信息论与编码理论-彭代渊-第5章有失真信源编码_习题答案-20071225
- 格式:doc
- 大小:116.50 KB
- 文档页数:2
信息论与编码习题参考答案 第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间:bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。
信息论与编码理论课后习题答案高等教育出版社信息论与编码理论习题解第二章-信息量和熵解: 平均每个符号长为:1544.0312.032=+?秒每个符号的熵为9183.03log 3123log 32=?+?比特/符号所以信息速率为444.34159183.0=?比特/秒解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为3*2=6 比特;所以信息速率为600010006=?比特/秒解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =? 所以得到的信息量为 21.134log 1313522=C 比特.解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,2 1log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有37种排法,Y 表示梧桐树可以栽种的位置,它有58种排法,所以共有???? ??58*???? ??37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-= 比特解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特比特6017.02log 21412log 2141910log 1094310log 10143)11(log )11()1()10(log )10()1()01(log )01()0()00(log )00()0()( 8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222222222=?+?+?+?======+=====+=====+=======+==+======+== ======??+========+=========??+========+=== ======+======+=================?=========-===?+====+======-===?+?====+=========x y p x y p x p x y p x y p x p x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-?+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P &解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 比特所以H(Z/Y)= H(X 3)= 比特H(Z/X) = H(X 2+X 3)= 比特H(X/Y)=H(X)-H(Y)+H(Y/X) = =比特H(Z/XY)=H(Z/Y)= 比特H(XZ/Y)=H(X/Y)+H(Z/XY) =+ =比特I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 比特 I(X;Z)=H(Z)-H(Z/X)= =比特I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y) =比特I(Y;Z/X)=H(Z/X)-H(Z/XY)= H(X 2+X 3)-H(X 3) = =比特I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =0解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=+???=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-== (b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-==(c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(42268180p p p p u p u q w i i i +-+-==∑= bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--== 解:见解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式)或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-?≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。
信息论与编码第五章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a p X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭(1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率. 解: (1)721222222()()log ()0.2log 0.20.19log 0.190.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol==-=-⨯-⨯-⨯-⨯-⨯-⨯-⨯=∑71()0.230.1930.1830.1730.1530.140.0173.141()()/ 2.609 3.14183.1%i i i K k p x H X H X K Rη===⨯+⨯+⨯+⨯+⨯+⨯+⨯====÷=∑对习题的信源编二进制费诺码,计算编码效率.对信源编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率.