从晶体管电路方面来理解放大原理!对晶体管饱和、饱和压降的理解
- 格式:doc
- 大小:24.00 KB
- 文档页数:7
测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
图2绘出了万用电表欧姆挡的等效电路。
由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
如何正确理解三极管的放⼤区、饱和区、截⽌区转发:三极管的⼯作原理对三极管放⼤作⽤的理解,切记⼀点:能量不会⽆缘⽆故的产⽣,所以,三极管⼀定不会产⽣能量。
但三极管厉害的地⽅在于:它可以通过⼩电流去控制⼤电流。
放⼤的原理就在于:通过⼩的交流输⼊,控制⼤的静态直流。
假设三极管是个⼤坝,这个⼤坝奇怪的地⽅是,有两个阀门,⼀个⼤阀门,⼀个⼩阀门。
⼩阀门可以⽤⼈⼒打开,⼤阀门很重,⼈⼒是打不开的,只能通过⼩阀门的⽔⼒打开。
所以,平常的⼯作流程便是,每当放⽔的时候,⼈们就打开⼩阀门,很⼩的⽔流涓涓流出,这涓涓细流冲击⼤阀门的开关,⼤阀门随之打开,汹涌的江⽔滔滔流下。
如果不停地改变⼩阀门开启的⼤⼩,那么⼤阀门也相应地不停改变,假若能严格地按⽐例改变,那么,完美的控制就完成了。
在这⾥,Ube 就是⼩⽔流,Uce 就是⼤⽔流,⼈就是输⼊信号。
当然,如果把⽔流⽐为电流的话,会更确切,因为三极管毕竟是⼀个电流控制元件。
如果某⼀天,天⽓很旱,江⽔没有了,也就是⼩的⽔流那边是空的。
管理员没有打开⼩阀门,尽因此没有⽔流的存在,简单的讲就是三极管未导通,Ube<打开电压,⼀般是⼩于0.5或者0.7V ,此时Ib=0,Ic=Iceo ≈0.这就是三极管中的截⽌区。
饱和区是⼀样的,因为此时江⽔达到了很⼤很⼤的程度,管理员开的阀门⼤⼩已经没⽤了。
如果不开阀门江⽔就⾃⼰冲开了,这就是⼆极管的击穿。
在模拟电路中,⼀般阀门是半开的,通过控制其开启⼤⼩来决定输出⽔流的⼤⼩。
没有信号的时候,⽔流也会流,所以,不⼯作的时候,也会有功耗。
⽽在数字电路中,阀门则处于开或是关两个状态。
当不⼯作的时候,阀门是完全关闭的,没有功耗。
截⽌状态三极管作为开关使⽤时,仍是处于下列两种状态下⼯作。
1.截⽌(cut off)状态:如图5所⽰,当三极管之基极不加偏压或加上反向偏压使BE 极截⽌时(BE 极之特性和⼆极管相同,须加上⼤于0.7V 之正向偏压时才态导通),基极电流IB=0,因为IC=βIB,所以IC=IE=0,此时CE 极之间相当于断路,负载⽆电流。
三极管放大截止饱和三极管是一种具有放大、开关和稳压等电子特性的半导体元件,是电子设备中最常见的一种器件之一。
在电路中三极管有三个极:发射极、基极和集电极。
三极管放大、截止和饱和是三极管最基础的三种工作状态,本文将分步骤阐述三极管的放大,截止,饱和三种状态。
1. 三极管工作原理在三极管中,当进入基极的电流足够大时,基极和发射极之间就会发生浓度不同的电子扩散,从而形成发射电流。
而这时,就会在集电极和发射极之间产生大约等于发射电流几倍的集电电流,从而实现放大作用。
2. 三极管放大状态三极管的放大状态是指,当在基极加上充分的电压时,三极管工作在放大状态。
此时,其射极发出的电子流被集电极吸收,形成一个电流放大器。
在放大状态中,三极管的电流增益量很大,正常工作时前面的电路只要提供足够的基极电压,就可以实现电流的放大效果。
3. 三极管截止状态三极管的截止状态,是指当三极管的基极施加的电压非常小,不能使三极管的集电极和发射极之间的电流增大时,三极管就会处于截止状态。
此时,三极管的输出电流非常小,即处于关闭状态。
4. 三极管饱和状态三极管的饱和状态,是指当三极管的基极施加的电压非常大,使三极管的集电极和发射极之间的电流已经不能再增大时,三极管就会处于饱和状态。
此时,三极管的输出电流值也已经尽量大,即处于开启状态。
