中考数学复习专项知识总结—二次函数(中考必备)
- 格式:docx
- 大小:88.00 KB
- 文档页数:13
初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
二次函数(最全的中考二次函数知识点总结二次函数基础知识二次函数的概念是指形如22y=ax^2+bx+c(a≠0)的函数。
其中,a、b、c是常数。
与一元二次方程类似,二次函数的定义域是全体实数。
二次函数的结构特征是等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.其中,a是二次项系数,b是一次项系数,c是常数项。
二次函数的各种形式之间可以通过变换相互转化。
例如,用配方法可将二次函数y=ax^2+bx+c化为y=a(x-h)^2+k的形式,其中h=(-b/2a),k=(4ac-b^2)/4a。
二次函数的解析式可以表示为一般式、顶点式或两根式。
其中,一般式是2y=ax^2+bx+c,顶点式是y=a(x-h)^2+k,两根式是y=a(x-x1)(x-x2)。
二次函数的图象可以用五点绘图法画出。
首先将二次函数化为顶点式,然后确定其开口方向、对称轴及顶点坐标,最后在对称轴两侧左右对称地描点画图。
二次函数y=ax^2的性质与a的符号有关。
当a>0时,开口向上,顶点坐标为(0,0);当a<0时,开口向下,顶点坐标为(0,0)。
顶点坐标为b/2ac−b2/4a以上是二次函数的基本性质,其中y轴和对称轴是直线,顶点是一个点,开口方向和最值是由a的符号决定的。
在具体应用中,可以利用这些性质来帮助我们解决问题。
例如,求函数的最值、确定函数的图像等等。
顶点决定抛物线的位置。
对于几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向和大小完全相同,只是顶点位置不同。
在二次函数2y=ax^2+bx+c中,a、b、c 与函数图像的关系是:抛物线。
二次项系数a在函数中起着决定性的作用。
当a>0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a越小,开口越小,反之a 的值越大,开口越大。
因此,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。
初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。
二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。
一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。
2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。
3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。
5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。
二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。
2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。
3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。
三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。
2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。
3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。
初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。
3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。
4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。
二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。
2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。
3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。
4.抛物线的轴对称性:抛物线关于对称轴对称。
5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。
6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。
三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。
2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。
四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。
2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。
二次函数知识点总结及相关典型题目第一部分 二次函数基础知识✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2ax y =的性质✧ 二次函数2y ax c =+的性质✧ 二次函数y a x h =-的性质:✧ ✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大 小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点➢y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: ➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。
二次函数知识点归纳一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结: a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。
2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。
4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。
二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。
2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。
3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。
4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。
1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。