解:x i p(x i)编码码字k i s61s50s41s30s21x10102 x21112 x300003 x410013 x500103 s11x6001104 x7101114x i p(x i)编码码字k i s31s20s11x1221 x20002 x31012 x42022 x50102 x61112x72122设信源(1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率;(4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解:(1)(2)x i p(x i)p a(x i)k i码字x1010x2210x33110x441110x5511110x66111110x771111110x871111111xi p(x i)编码码字k i x1001 x210102 x3101103x41011104 x510111105x6101111106x71011111107x8111111117 (3)香农编码效率:费诺编码效率:(4)x i p(x i)编码码字k i x1001 x2111x320202x41212x5202203x612213x72022204x8122214设无记忆二进制信源先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示.(1) 验证码字的可分离性;(2) 求对应于一个数字的信源序列的平均长度;(3) 求对应于一个码字的信源序列的平均长度;(4) 计算,并计算编码效率;(5) 若用4位信源符号合起来编成二进制哈夫曼码,求它的平均码长,序列数字二元码字10100001110010013101000013101100001411000000015110100000016111000000001711110000000080一个来编写二进制哈夫曼码,求新符号的平均码字长度和编码效率.对题的信源进行游程编码.若“0”游程长度的截至值为16,“1”游程长度的截至值为8,求编码效率.选择帧长N = 64(1) 对00000000000000000000000000000000000000遍L-D码;(2) 对000000000010遍L-D码再译码;(3) 对000000000000000000000000000000000000000000000000000000000000000 0遍L-D码;(4) 对0遍L-D码;(5) 对上述结果进行讨论.。
《信息论、编码与密码学》课后习题答案第1章 信源编码1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS 。
求信源熵H (X )。
解: 信源熵 ∑=-=512)(log )(k k k p p X HH(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]=[0.521+0.5+0.464+0.411+0.332] =2.228(bit)故得其信源熵H(X)为2.228bit1.2 证明一个离散信源在它的输出符号等概率的情况下其熵达到最大值。
解: 若二元离散信源的统计特性为P+Q=1 H(X)=-[P*log(P)+(1-P)*log(1-P)] 对H(X)求导求极值,由dH(X)/d(P)=0可得211101log ==-=-p ppp p可知当概率P=Q=1/2时,有信源熵)(1)(max bit X H =对于三元离散信源,当概率3/1321===P P P 时,信源熵)(585.1)(max bit X H =, 此结论可以推广到N 元的离散信源。
1.3 证明不等式ln 1x x ≤-。
画出曲线1ln y x =和21y x =-的平面图以表明上述不等式的正确性。
证明:max ()ln 1(0)1()()01001()0()0ln 11ln 1ln 1f x x x x f x xf x x x x f x f x f x x x x x x x =-+>'=''==>∴<≤>≤=≤-≥≤-≤-令,又有时此时也即当时同理可得此时综上可得证毕绘制图形说明如下 可以很明确说明上述 不等式的正确性。
1.4 证明(;)0I X Y ≥。
在什么条件下等号成立?1111(,)(,)(,)(,)log()()n mi j i j i j n mi j i j i j i j I P x y I x y P x y P x y P x P y =====∑∑∑∑(X ;Y )=当和相互独立时等号成立。
第1章 信息论基础1.7 ⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡36136236336436536636536436336236112111098765432)(X q X 1.8 p (s 0 ) = 0.8p (s 0 ) + 0.5p (s 2 )p (s 1 ) = 0.2p (s 0 ) + 0.5p (s 2 ) p (s 2 ) = 0.5p (s 1 ) + 0.3p (s 3 ) p (s 3 ) = 0.5p (s 1 ) + 0.7p (s 3 ) p (s 0 ) + p (s 1 ) + p (s 2 ) + p (s 3 ) = 1 p (s 0 ) =3715, p (s 1 ) = p (s 2 ) = 376,p (s 3 ) = 37101.9 P e = q (0)p + q (1)p = 0.06(1-0.06)﹡1000﹡10 = 9400 < 9500 不能1.10 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------------=22222222)1(0)1()1(00)1(0)1()1(000000)1()1(0)1(00000)1()1(0)1(p p p pp p p p p p p p p p p p p p p p p p p p P 第2章 信息的度量2.4 logk2.5 I (X ; Y Z )= I (X ; Y )+ I (X ; Z ∣Y ) 2.7 010434()()()111111p s p s p s === H = 0.25(Bit/符号)2.8 H = 0.82(Bit/符号) 2.10 (1)1()log225.6()52!i I x Bit =-= (2)1352!()log ()log 413!39!i i I x q x =-=(3))/(4.713log 234log 52log 521log )(符号-Bit U H ==⨯===(4))/(7.313log 131log )(符号Bit X H ==- 2.11(1)H (X ) = log6 = 2.58 (Bit/符号) (2)H (X ) =2.36 (Bit/符号)(3)I (A+B=7) = - log1/6 = log6 = 2.585 (Bit) 2.12 (1)I (x i ) = -log1/100 = log100(2)H(X)=log100.2.13 039.0log )(-=Y X I2.14 R t =1000/4 (码字/秒) × H (U ) =250×9=2250(Bit/秒) 2.15 ―log p = log 55/44。