5. 总结在三极管的三种状态中,放大状态是最常见的状态,其作用在电路中主要是电流的放大效果。
而截止状态和饱和状态则在开关电路和数字电路中使用比较频繁。
需要注意的是,三极管的工作状态取决于其基极电压和电路中的其他参数,因此,应根据实际情况来选择合适的状态和参数,以保证电路正常运行和工作可靠。
三极管有三个工作状态;截止、放大、饱和;放大状态很有学问也很复杂,多用于集成芯片,比如运放,现在不讨论;其实对信号的放大我们通常用运放处理。
三极管更多的是做一个开关管来使用,且只有截止、饱和两个状态。
截止状态看作是“关”,饱和状态看作是“开”,Ib≥1mA时,完全可以保证三极管工作在饱和状态,对于小功率的三极管此时Ic为几十到几百mA,驱动继电器、蜂鸣器等功率器件绰绰有余。
把三极管箭头理解成一个开关,如图1为NPN型三极管,按下开关S1,约1mA的Ib 流过箭头,箭尾比箭头电压高0.6V~0.7V(钳位电压),三极管工作在饱和状态,c极到e极完全导通,c极电平接近0V(GND);负载RL两端压降接近5V。
Ib与Ic电流都流入e极,根据电流方向,e极为低电平,应接地,c极接负载和电源。
如图2为PNP型三极管,按下开关S2,约1mA的Ib流过箭头,箭尾比箭头电压高0.6V~0.7V(钳位电压),三极管工作在饱和状态,e极到c极完全导通,c极电平接近5V;负载RL两端压降接近5V。
Ib与Ic电流都流出e极,根据电流方向,e极为高电平,应接电源,c极接负载和地。
如图3,对于NPN三极管,更应该在b极加一个下拉电阻(2~10k),一是为了保证b、e极间电容加速放电,加快三极管截止;二是为了保证给三极管b极一个已知逻辑状态,防止控制输入端悬空或高阻态时对三极管工作状态的不确定。
如图4,对于PNP三极管,更应该在b极加一个上拉电阻(2~10k),原理同上。
如图4和图5,对于感性负载,必须在负载两端并一个反向的续流二极管;三极管在关断时,线圈会自感产生很高的反向电动势,而续流二极管提供的续流通路,同时钳位反向电动势。
防止击穿三极管。
续流二极管的选型必须是快恢复二极管或肖特基二极管,两者响应速度快。
如图5,对于某些控制信号为低电平时,可能并不是真正的0V,一般在1V以内,为保证三极管完全截止,不得不在三极管b极加一个反向稳压管或正向二极管,以提高三极管导通的阈值电压(或钳位电压);根据经验,推挽输出的数字信号不用加;OC输出、二极管输出以及延时控制有必要加;通常稳压管正常的工作电流≥1mA。
三极管饱和状态三极管是一种重要的电子器件,广泛应用于电子技术领域。
在三极管的工作状态中,饱和状态被认为是其中最重要的一种。
饱和状态是指三极管导通时,集电极与基极之间的电压小于其阈值,且在输入信号范围内,输出信号的变化极小。
下面将从三极管原理、饱和状态特征、饱和状态的应用以及饱和状态的优化方面进行详细介绍。
首先,我们需要了解三极管的原理。
三极管由三层半导体材料构成,包括P型半导体材料和两个N型半导体材料。
其中,P型半导体材料是基极,两个N型半导体材料分别是发射极和集电极。
通过外加电压和输入信号的作用,可以控制三极管的导通和截止状态。
接下来,我们将介绍三极管的饱和状态特征。
当输入信号使基极-发射极电压大于三极管的阈值电压时,三极管会进入饱和状态。
此时,集电极-发射极电压小于或等于零,基极电流和集电极电流之间有较大的放大作用。
饱和状态的应用非常广泛。
在数字电路中,三极管的饱和状态被用于实现逻辑门电路。
常见的与门、或门、非门等逻辑门电路都可以通过三极管的饱和状态来实现。
此外,在放大电路中,饱和状态也是一种常用的工作状态。
通过合理选择电路参数和输入信号,可以实现放大信号的目的。
然而,饱和状态在实际应用中也存在一些问题,如功耗较高、信号失真等。
为了优化饱和状态的性能,可以采取一些措施。
