度取决于飞机的气动性能和发动机的推力。
为了保持较低的燃料消耗和较长的航程,飞机会选择一个较低的巡航速度。
2. 巡航升力系数巡航升力系数是指飞机在巡航飞行阶段的升力与机翼面积、空气密度和飞机速度的比值。
巡航升力系数影响飞机的升力和阻力。
3. 巡航推力巡航推力是指飞机在巡航飞行阶段的发动机推力。
巡航推力决定飞机的速度和燃料消耗。
四、下降和着陆性能下降和着陆性能是指飞机从巡航飞行阶段到着陆的过程中的性能指标。
主要包括下降速度、下降距离和着陆距离。
1. 下降速度下降速度是指飞机从巡航飞行阶段开始向地面下降时的速度。
起飞试验的目的是测定飞机飞行手册所需要的起飞性能参数,和验证所讨论的飞机型态满足于合格审定的性能要求,当要生产一种新飞机时,需要进行一个完整系列的起飞试验,确定起飞速度和距离、滚动加速度和制动加速度,抬前轮速率和最小离地速度等参数。
根据美国联邦航空局适航条例规定,凡装载二十人以上的民用飞机应按照联邦航空条例第25部(FAR25)验证其符合性。
其中B分部中直接涉及飞机飞行性能的条款13条,是飞机设计时考虑起飞、爬升、航行、进场和着陆必须遵守的安全标准。
而飞行手册是飞机一个重要软件组成部分、其中的性能数据就根据FAR25部有关飞行性能条款的规定和飞机飞行动力、发动机推力特性进行计算和编制的。
起飞性能符合性验证工作可理解为三个方面:(1)起飞性能原始参数的验证;(2)飞行手册中起飞性能的计算;(3)对起飞性能计算。
FAR25定义了各种起飞速度,讨论了加速-减速距离、起飞航迹和起飞距离。
给出了一些适用于起飞试验的速度和术语的定义是有益的,因为许多速度和术语关系到其它类型的性能和规章的论述,起飞性能原始参数是计算起飞性能所必须的原始特征数据。
这些参数一般要通过试飞确定或加以校核。
1.失速速度Vs:飞机最小安全速度,是飞机基本特征速度之一(其它还有VMU、VMCA、VMCG),它是决定飞机其它特征速度之一,这些特征速度为:VEF、V1、VR、VLOF、V2;而且是确定操稳特性试飞速度范围的基准速度。
因此,在试飞的早期就要进行失速速度的试飞,仅次于空速校正试飞。
飞机手册中给出飞机各种构型和重量下的Vs值,以便直接提醒飞行人员飞行时速度不小于该值。
另外Vs还是起飞等各阶段速度的参考值。
根据FAR25.201失速演示规定:(a)必须在直线飞行和30°坡度转变中演示失速:给出了失速速度的定义以及确定失速速度时对飞机状态的要求,包括:推力、起落架位置、襟翼位置、重量、重心。
试飞时,一般说来前重心为不利位置,这主要是此时需要平尾产生比后重心时更大的上仰力矩,平尾产生的负升力较大,因而此时的失速速度更大,但是为了确定重心对失速速度的影响程度,还是有必要适当进行一些后重心的失速速度。
第一部分起飞性能理论起飞的定义:对我们通常意义上所说的起飞在理论上叫起飞航迹.对起飞航迹的定义如下:起飞航迹:从静止点(滑跑开始点)到下列两点中的较高者:飞机起飞过程中高于起飞表面1500FT点或完成从起飞到航路构行的转变,并达到起飞最后阶段规定速度和爬升梯度的点.起飞航迹组成:由起飞、起飞飞行航迹两部分过程组成.①起飞:起飞开始到高度35ft,并达到起飞安全速度V2的航迹.②起飞飞行航迹:起飞的终点到起飞航迹的终点.1.平衡场地的三种起飞过程:(图一)①全发正常:从松刹车开始,全发加速滑跑到VR,在VLOF离地,加速爬升到35FT,速度达到V2安全速度.FAR规定的起飞跑道距离应为实际起飞跑道距离的1.15倍.②继续起飞:从松刹车开始,全发加速滑跑,在速度VEF一台发动机停车,驾驶员在规定时间内做出判断后的速度达到V1,飞机在临界发动机不工作的条件下继续起飞,在跑道端速度达到V2,高度35FT.FAR规定VEF-V1的判断时间0-2秒,起飞跑道长度为起飞实际距离.