4.1 设有一个二元等概率信源 X={0,1},通过一个二进制对称信道(BSC )。
其失真函数与信道转移概率分别定义为,试求失真矩阵d 和平均失真。
失真矩阵为,由题的转移概率矩阵:11p εεεε-⎡⎤=⎢⎥-⎣⎦平均失真:11(,)(,)0(1)10(1)12n m i j i ji j D p a b d a b εεεεε====⨯-+⨯+⨯-+⨯=∑∑4.2设输入符号表示为X={0,1},输出符号表示为Y={0,1}。
输入符号的概率分布为P=(1/2,1/2),失真函数为d(0,0)=d(1,1)=0,d(0,1)=d(1,0)=2。
试求以及相应的编码器转移概率矩阵。
失真矩阵:0120d ⎡⎤=⎢⎥⎣⎦, min min 2max 1112211122221,21,211,21,2max 0,()()(1/2,1/2)log 21/10:01min min{,)111111min{02,10}min{1,}22222201,:,()001()i ij j j i j j D R D H X H bit P D p d p d p d p d p d P R D R D ==========⎡⎤=⎢⎥⎣⎦==++=⨯+⨯⨯+⨯==⎡⎤==⎢⎥⎣⎦∑符号转移矩阵此时转移矩阵定12义域:[0,]4.4设输入信号的概率分布为P=(1/2,1/2),失真矩阵为10141104d ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦。
试求以及相应的编码器转移概率矩阵。
失真矩阵:10141104d ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ min min 2max 1112211122221132231,2,31,2,311,2,31,2,30,()()(1/2,1/2)log 21/100:010min min{,,)11111111111min{01,10,}min{,,}22222424224i ij j j i j j D R D H X H bit P D p d p d p d p d p d p d p d ==========⎡⎤=⎢⎥⎣⎦==+++=⨯+⨯⨯+⨯⨯+⨯=∑符号转移矩阵max 14001,:,()00011()4P R D R D =⎡⎤==⎢⎥⎣⎦此时转移矩阵定义域:[0,]。
信息论与编码第五章习题参考答案5.1某离散⽆记忆信源的概率空间为采⽤⾹农码和费诺码对该信源进⾏⼆进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。
解:计算相应的⾃信息量1)()(11=-=a lbp a I ⽐特 2)()(22=-=a lbp a I ⽐特 3)()(313=-=a lbp a I ⽐特 4)()(44=-=a lbp a I ⽐特 5)()(55=-=a lbp a I ⽐特 6)() (66=-=a lbp a I ⽐特 7)()(77=-=a lbp a I ⽐特 7)()(77=-=a lbp a I ⽐特根据⾹农码编码⽅法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=?+?+?+?+?+?+?+?=由于每个符号的码长等于⾃信息量,所以编码效率为1。
费罗马编码过程5.2某离散⽆记忆信源的概率空间为使⽤费罗码对该信源的扩展信源进⾏⼆进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进⾏⽐较。
解:信息熵811.025.025.075.075.0)(=--=lb lb X H ⽐特/符号(1)平均码长11=L ⽐特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=?+?+?+?=L ⽐特/符号编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=?+?+??+??+??+?+??+?=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提⾼。
信息论与编码第五章答案5.1 设信源1234567()0.20.190.180.170.150.10.01Xa a a a a a a p X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭ (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率. 解: (1)721222222()()log ()0.2log 0.20.19log 0.190.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol==-=-⨯-⨯-⨯-⨯-⨯-⨯-⨯=∑(2)(3)71()0.230.1930.1830.1730.1530.140.0173.141()()/ 2.609 3.14183.1%i i i K k p x H X H X K Rη===⨯+⨯+⨯+⨯+⨯+⨯+⨯====÷=∑5.2 对习题5.1的信源编二进制费诺码,计算编码效率.解:a i p(a i)编码码字k ia10.20002 a20.19100103 a30.1810113 a40.1710102 a50.15101103 a60.11011104 a70.011111145.3 对信源编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率.