例如,选择适当的输入信号幅值和频率,减小电路中的接地电阻,优化电路布局等。
这些措施可以有效地降低功耗,减小信号失真,提高饱和状态的工作效果。
综上所述,三极管的饱和状态是一种重要的工作状态。
在理解其原理和特征的基础上,我们可以将其应用于数字电路和放大电路中。
同时,为了优化饱和状态的性能,我们还可以采取一些措施。
通过不断地学习和研究,我们可以更好地理解三极管的饱和状态,并在实际应用中发挥其作用。
晶体管的放大原理
晶体管是一种电子设备,广泛应用于信号放大、开关、数字逻辑和模拟电路等领域。
晶体管的放大原理基于其特殊的结构和电荷输运机制。
晶体管由三个区域组成,分别是发射区、基区和集电区。
在正常工作状态下,晶体管的发射区与基区之间形成一个p-n结,而基区与集电区之间形成另一个p-n结。
当发射极与基极之间的电压为正向偏置时,发射区的p-n结被击穿,电子从发射区中注入到基区中,形成多数载流子。
由于基区很薄,多数载流子迅速通过基区,并进入集电区。
此时,晶体管处于放大状态。
当输入信号加在基极上时,基极电流会受到控制,并进一步控制集电极电流。
结果是,输入信号被放大,并经过集电区输出。
晶体管的放大原理可以通过控制基极电流来实现。
如果基极电流较小,集电极电流也会相应较小,这被称为截止区。
如果基极电流适中,集电极电流会被放大,但还未达到饱和状态。
如果基极电流较大,集电极电流会达到饱和状态。
因此,晶体管的放大原理是基于控制输入信号来调整晶体管的工作状态,并通过基极电流的变化来放大输入信号,从而实现信号的放大。
半导体正向、反向电压、正向饱和压降、放大倍数、反向漏电流半导体器件的电性能参数一直以来都是研究和应用中的关键问题。
其中,正向电压、反向电压、正向饱和压降、放大倍数以及反向漏电流是评估半导体器件性能的重要指标。
本文将就这些指标进行探讨,并对其意义和影响因素进行分析。
一、正向电压正向电压是指在正向工作状态下,外加电压与半导体器件之间的电位差。
正向电压对半导体器件的导通性能和工作稳定性起到重要作用。
较小的正向电压可以保证器件的正常导通,而较大的正向电压可能会引起电压击穿现象,损坏器件。
二、反向电压反向电压是指在反向工作状态下,外加电压与半导体器件之间的电位差。
反向电压对半导体器件的绝缘性能和电压稳定性起到关键作用。
较小的反向电压可以有效保护器件,而较大的反向电压可能会导致器件击穿,增大漏电流。
三、正向饱和压降正向饱和压降是指在正向工作状态下,半导体器件的正向电压达到一定值时,电流增长缓慢,呈现饱和状态的现象。
正向饱和压降是评估半导体器件导通能力和性能稳定性的重要参数。
较小的正向饱和压降可以提高器件的效率和工作稳定性,而较大的正向饱和压降会降低器件的性能。
四、放大倍数放大倍数是指半导体器件在放大作用下,输出信号与输入信号之间的比值关系。
放大倍数对于半导体器件的放大效果和性能表现具有重要意义。
较大的放大倍数可以增强器件的放大效果,提高信号的传输能力,而较小的放大倍数则会降低器件的放大效果。
五、反向漏电流反向漏电流是指在反向工作状态下,半导体器件存在的漏电流现象。
反向漏电流对器件的绝缘性能和工作稳定性有着直接影响。
较小的反向漏电流可以确保器件的正常工作,而较大的反向漏电流则会降低器件的性能和寿命。
半导体正向、反向电压、正向饱和压降、放大倍数和反向漏电流是评估半导体器件性能的重要指标,它们相互之间存在着一定的关联和影响。
在设计和选择半导体器件时,需要充分考虑这些指标的要求,并根据具体应用场景选择合适的器件。
通过合理的电性能参数选择和设计优化,可以提高半导体器件的性能和可靠性,满足不同应用场景对电子器件的需求。
晶体管放大电路的原理介绍晶体管放大电路是现代电子设备中广泛应用的一种电路结构。
它利用晶体管的放大特性来增加输入信号的幅度,并输出一个放大后的信号。