2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。
所以二次函数的零点就是二次方程的根。
3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。
根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。
四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。
2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。
3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。
中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。
一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。
在二次函数中,我们通常用y来表示函数的值,用x表示自变量。
二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。
这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。
3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。
注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。
三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。
此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。
2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。
此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。
四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。
2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。
3.求图像开口方向:判断二次项的系数a的正负性即可。
4.求单调性:根据图像特征可以判断。
5. 求零点:令y=0,解方程ax^2+bx+c=0即可。
初三数学二次函数知识点归纳在初中数学的学习中,二次函数是一个重要的内容,也是进一步深入学习代数的基础。
学好二次函数的性质和运用对于学生的数学能力的提升至关重要。
下面将对初三数学中二次函数的知识进行归纳总结。
一、二次函数及其图象的性质1. 二次函数的定义二次函数是一个以x的二次幂作为最高次幂的多项式函数,一般的二次函数表达式为: y = ax^2 + bx + c (其中 a, b, c 为常数且 a ≠ 0)。
2. 二次函数图象的平移二次函数图象的平移可以通过改变 a, b 和 c 的值来实现。
当将 a 的值变为 a',则图象的开口方向和大小会有相应的改变;当将 b 的值变为 b',则图象在 x 轴方向上平移;当将 c 的值变为 c',则图象在y 轴方向上平移。
3. 二次函数图象的对称轴二次函数图象的对称轴是一个线段,记作 x = -b/2a,对称轴将图象分为两个对称的部分。
4. 二次函数的顶点二次函数的顶点就是图象的最高点或最低点,所有的二次函数图象都有一个顶点。
5. 二次函数图象的开口方向二次函数图象的开口方向由二次项的系数 a 的正负决定。
当 a > 0 时,图象开口向上;当 a < 0 时,图象开口向下;当 a = 0 时,不再是二次函数。
二、二次函数的求解1. 二次函数的零点二次函数的零点是指函数曲线与 x 轴相交的点,也就是函数的根。
求解二次函数的零点可以通过以下步骤进行:首先,将函数表达式设置为 y = 0;然后,应用求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 计算 x 的值。
2. 二次函数的最值二次函数的最值通过求解顶点来确定。
当a > 0 时,函数有最小值,且最小值为顶点的纵坐标;当 a < 0 时,函数有最大值,且最大值为顶点的纵坐标。
三、二次函数的应用1. 抛物线二次函数的图象通常被称为抛物线。
二次函数知识点二次函数概念:1. 二次函数的概念: 一般地, 形如y=ax2+bx+c(是常数, a≠0)的函数, 叫做二次函数。
这里需要强调: 和一元二次方程类似, 二次项系数a≠0, 而可以为零. 二次函数的定义域是全体实数。
<<>≤≥2.二次函数y=ax2+bx+c的性质1)当a>0时, 抛物线开口向上, 对称轴为, 顶点坐标为.当时, 随的增大而减小;当时, 随的增大而增大;当时, 有最小值..2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.(三)、二次函数解析式的表示方法1.一般式: (, , 为常数, );2.顶点式: (, , 为常数, );3.两根式: (,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式, 只有抛物线与轴有交点, 即时, 抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.练习1.下列关系式中, 属于二次函数的是(x为自变量)( )A. B. C. D.2.函数y=x2-2x+3的图象的顶点坐标是(). A.(1, -4.. B.(-1, 2...C.(1, 2... D.(0, 3)3.抛物线y=2(x-3)2的顶点在..)A.第一象....B.第二象...C.x轴....D.y轴上4.抛物... 的对称轴是.. )9、 A.x=-....B.x=.... C.x=-.....D.x=45.已知二次函数y=ax2+bx+c的图象如图所示, 则下列结论中, 正确的是(.)A.ab>0, c>0B.ab>0, c<0C.ab<0, c>0D.ab<0, c<06.二次函数y=ax2+bx+c的图象如图所示, 则点在第_.象限()A.一B.二C.三D.四7.如图所示, 已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4, 图象交x轴于点A(m, 0)和点B, 且m>4, 则AB的长是()A.4+.B.mC.2m-8D.8-2m10、8.若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是.)11、 抛物线3)2(2+-=x y 的对称轴是( ) A.直线B.直线C.直线D.直线10.把抛物线的图象向左平移2个单位, 再向上平移3个单位, 所得的抛物线的函数关系式是()A. B.C. D.二、填空题1、下列函数中, 哪些是二次函数?(1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+=(4)322-+=x x y 2.二次函数的图象开口方向, 顶点坐标是, 对称轴是; 3.当k 为何值时, 函数为二次函数? 画出其函数的图象.3.函数, 当为时, 函数的最大值是;4、二次函数, 当时, ;且随的增大而减小;5.二次函数y=x2-2x+1的对称轴方程是______________.6.若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式, 则y=________.7.若抛物线y=x2-2x-3与x 轴分别交于A.B 两点, 则AB 的长为_________..8.抛物线y=x2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.9、二次函数的对称轴是.10二次函数的图象的顶点是, 当x 时, y 随x 的增大而减小.11抛物线的顶点横坐标是-2, 则=.12、抛物线的顶点是, 则、c 的值是多少?(1) 13. 已知抛物线y=﹣x -3x -(2) 写出抛物线的开口方向、对称轴和顶点坐标;(3) 求抛物线与x 轴、y 轴的交点坐标;(4) 画出草图观察草图, 指出x 为何值时, y >0,y =0,y <0.14.(2010年宁波市)如图, 已知二次函数的图象经过A(2, 0)、B(0, -6)两点。