解:二进制哈夫曼码:x i p(x i)编码码字k i s61s50.610s40.391s30.350s20.261x10.20102 x20.191112 x30.1800003 x40.1710013 x50.1500103 s10.111x60.1001104 x70.01101114三进制哈夫曼码:x i p(x i)编码码字k i s31s20.540s10.261x10.2221 x20.190002 x30.181012 x40.172022 x50.150102 x60.11112 x70.0121225.4 设信源(1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率;(4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解:(1)(2)二进制香农码:x i p(x i)p a(x i)k i码字x10.5010x20.250.5210x30.1250.753110x40.06250.87541110x50.031250.9375511110x60.0156250.968756111110x70.00781250.98437571111110x80.00781250.992187571111111二进制费诺码:xi p(x i)编码码字k i x10.5001 x20.2510102 x30.125101103 x40.06251011104x50.0312510111105 x60.015625101111106 x70.00781251011111107 x80.0078125111111117 (3)香农编码效率:费诺编码效率:(4)x i p(x i)编码码字k i x10.5001 x20.25111 x30.12520202 x40.06251212 x50.03125202203 x60.01562512213 x70.00781252022204 x80.0078125122214 (5)5.5 设无记忆二进制信源先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示.(1) 验证码字的可分离性;(2) 求对应于一个数字的信源序列的平均长度;(3) 求对应于一个码字的信源序列的平均长度;(4) 计算,并计算编码效率;(5) 若用4位信源符号合起来编成二进制哈夫曼码,求它的平均码长,并计算编码效率.序列数字二元码字101000011100100131010000131011000014110000000151101000000161110000000017111100000000805.6 有二元平稳马氏链,已知p(0/0) = 0.8,p(1/1) = 0.7,求它的符号熵.用三个符号合成一个来编写二进制哈夫曼码,求新符号的平均码字长度和编码效率.5.7 对题5.6的信源进行游程编码.若“0”游程长度的截至值为16,“1”游程长度的截至值为8,求编码效率. 5.8 选择帧长N= 64(1) 对001000000000000000000000000000000100000000000000 0000000000000000遍L-D码;(2) 对100001000010110000000001001000010100100000000111 0000010000000010遍L-D码再译码;(3) 对000000000000000000000000000000000000000000000000 0000000000000000遍L-D码;(4) 对101000110101110001100011101001100001111011001010 00110101011010010遍L-D码;(5) 对上述结果进行讨论.。
4.1 设有一个二元等概率信源 X={0,1},通过一个二进制对称信道(BSC )。
其失真函数与信道转移概率分别定义为
,
试求失真矩阵d 和平均失真。
失真矩阵为
,由题的转移概率矩阵:11p εεεε-⎡⎤=⎢⎥-⎣⎦
平均失真:11
(,)(,)0(1)10(1)12n m i j i j
i j D p a b d a b εεεεε====⨯-+⨯+⨯-+⨯=∑∑
4.2设输入符号表示为X={0,1},输出符号表示为Y={0,1}。
输入符号的概率分布为P=(1/2,1/2),失真函数为d(0,0)=d(1,1)=0,d(0,1)=d(1,0)=2。
试求
以及相应的编码器转移概率矩阵。
失真矩阵:0120d ⎡⎤=⎢⎥⎣⎦
, min min 2
max 1112211122221,21,211,21,2max 0,()()(1/2,1/2)log 21/10:01min min{,)111111min{02,10}min{1,}222222
01,:,()001()i ij j j i j j D R D H X H bit P D p d p d p d p d p d P R D R D ==========⎡⎤=⎢⎥⎣⎦
==++=⨯+⨯⨯+⨯==⎡⎤==⎢⎥⎣⎦
∑符号
转移矩阵此时转移矩阵定12
义域:[0,]
4.4设输入信号的概率分布为P=(1/2,1/2),失真矩阵为101
41104d ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣
⎦。
试
求以及相应的编码器转移概率矩阵。
失真矩阵:101
41104d ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ min min 2
max 1112211122221132231,2,31,2,311,2,31,2,30,()()(1/2,1/2)log 21/100:010min min{,,)11111111111min{01,10,}min{,,}22222424224i ij j j i j j D R D H X H bit P D p d p d p d p d p d p d p d ==========⎡⎤=⎢⎥⎣⎦
==+++=⨯+⨯⨯+⨯⨯+⨯=∑符号转移矩阵max 14
001,:,()00011()4P R D R D =⎡⎤==⎢⎥⎣⎦
此时转移矩阵定义域:[0,]。