晶体管放大电路有着许多优点,例如高增益、低噪声等,因此在放大、调节和传输信号方面发挥着重要作用。
本文将深入探讨晶体管放大电路的原理。
三极管基本原理三极管是一种常用的晶体管,它由三个掺杂不同类型材料的半导体层构成:发射区、基区和集电区。
三极管常用的两种工作方式是共射极和共基极。
共射极放大电路共射极放大电路是最常见的三极管放大电路之一。
它的特点是输入信号接在基极上,输出信号从集电极上取出。
这种电路常用于需要较大电压增益的应用。
共射极放大电路的工作原理1.基极-发射区电流控制:输入信号通过耦合电容C1进入基极,使得基极电压发生变化。
当输入信号为正半周时,与基极相连的电容C1充电,基极电流增大,发射区电流也随之增大;当输入信号为负半周时,电容C1放电,基极电流减小,发射区电流也随之减小。
2.集电极电流变化:发射区电流的变化会导致集电区电流的变化。
当发射区电流增大时,集电区电流也会增大;反之,当发射区电流减小时,集电区电流也会减小。
3.输出信号增强:由于晶体管的放大特性,集电极电流的变化会引起输出信号的放大,即得到了较大幅度的输出信号。
共射极放大电路的特点•高输入电阻:晶体管的基极-发射极之间电流极小,所以输入电阻较高,可以减小输入信号源的负载效应。
•低输出电阻:输出信号是取集电极电流,因此输出电阻较低。
•相位反转:输入信号和输出信号之间相位存在180度的反转。
共基极放大电路共基极放大电路是另一种常用的三极管放大电路,它的特点是输入信号接在发射区上,输出信号从集电极上取出。
这种电路常用于需要较大电流增益的应用。
共基极放大电路的工作原理1.输入信号作用:输入信号通过耦合电容C1进入发射区,使得发射区电流发生变化。
2.集电极电流控制:发射区电流的变化会导致集电区电流的变化。
晶体管放大原理.姓名学号:系部:计算机系专业:计算机科学与技术指导教师:张评阅教师:张完成时间:2012年11月4号论文摘要题目:晶体管放大原理摘要:1、共射电路具有较大的电压放大倍数和电流放大倍数,同时输入电阻和输出电阻适中.所以,在一般对输入电阻,输出电阻和频率响应没有特殊要求的地方,常被采用.例如低频电压放大电路的输入级,中间级或输出级.2、共集电路的特点是:输入电阻在三种基本电路中最大;输出电阻则最小;电压放大倍数是接近于1而小于1的正数,具有电压跟随的性质.由于具有这些特点,故应用很广泛.常用于放大电路的输入级,也常用于电路的功率输出级.3、共基电路的主要特点是输入电阻小,放大倍数和共射电路差不多,频率特性好.常用于宽频放大器关键词:晶体管放大基本电路频率正文晶体管简介:1. 晶体管的结构及类型晶体管有双极型和单极型两种,通常把双极型晶体管简称为晶体管,而单极型晶体管简称场效应管。
晶体管是半导体器件,它由掺杂类型和浓度不同的三个区(发射区、基区和集电区)形成的两个PN结(发射结和集电结)组成,分别从三个区引出三个电极(发射极e、基极b和集电极c)。
晶体管根据掺杂类型不同,可分为NPN型和PNP型两种;根据使用的半导体材料不同,又可分为硅管和锗管两类。
晶体管内部结构的特点是发射区的掺杂浓度远远高于基区掺杂浓度,并且基区很薄,集电结的面积比发射结面积大。
这是晶体管具有放大能力的内部条件。
2. 电流分配与放大作用晶体管具有放大能力的外部条件是发射结正向偏置,集电结反向偏置。
在这种偏置条件下,发射区的多数载流子扩散到基区后,只有极少部分在基区被复合,绝大多数会被集电区收集后形成集电极电流。
通过改变发射结两端的电压,可以达到控制集电极电流的目的。
晶体管的电流分配关系如下:其中电流放大系数和之间的关系是=/(1+),=/(1-);I CBO 是集电结反向饱和电流,I CEO是基极开路时集电极和发射极之间的穿透电流,并且I CEO=(1+)I CBO。