③中断起飞:从松刹车开始,全发加速滑跑,在速度VEF时临界发动机实效,在规定时间内驾驶员做出判断,在速度V1时开始采取减速措施(油门慢车位,刹车,使用减速板),最后由于采取了减速措施使飞机安全停止在跑道上(其中不计反推效应).中断起飞各段组成:全发加速段(0-VEF)、判断阶段(VEF-△V,0-2秒)、减速过渡段(V1-VB)、减速停止段(VB-0)对过渡段采取措施的时间根据管理机构和公司的要求各不相同. 通常试飞验证的过渡段时间(2秒以内)比规定时间(3-4秒之间)要短一些.2.起飞过程中的几种速度的定义:☐决断速度临界发动机在该速度被判定停车时,驾驶员可以安全地继续或中断起飞, 且继续起飞的距离不会超过可用的起飞距离,中断起飞距离也不超过可用的中断起飞距离.V1不得小于最小地面操纵速度,也不得大于抬前轮速度.VR≥V1≥VMCGV1与VEF关系:V1大于(等于)VEF+规定时间内临界发动机不工作时飞机速度增量之和.☐抬前轮速度是飞机开始抬前轮的速度,在该速度抬前轮能使飞机在起飞终点高于起飞表面35FT并速度达到V2.VR≥V1VR≥105%VMCA对任何一组给定的条件(飞机重量,飞机构形和环境温度等)继续起飞和全发起飞均使用相同的VR值.☐起飞安全速度飞机在起飞终点应达到的速度.V2≧1.2VS(双发) V2≧1.15VS(三发以上)V2≧1.1VMC(空中最小操纵速度)使用V2安全速度的意义:1.当速度稍小于上述要求值时,飞机仍能保持正的爬升梯度.2.由于风或驾驶员操作不当引起速度减小时,仍能保持操纵.3.有一定的应角裕度,以防遇到向上阵风时造成失速.4.当一发停车并伴随有速度误差时,飞机仍能保持操纵.☐最小离地速度全发工作或一发不工作时,飞机可在最小离地速度VMU 安全离地并继续起飞,不会出现擦尾的危险.实际使用中与飞机外形及发动机状态的有关.☐离地速度VLOF是飞机开始腾空瞬间的速度.全发起飞时不小于110%VMU,如飞机有腹鳍和姿态警告系统(AWS),VLOF不小于108%VMU,单发时要求VLOF不小于105%VMU.最小操纵速度VMCA:在该速度,临界发动机停车,能在该发动机继续停车情况下恢复对飞机的操纵,维持0偏航或坡度不大于5度的直线飞行.维持方向舵所需的方向舵脚蹬力不超过150磅.VMCG:在该速度,当临界发动机停车时,有可能仅使用气动力主操纵(不使用前轮转弯)来恢复对飞机的操纵,用正常的驾驶技巧和不超过150磅方向舵脚蹬力能安全地完成继续起飞.通过试飞获得.3.平衡场地长度和非平衡场地长度(1)平衡场地长度平衡场地长度指临界发动机停车时,按继续起飞距离等于中断起飞距离而确定的场地长度,在其他条件不变时,决断速度增大,则继续起飞的距离缩短,中断起飞距离增大,只在某一V1值时两种距离才相等,此时V1表示为V1BAL.平衡场地起飞时的关系式:A+B+C=A+D+E全发起飞时的V2和VLOF值比单发时大些,VR相同.V1后速度增加1节左右后开始减速.平衡长度示意图(2)非平衡场地长度不满足平衡场地长度条件时确定的场地长度为非平衡场地长度.出现情况有两类:(A)按平衡场地长度考虑时,由于要满足对起飞速度的有关要求而出现非平衡场地长度情况.(B)由于使用了净空道和安全道后,使继续起飞距离不等于中断起飞距离而出现的非平衡场地长度情况.*FAR净空道定义:净空道对称地设置在跑道中心延长线上,宽度不小于500英尺,其净空道面从跑道端开始,以把超过1.25%的坡度向上延伸,除在跑道前端两侧处有高度不大于26英寸的跑道灯外,没有任何地形或障碍物穿过此面.净空道的地面应处于机场当局的控制与管辖之内.净空道仅供飞机飞越.