中考数学复习专项知识总结—二次函数(中考必备)
1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。
2、二次函数的图象是一条抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。
3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:
(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;
(2)抛物线与x轴的交点和一元二次方程的根的关系
1、通过对实际问题的分析,体会二次函数的意义。
2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
3、会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
1、二次函数的基本概念。
2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。
3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。
4、二次函数图象的平移。
5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。
1、下列各点中,在函数y =-x 2图象上的点是( )
A 、(-2,4)
B 、(2,-4)
C 、(-4,2)
D 、(4,-2)
2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。
3、抛物线21
(3)52
y x =---的开口方向 ,对称轴
是 ,顶点坐标是 ,与x 轴的交点个数是 个。
4、二次函数215
22
y x x =
+-的图象的顶点坐标是 。
5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5) 6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( )
A 、y =-4(x +3)2+2
B 、y =-4(x +3)2-2
C 、y =-4(x -3)2+2
D 、y =-4(x -3)2-2
7、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )
A 、(0,0)
B 、(1,-2)
C 、(0,-1)
D 、(-2,1)
8、二次函数y=(x-1)2+2的最小值是()
A、2
B、1
C、-1
D、-2
9、已知二次函数y=3x2+2x+a与x轴没有交点,则a的取值范围是。
10、如图所示,满足a<0,b>0的函数y=ax2+bx图象是()
A B C D
11、已知二次函数y=ax2+bx+c,若a>0,Δ=0,则它的图象大致是()
A B C D
12、某商场以每件42元的价格购进一种服装,根据试销得知:这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。
(1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式;
(2)商场要想每天获得最大的销售利润,每件的销售价定为多少最合适?最大销售利润为多少?
13、某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现:若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数。
(1)试求y与x之间的函数关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
14、某商户试销一种成本50元/千克的肉制品,规定试销时的销售价不低于成本,又不高于80元/千克,试销中销售量y(千克)与销售单价x(元/千克)的关系是一次函数(如下图所示)。
(1)求y与x之间的函数关系式。
(2)设商户获得的毛利润(毛利润=销售额-成本)为S(元),销售单价定为多少时,该商户获利最大?最大利润是多少?
15、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的
日销售量y(件)之间的关系如下表:
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?
16、(西藏2009年中考)阅读下面的信息:
①如果单独投资A产品,则所获利润y1(万元)与投资金额x(万元)之间存在函数关系式:y1=kx,并且投资5万元时,所获利润为2万元;
①如果单独投资B产品,则所获利润y2(万元)与投资金额x(万元)之间存在函数关系式:y2=ax2+bx,并且投资2万元时,所获利润为2.4万元;投资4
万元时,所获利润为3.2万元。
(1)分别求出上述两函数关系式;
(2)如果对A、B两种产品共投资10万元,请设计一个能获得最大利润的
投资方案,并求出该方案所能获得的最大利润。
17、(16题改编)扎西欲投资A、B两种商品,通过调查他发现每种商品的利
润与投资金额如下表所示:
(1)分别求出上述两函数关系式;
(2)如果对A、B两种产品共投资10万元,请设计一个能获得最大利润的
投资方案,并求出该方案所能获得的最大利润。
18、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。
经调查
发现:如果每件衬衫每降价1元,商场平均每天可多售出2件。
问每件衬衫降价多少元时,商场平均每天盈利最多?
19、扎西将进价为8元的商品按每件10元售出,每天可销售100件,现采用提高售价,减少进货量的办法增加利润。
已知这种商品每涨价1元,销售量就减少10件。
问扎西将售价定为多少时,每天赚的利润最大?最大利润为多少?
20、如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y 轴相交于点C(0,3)。
(1)求抛物线的函数关系式;
(2)若点D(-1,m)是抛物线y=ax2+bx+c上一点,试求出m的值,并求出此时①ABD的面积;
(3)在x轴上是否存在一点P,使得①P AC为等腰三角形?若存在,请写出点P的坐标。
(4)在对称轴上是否存在一点M,使得MA+MC的值最小?若存在,写出点M的坐标。
21、如图,直线y=2x+2与抛物线y=x2 - x+2相交于点A、B。
(1)求出点A、B的坐标;
(2)试求出①OAB的面积;
(3)在线段AB上取一点C,过点C作CM①x轴,CM与抛物线相交于点D,问是否存在点C,使得四边形OACD为平行四边形?若存在,求出点C的坐标。