三极管饱和,放大,截止电压判断
1.截止状态所谓截止,就是三极管在工作时,集电极电流始终为0。
此时,集电极与发射极间电压接近电源电压。
对于NPN 型硅三极管来说,当U be在0~0.5V 之间时,I b很小,无论I b怎样变化,I c都为0。
此时,三极管的内阻(Rce)很大,三极管截止。
当在维修过程中,测得U be低于0.5V 或Uce接近电源电压时,就可知道三极管处在截止状态。
当 U be在0.5~0.7V 之间时,U be的微小变化就能引起I b的较大变化,I b随U be基本呈线性变化,从而引起I c的较大变化(I c=βI b)。
这时三极管处于放大状态,集电极与发射极间电阻(Rce)随U be可变。
当在维修过程中,测得U be在0.5~0.7V 之间时,就可知道三极管处在放大状态。
3.饱和状态
当三极管的基极电流(I b)达到某一值后,三极管的基极电流无论怎样变化,集电极电流都不再增大,一直处于最大值,这时三极管就处于饱和状态。
三极管的饱和状态是以三极管集电极电流来表示的,但测量三极管的电流很不方便,可以通过测量三极管的电压U be及U ce来判断三极管是否进入饱和状态。
当U be略大于0.7V 后,无论U be怎样变化,三极管的I c将不能再增大。
此时三极管内阻(Rce)很小,U ce 低于0.1V,这种状态称为饱和。
三极管在饱和时的U ce 称为饱和压降。
当在维修过程中测量到U be在0.7V 左右、而U ce低于0.1V 时,就可知道三极管处在饱和状态。
晶体三极管放大原理的讲解晶体三极管作为一个常用器件,是构成现代电子世界的重要基石。
然而,传统的教科书对其工作原理的讲述却存在有很大问题,使初学者对三极管的工作原理无法正常理解,感到别扭与迷茫。
其主要问题有以下三点:1 严重割裂晶体二极管与三极管在原理上的自然联系。
没有真正说明三极管集电结为何会发生反偏导通并产生Ic?这看起来与二极管原理强调的PN结单向导电性相矛盾。
2 放大状态下集电极电流Ic为什么只受控于电流Ib而与电压无关;即:Ic与Ib之间为什么存在着一个固定的放大倍数关系。
3 饱和状态下,Vc电位很弱的情况下,为什么集电结仍然会有反向大电流Ic通过。
很多教科书对于这部分内容,在讲解方法上都存在有很大问题。
有一些针对初、中级学者的普及性教科书,干脆采用了回避的方法,只给出结论却不讲原因。
既使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。
这些问题集中表现在讲解方法的切入角度不恰当,致使逻辑混乱,讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使很多初学者看后会产生一头雾水的感觉。
笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。
虽然新的讲解方法也肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。
一、 传统讲法及问题:传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。
“1 发射区向基区注入电子;2 电子在基区的扩散与复合;3 集电区收集由基区扩散过来的电子。
”注1问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。
这种强调很容易使人产生误解。
以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。
三极管的截止、放大、饱和三种状态的电流、电压说明三极管3种工作状态电流特征三极管有3种工作状态:截止、放大、饱和。
用于不同目的的三极管其工作状态不同。