*FAR安全道定义:安全道对称地设在跑道延长线上,宽度不小于跑道宽度,道面强度足以支持中断起飞的飞机重量,安全道仅供中断起飞时飞机减速滑跑用.FAR关于使用净空道和安全道的三个条件:A.中断起飞距离不得超过跑道长度与安全道之和B.继续起飞距离不得超过跑道长度与净空道之和C.起飞滑跑距离加上一半拉起爬升距离不得超过跑道长度4.起飞航迹分段和各段对爬升梯度的要求(1)第一段从飞机离地35FT起到起落架受上止.使用起飞推力,襟翼位置不变.升降速度表指示正值时开始收起落架,表速V2,等表速爬升.(2)第二段等表速爬升段,爬高以保证安全.使用起飞推力,等表速V2爬升,襟翼位置不变,爬升到400FT止.(3)第三段收襟翼段,平飞加速到爬升速度VC,使用起飞推力或最大连续推力,随速度增加逐渐收上襟翼,VC≧1.25VS.(3)第四段最后爬升段,最大连续推力,光洁机身,使用VC速度爬升到1500FT.**FAR-25对上述各段可用最小爬升梯度要求:双发飞机:第一段:正梯度第二段:2.4%第四段:1.2%**净梯度:考虑到仪表及操作误差的影响,如果在爬升越障过程中以实际的爬升梯度对应的总航迹与障碍物进行比较,有可能不能保证飞行的安全,因此引进净航迹的概念,即在总航迹对应的实际梯度上减小0.8%作为净航迹对应的净梯度,以净航迹高出障碍物35英尺为标准来进行越障评估.双发飞机减去0.8%为净梯度5.灵活推力起飞(1)原理灵活推力法也叫假想温度法.当外界温度升高,发动机推力由于受到排气温度限制而要减小,灵活温度法即用这种发动机推力变化的规律来确定在飞机起飞重量没有达到最大起飞重量时发动机推力可以减小的值.具体确定的方法是假设一个较高的温度,在该温度由于发动机受排气温度限制而提供的一个比正常温度时小的输出马力刚好能保证对实际起飞重量的的要求.(2)MD-82灵活温度设计方法MD-82(JT8D-217A)机型是按照减小推力额定值方法和灵活推力理论组合使用而设计的.JT8D-217A发动机是按照减小发动机功率输出额定值的方法提供发动机的推力,图中MAX所对应的图线为该发动机可提供的最大EPR限制范围,NORM所对应的图线为发动机提供的减小额定值后的EPR限制范围(此时减小的EPR储存于ART),实际上这种减小额定值后所提供的NORM EPR 限制本身已经是减小推力起飞了.图中MAX为最大EPR限制图线,NORM为正常EPR限制图线.①当温度低于T1(MD-82,JT8D217A一般为29度),发动机EPR值不变,MAX EPR=1.99;NORM EPR=1.93②当灵活温度低于T2时,NORM EPR + △EPR 大于1.93(NORMEPR的最大值)③T A,TB的含义:使用正常推力在外界温度为TA时所对应的EPR值,等于在假设温度用最大起飞推力(即正常EPR+ART关而增加的推力),当外界实际温度高于TA时,正常起飞推力将小于假设温度所对应的最大推力,所以不可以使用灵活推力起飞.当外界实际温度低于TA时,正常起飞推力大于假设温度对应的最大推力,说明发动机可以提供所需马力的要求,所以可用灵活推力起飞.假设温度TB,起飞推力为TB所对应的最大EPR.6.污染跑道起飞(1)跑道上覆盖2-3毫米以下的水时,称为湿跑道.(2)跑道上覆盖3毫米以上的水、雪浆、湿雪和干雪时,称为污染跑道.(3)麦道公司在飞行性能手册中以1/2和1/4两种污染程度提供了在污染跑道起飞时的跑道换算方法,即以污染跑道换算成相当于干跑道的换算跑道长度,以此换算干跑道长度做起飞性能分析.见(机组操作手册-性能分册-起飞部分) Section 7 2-20-40 page 9(4)在污染跑道上起飞,如果还使用干跑道时的数据(飞机重量,发动机推力等数据不变),只是把V1速度小到最小地面操纵速度来操作,而不做起飞重量和的校验和修正,这种方法会造成起飞距离的非平衡场地情况的出现,继续起飞距离有可能超出跑道长度范围.