2015年西安中考数学真题
- 格式:pdf
- 大小:6.24 MB
- 文档页数:8
绝密★启用前陕西省2016年初中毕业学业考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1()22-⨯=( )A.1-B.1C.4D.4-2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )A B C D3.下列计算正确的是( )A.224+34x x x=B.2362=2x y x x yC.322(6)(3)2x y x x÷=D.22(3)9x x-=4.如图,AB CD∥,AE平分CAB∠交CD于点E.若50C∠=,则AED∠= ( )A.65B.115C.125D.1305.设点,()A a b是正比例函数32y x=-图象上的任意一点,则下列等式一定成立的是( )A.23=0a b+B.23=0a b-C.320a b-=D.32=0a b+6.如图,在ABC△中,90ABC∠=,8AB=,6BC=.若DE是ABC△的中位线,延长DE交ABC△的外角ACM∠的平分线于点F,则线段DF的长为( )A.7B.8C.9D.107.已知一次函数5y kx=+和7y k x'=+.假设0k>且0k'<,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点.若,M N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M',N',则图中的全等三角形共有( )A.2对B.3对C.4对D.5对9.如图,O的半径为4,ABC△是O的内接三角形,连接OB,OC.若BAC∠与BOC∠互补,则弦BC的长为( )A.B.C.D.10.已知抛物线223y x x=--+与x轴交于A,B两点,将这条抛物线的顶点记为C,连接AC,BC,则tan CAB∠的值为( )A.1BC D.2第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题3分,共12分.请把答案填写在题中的横线上)11.不等式1302x-+<的解集是.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共36页)数学试卷第2页(共36页)数学试卷 第3页(共36页) 数学试卷 第4页(共36页)12.请从以下两个小题中任选一个作答,若多选,则按第一题记分.A .一个正多边形的一个外角为45,则这个正多边形的边数是 .B .运用科学计算器计算:7352'≈ (结果精确到0.1).13.已知一次函数24y x =+的图象分别交x 轴、y 轴于A ,B 两点.若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且2AB BC =,则这个反比例函数的表达式为 .14.如图,在菱形ABCD 中,60ABC ∠=,2AB =,点P 是这个菱形内部或边上的一点.若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为 .三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满5分)0|1(7π)++.16.(本小题满分5分) 化简:2161(5)39x x x x --+÷+-.17.(本小题满分5分)如图,已知ABC △,90BAC ∠=.请用尺规过点A 作一条直线,使其将ABC △分成两个相似的三角形.(保留作图痕迹,不写作法)18.(本小题满分5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣.校教务处在七年级所有班级中,每班随机抽取6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A —非常喜欢”“B —比较喜欢”“C —不太喜欢”“D —很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行统计.现将统计结果绘制成如下两幅不完整的统计图.所抽取学生对数学学习喜欢程度的调查统计图图1图2请你根据以上提供的信息,解答下列问题: (1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是 ;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(本小题满分7分)如图,在□ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF DE =,连接AF ,CE . 求证:AF CE ∥.数学试卷 第5页(共36页) 数学试卷 第6页(共36页)20.(本小题满分7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量.