三极管的3种工作状态说明信号的放大和传输下图所示是三极管工作在共发射极放大器中的信号放大和传输示意图,经过三极管放大器的放大后,输出信号幅度增大。
在共发射极放大器信号中,输入信号的正半周变成了输出信号的负半周,输入信号的负半周变成了输出信号的正半周。
信号的非线性失真非线性是指:给三极管输入一个标准的正弦信号,从三极管输出的信号已经不是一个标准的正弦信号,输出信号与输入信号不同就是失真。
下图是非线性失真信号波形示意图。
产生这一失真的原因是三极管的非线性,这在三极管放大电路中是不允许的,需要通过三极管直流电路的设计加以减小和克服。
三极管截止工作状态用来放大信号的三极管不应工作在截止状态。
若输入信号部分地进入了三极管的截止区,则输出信号会产生非线性失真。
如果三极管基极上输入信号的负半周进入三极管截止区,将引起削顶失真。
如下图。
注意信号输入输出与波形正负半周的关系。
当三极管工作于开关状态时,三极管的一个工作状态就是截止状态。
开关电路中的三极管不是用来放大信号的,所以不存在失真问题,三极管放大工作状态当三极管用来放大信号时,工作在放大状态,输入三极管的信号进入放大区。
见下图。
这时的三极管是线性的,信号不会出现非线性失真。
在线性状态下,给三极管输入一个正弦信号,输出也是正弦信号,输出的幅度要高于输入幅度,如下图,说明三极管对输入信号已经有了放大作用,但是正弦信号的特性未变,所以没有非线性失真。
放大状态下,集电极反向偏置后,集电极内阻大,使三极管输出端的集电极电流不能流向三极管的输入端基极,如下图,使三极管进入正常放大状态。
放大状态下,发射极正偏后,发射极内阻很小,使三极管基极输入信号电流流入发射极,如下图,三极管进入正常放大状态。
三极管的饱和工作状态三极管在放大工作状态基础上,如果基极电流进一步增大许多,进入饱和状态,三极管失去放大能力。
晶体管的三种工作状态
晶体管是一种半导体器件,它可以在电子设备中起到放大、开关和稳定电流等作用。
晶体管的工作状态可以分为饱和状态、截止状态和放大状态三种。
下面我们将分别介绍这三种工作状态的特点和应用。
首先是饱和状态。
在饱和状态下,晶体管的集电极与基极之间的电压较低,使得集电极-发射极之间的电压也较低,导致晶体管处于导通状态。
在这种状态下,晶体管可以承受较大的电流,起到放大信号的作用。
饱和状态的晶体管通常应用于放大器和开关电路中。
其次是截止状态。
在截止状态下,晶体管的集电极与基极之间的电压较高,使得集电极-发射极之间的电压也较高,导致晶体管处于截止状态。
在这种状态下,晶体管无法承受大电流,无法放大信号。
截止状态的晶体管通常应用于数字电路中的开关电路。
最后是放大状态。
在放大状态下,晶体管的集电极与基极之间的电压处于饱和状态和截止状态之间,使得晶体管能够放大信号。
在这种状态下,晶体管可以承受一定范围内的电流,起到放大信号的作用。
放大状态的晶体管通常应用于放大器和模拟电路中。
总的来说,晶体管的三种工作状态分别是饱和状态、截止状态和放大状态。
它们分别对应着晶体管的导通、截止和放大功能,广泛应用于各种电子设备中。
通过对晶体管工作状态的理解,我们可以更好地应用晶体管,设计出更加高效和稳定的电子设备。
三极管饱和及深度饱和状态的理解和判断三极管饱和问题总结:1.在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。
根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能到达真正的饱和;倍数越大,饱和程度就越深。
2.集电极电阻越大越容易饱和;3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制问题:基极电流到达多少时三极管饱和?解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。