所以,在操作中建议使用麦道公司提供的污染跑道计算软件提供的数据或按飞行手册中提供的数据减小起飞重量,并按换算干场地长度进行快速查表进行起飞性能分析.见(机组操作手册-性能分册-起飞部分)Section 7 2-20-40 Page 9到20 页7.最大起飞重量对最大起飞重量的限制较多,在实际使用中我们经常遇到的(除飞机结构强度限制)是场地长度限制和第二阶段爬升梯度及越障限制.(1)最佳襟翼概念的引进就是因为它是同时满足上述两种限制情况下的能使起飞重量达到最大值的襟翼角度.因为起飞航迹是由起飞和起飞飞行航迹两个阶段组成,所以我们在考虑起飞重量限制时一定要满足上述两种情况的要求,也就是要满足场地长度对起飞重量的限制,还要考虑第二爬升阶段梯度和净航迹越障对起起飞重量的要求.无论是用麦道公司提供的软件进行计算还是应用机组操作手册(性能手册)进行查表计算,最佳襟翼的使用都是符合上述两个阶段的对飞行安全要求.(2)在使用11度襟翼起飞时,为满足对场地长度和爬升限制的要求,麦道公司计算软件在固定襟翼计算模式中对场地限制和爬升限制进行了分别计算,这要求飞行员在查起飞性能数据表时,要拿场地限制的最大起飞重量和对应温度的最大起飞重量进行比较,得出的最大起飞重量必须同时符合场地和爬升这两种限制.如果只考虑了场地限制而忽视了爬升限制,使起飞重量超出了单发爬升越障限制,在单发继续起飞爬升过程中就不能保证飞行安全.。
起飞试验的目的是测定飞机飞行手册所需要的起飞性能参数,和验证所讨论的飞机型态满足于合格审定的性能要求,当要生产一种新飞机时,需要进行一个完整系列的起飞试验,确定起飞速度和距离、滚动加速度和制动加速度,抬前轮速率和最小离地速度等参数。
根据美国联邦航空局适航条例规定,凡装载二十人以上的民用飞机应按照联邦航空条例第25部(FAR25)验证其符合性。
其中B分部中直接涉及飞机飞行性能的条款13条,是飞机设计时考虑起飞、爬升、航行、进场和着陆必须遵守的安全标准。
而飞行手册是飞机一个重要软件组成部分、其中的性能数据就根据FAR25部有关飞行性能条款的规定和飞机飞行动力、发动机推力特性进行计算和编制的。
起飞性能符合性验证工作可理解为三个方面:(1)起飞性能原始参数的验证;(2)飞行手册中起飞性能的计算;(3)对起飞性能计算。
FAR25定义了各种起飞速度,讨论了加速-减速距离、起飞航迹和起飞距离。
给出了一些适用于起飞试验的速度和术语的定义是有益的,因为许多速度和术语关系到其它类型的性能和规章的论述,起飞性能原始参数是计算起飞性能所必须的原始特征数据。
这些参数一般要通过试飞确定或加以校核。
1.失速速度Vs:飞机最小安全速度,是飞机基本特征速度之一(其它还有VMU、VMCA、VMCG),它是决定飞机其它特征速度之一,这些特征速度为:VEF、V1、VR、VLOF、V2;而且是确定操稳特性试飞速度范围的基准速度。
因此,在试飞的早期就要进行失速速度的试飞,仅次于空速校正试飞。
飞机手册中给出飞机各种构型和重量下的Vs值,以便直接提醒飞行人员飞行时速度不小于该值。
另外Vs还是起飞等各阶段速度的参考值。
根据FAR25.201失速演示规定:(a)必须在直线飞行和30°坡度转变中演示失速:给出了失速速度的定义以及确定失速速度时对飞机状态的要求,包括:推力、起落架位置、襟翼位置、重量、重心。
试飞时,一般说来前重心为不利位置,这主要是此时需要平尾产生比后重心时更大的上仰力矩,平尾产生的负升力较大,因而此时的失速速度更大,但是为了确定重心对失速速度的影响程度,还是有必要适当进行一些后重心的失速速度。