于是他们首先用平面镜进行测量,方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C .镜子不动,小亮看着镜面上的标记,他来回走动,走到D 点时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合.这时,测得小亮眼睛与地面的高度 1.5ED =米,2CD =米;然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长 2.5FH =米, 1.65FG =米.如图,已知:AB BM ⊥,ED BM ⊥,GF BM ⊥,其中,测量时所使用的平面镜的厚度忽略不计.请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.21.(本小题满分7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他去西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.(本小题满分7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,他们分别是:绿茶(500mL )、红茶(500mL ),和可乐(600mL ).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样; ②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品. 根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动.请你用列表或画树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共36页) 数学试卷 第8页(共36页)23.(本小题满分8分)如图,已知:AB 是O 的弦,过点B 作BC AB ⊥交O 于点C ,过点C 作O 的切线交AB 的延长线于点D ,取AD 的中点E ,过E 作EF BC ∥交DC 的延长线于点F ,连接AF 并延长交BC 的延长线于点G . 求证:(1)FC FG =; (2)2AB BC BG =.24.(本小题满分10分)如图,在平面直角坐标系中,点O 为坐标原点.抛物线25y ax bx =++经过点()1,3M 和()3,5N .(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点(2,0)A -,且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形.请你写出平移过程,并说明理由.25.(本小题满分12分) 问题提出(1)如图1,已知ABC △.请画出ABC △关于直线AC 对称的三角形. 问题探究(2)如图2,在矩形ABCD 中,4AB =,6AD =,4AE =,2AF =.是否在边BC ,CD 上分别存在点,G H ,使得四边形EFGH 的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决(3)如图3,有一矩形板材ABCD ,3AB =米,6AD =米.现想从此板材中裁出一个面积尽可能大的四边形EFGH 部件,使90EFG ∠=,EF FG ==,45EHG ∠=.经研究,只有当点E ,F ,G 分别在边AD ,AB ,BC 上,且AF BF <,并满足点H 在矩形ABCD 内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH 部件?若能,求出裁得的四边形EFGH 部件的面积;若不能,请说明理由.图1图2图35 / 18陕西省2016年初中毕业学业水平考试数学答案解析一、选择题1.【答案】A【解析】解:原式1=-,故选A【提示】原式利用乘法法则计算即可得到结果. 【考点】有理数的乘法. 2.【答案】C【解析】解:根据题意得到几何体的左视图为,故选C【提示】根据已知几何体,确定出左视图即可. 【考点】简单组合体的三视图. 3.【答案】D【解析】解:A 、原式24x =,错误; B 、原式52x y =,错误; C 、原式22xy =,错误; D 、原式29x =,正确;故选D【考点】整式的除法,合并同类项,幂的乘方与积的乘方,单项式乘单项式. 4.【答案】B【解析】解:∵AB CD ∥, ∴180C CAB ︒∠+∠=, ∵50C ︒∠=,∴18050130CAB ︒︒︒∠=-=, ∵AE 平分CAB ∠, ∴65EAB ︒∠=, ∵AB CD ∥,∴180EAB AED ︒∠+∠=, ∴18065115AED ︒︒︒∠=-=, 故选B【提示】根据平行线性质求出CAB ∠的度数,根据角平分线求出EAB ∠的度数,根据平行线性质求出AED∠的度数即可. 【考点】平行线的性质. 5.【答案】D【解析】解:把点(,)A a b 代入正比例函数32y x =-, 可得:32a b -=, 可得:320a b +=,数学试卷 第11页(共36页)数学试卷 第12页(共36页)故选D【提示】直接把点(,)A a b 代入正比例函数32y x =-,求出a ,b 的关系即可. 