对于9013、9012而言,饱和时Vce小于0.6V,Vbe 小于1.2V。
下面是9013的特性表:问题:如何判断饱和?判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。
饱和的条件:1.集电极和电源之间有电阻存在且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c电压高的情况。
影响饱和的因素:1.集电极电阻越大越容易饱和;2.管子的放大倍数放大倍数越大越容易饱和;3.基集电流的大小;饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地)谈论饱和不能不提负载电阻。
假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce>Ic(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。
注意:饱和时Vb>Vc,但Vb>Vc不一定饱和。
晶体管饱和区如何理解
晶体管饱和区是晶体管的一种性能特性,它体现在晶体管双极电路的工作范围中,只要晶体管的输入信号电压增大到一定大小,晶体管的输出电压就不再增加,此时就进入到晶体管饱和区,也就是晶体管的放大率增值到最大(放大倍数)后就不再增大,故称饱和区。
晶体管的放大率和结构有关,其增值表现出“单调性”,也就是,在一段范围内,随着输出信号的增大,放大率逐渐增加。
当输入信号电压超过饱和区的界限时,晶体管的放大率就不再增加,晶体管就进入到饱和区,即放大率达到最大,输出电压停止增加。
- 1 -。
谈晶体管的饱和状态和饱和压降The manuscript was revised on the evening of 2021谈晶体管的饱和状态和饱和压降大家知道,一个普通的双极型晶体管有二个PN结、三种工作状态(截止、饱和、放大)和四种运用接法(共基、共发、共集和倒置)。
对这两个PN结所施加不同的电位,就会使晶体管工作于不同的状态:两个PN结都反偏——晶体管截止;两个PN结都导通——晶体管饱和:一个PN结正偏,一个PN结反偏——晶体管放大电路(注意:如果晶体管的发射结反偏、集电结正偏,就是晶体管的倒置放大应用)。
要理解晶体管的饱和,就必须先要理解晶体管的放大原理。
从晶体管电路方面来理解放大原理,比较简单:晶体管的放大能力,就是晶体管的基极电流对集电极电流的控制能力强弱。
控制能力强,则放大大。
但如果要从晶体管内部的电子、空穴在PN结内电场的作用下,电子、空穴是如何运动的、晶体管的内电场对电子、空穴是如何控制的等一些物理过程来看,就比较复杂了。
我对此问题的理解是:当晶体管处于放大状态时,基极得到外来电源注入的电子流,部分会与基区中的空穴复合,此时产生的复合电流,构成了基极电流的主体。
由于此时晶体管是处于放大状态,故集电结处于反偏。
又因集电结的反偏,就在此PN结的内部,就形成了一个强电场,电场的方向由集电极指向基极,即集电极为正,基极为负。
也就是说,在此PN结(集电结)联接集电极的一端,集中了大量带正电的空穴。
当从基极注入的电子流进入基区后,一部分与基区内部的空穴进行了复合,而大部分电子则在强电场的作用下,被“拉”到了集电极,这种被电场“拉”到集电极的电子流,构成了集电极电流的主要组成部分。
由于从基极注入的电子流,只有很少一部分在基区被复合,大部分电子是在集电结的强电场的作用下,集中到了集电极,构成了集电极电流的主体,所以,此时的集电极电流要远大于从基极注入的电流,这就是晶体管放大功能的物理模型。
此时,是以NPN型晶体管进行举例。
bjt饱和压降BJT(双极型晶体管)是一种常用的电子元件,常见于各种电子设备中。
在使用BJT时,会遇到饱和压降的问题,本文将重点讨论BJT 饱和压降的原理和影响因素。
BJT饱和压降是指当BJT处于饱和状态时,从集电极到发射极的电压降。
在饱和状态下,BJT的发射结和集电结都处于正向偏置,导致电流大量注入,电压降较低。
BJT的饱和压降对电路性能和稳定性有重要影响,因此需要进行深入了解。
BJT饱和压降的大小与多种因素相关。
首先是BJT的尺寸和结构参数,包括沟道宽度、沟道长度、掺杂浓度等。
这些参数决定了BJT 的导电能力和电流承载能力,从而影响饱和压降的大小。
其次是BJT的工作温度,温度升高会导致BJT内部电流增大,进而增大饱和压降。
此外,负载电阻的大小也会影响BJT饱和压降,较大的负载电阻会导致较大的饱和压降。
为了降低BJT饱和压降,可以采取以下措施。
首先,选择合适的BJT型号和参数,尽量选择具有较高导电能力和电流承载能力的BJT。
其次,控制BJT的工作温度,采用散热措施降低温度,可以有效减小饱和压降的大小。
此外,调整负载电阻的大小,选择合适的负载电阻,可以使饱和压降降低到较小的范围。
饱和压降的大小直接影响了BJT的工作性能和电路稳定性。
较大的饱和压降会导致电压降低,从而影响电路的工作状态和信号传输。
特别是在放大电路中,饱和压降的大小会直接影响放大倍数和频率响应等指标。
因此,在设计和应用电路时,需要充分考虑和控制BJT饱和压降的大小。
BJT饱和压降是一项重要的电路参数,直接影响了BJT的工作性能和电路稳定性。
了解饱和压降的原理和影响因素,选择合适的措施降低饱和压降,对于优化电路设计和提高电路性能具有重要意义。
在实际应用中,我们应该根据具体情况,选择合适的BJT型号和参数,控制温度和负载电阻,以实现最佳的饱和压降效果。
从晶体管电路方面来理解放大原理!对晶体管饱和、饱和压降的理解众所周知,一个普通的双极型晶体管有二个PN结、三种工作状态(截止、饱和、放大)和四种运用接法(共基、共发、共集和倒置)。
对这两个PN结所施加不同的电位,就会使晶体管工作于不同的状态:两个PN结都反偏——晶体管截止;两个PN结都导通——晶体管饱和:一个PN结正偏,一个PN结反偏——晶体管放大电路(注意:如果晶体管的发射结反偏、集电结正偏,就是晶体管的倒置放大应用)。
要理解晶体管的饱和,就必须先要理解晶体管的放大原理。
从晶体管电路方面来理解放大原理,比较简单:晶体管的放大能力,就是晶体管的基极电流对集电极电流的控制能力强弱。
控制能力强,则放大大。
但如果要从晶体管内部的电子、空穴在PN结内电场的作用下,电子、空穴是如何运动的、晶体管的内电场对电子、空穴是如何控制的等一些物理过程来看,就比较复杂了。
对这个问题,许多教课书上有不同的描述。
我对此问题的理解是:当晶体管处于放大状态时,基极得到从外电源注入的电子流,部分会与基区中的空穴复合,此时产生的复合电流,构成了基极电流的主体。
由于此时晶体管是处于放大状态,故集电结处于反偏。
又因集电结的反偏,就在此PN结的内部,就形成了一个强电场,电场的方向由集电极指向基极,即集电极为正,基极为负。
也就是说,在此PN结(集电结)联接集电极的一端,集中了大量带正电的空穴。
当从基极注入的电子流进入基区后,一部分与基区内部的空穴进行了复合,而大部分电子则在强电场的作用下,被“拉”到了集电极,这种被电场“拉”到集电极的电子流,构成了集电极电流的主要组成部分。
由于从基极注入的电子流,只有很少一部分在基区被复合,大部分电子是在集电结的强电场的作用下,集中到了集电极,构成了集电极电流的主体,所以,此时的集电极电流要远大于从基极注入的电流,这就是晶体管放大功能的物理模型。
此时,是以NPN型晶体管进行举例。
如果是PNP型晶体管,则只要把晶体管的极性由正换成负就行。
如果要从基极电流、集电极电流、发射极电流的组成、流动,PN结的能级等等方面来讲。