【考点】一次函数图象上点的坐标特征. 6.【答案】B【解析】解:在Rt ABC △中,∵90ABC ︒∠=,8AB =,6BC =,∴10AC ===,∵DE 是ABC △的中位线, ∴DF BM ∥,132DE BC ==, ∴EFC FCM ∠=∠, ∵FCE FCM ∠=∠, ∴EFC ECF ∠=∠,∴152EC EF AC ===, ∴358DF DE EF =+=+=.故选B【提示】根据三角形中位线定理求出DE ,得到DF BM ∥,再证明12EC EF AC ==,由此即可解决问题.【考点】三角形中位线定理,等腰三角形的判定与性质,勾股定理. 7.【答案】A【解析】解:∵一次函数5y kx =+中0k >,∴一次函数5y kx =+的图象经过第一、二、三象限. 又∵一次函数7y k x =+’中k <0’,∴一次函数7y k x =+’的图象经过第一、二、四象限. ∵57<,∴这两个一次函数的图象的交点在第一象限, 故选A【提示】根据k 的符号来求确定一次函数y kx b =+的图象所经过的象限,然后根据b 的情况即可求得交点的位置.【考点】两条直线相交,平行问题.8.【答案】C【解析】解:∵四边形ABCD 是正方形,∴AB CD CB AD ===,90A C ABC ADC ︒∠=∠=∠=∠=,AD BC ∥,7 / 18在ABD △和BCD △中,AB BC A C AD CD =⎧⎪∠=∠⎨⎪=⎩, ∴ABD BCD △≌△, ∵AD BC ∥,∴MDO M BO ∠=∠’, 在MOD ∠和M OB ∠’中,MDO M BO MOD M OB DM BM ∠=∠⎧⎪∠=∠⎨⎪=⎩’’’, ∴MDO M BO △≌△’,同理可证NOD N OB △≌△’, ∴MON M ON △≌△’’, ∴全等三角形一共有4对. 故选C .【提示】可以判断ABD BCD △≌△,MDO M BO △≌△’,NOD N OB △≌△’,MON M ON △≌△’’由此即可对称结论.【考点】正方形的性质,全等三角形的判定. 9.【答案】B【解析】解:过点O 作OD BC ⊥于D , 则2BC BD =,∵ABC △内接于O ,BAC ∠与BOC ∠互补, ∴2BOC A ∠=∠,180BOC A ︒∠+∠=, ∴120BOC ︒∠=, ∵OB OC =, ∴()1180302OBC OCB BOC ︒︒∠=∠=-∠=, ∵O 的半径为4,∴cos 4BD OB OBC =∠==∴BC =. 故选B数学试卷 第15页(共36页)数学试卷 第16页(共36页)【提示】首先过点O 作OD BC ⊥于D ,由垂径定理可得2BC BD =,又由圆周角定理,可求得BOC ∠的度数,然后根据等腰三角形的性质,求得OBC ∠的度数,利用余弦函数,即可求得答案. 【考点】垂径定理,圆周角定理,解直角三角形. 10.【答案】D【解析】解:令0y =,则2230x x --+=,解得3x =-或1,不妨设()3,0A -,()1,0B , ∵()222314y x x x =--+=-++, ∴顶点()1,4C -,如图所示,作CD AB ⊥于D .在Rt ACD △中,4tan 22CD CAD AD ∠===, 故选D【提示】先求出A 、B 、C 坐标,作CD AB ⊥于D ,根据tan CDCAD AD∠=即可计算. 【考点】抛物线与x 轴的交点,锐角三角函数的定义. 二、填空题11.【答案】6x >【解析】解:移项,得132x --<, 系数化为1得6x >. 故答案是6x >.【提示】移项、系数化成1即可求解. 【考点】解一元一次不等式.9 / 1812.【答案】A.8 B.11.9【解析】解:A.∵正多边形的外角和为360︒ ∴这个正多边形的边数为:360458︒︒÷=B.735212.3690.96111.9︒⨯≈≈’ 故答案为:8,11.9【提示】A.根据多边形内角和为360︒进行计算即可;B.先分别求得和sin 7352︒’的近似值,再相乘求得计算结果.【考点】近似数和有效数字,多边形内角与外角. 13.【答案】6y x=【解析】解:∵一次函数24y x =+的图象分别交x 轴、y 轴于A 、B 两点, ∴()2,0A -,()0,4B , 过C 作CD x ⊥轴于D , ∴OB CD ∥, ∴ABO ACD △∽△,∴23OB AO AB CD AD AC ===, ∴6CD =,3AD =, ∴1OD =,∴()1,6C ,设反比例函数的解析式为k y x=, ∴6k =,∴反比例函数的解析式为6y x=. 故答案为:6y x=.数学试卷 第19页(共36页)数学试卷 第20页(共36页)【提示】根据已知条件得到()2,0A -,()0,4B ,过C 作CD x ⊥轴于D ,根据相似三角形的性质得到23OB AO AB CD AD AC ===,求得()1,6C ,即可得到结论. 【考点】反比例函数,一次函数的交点. 14.【答案】2-【解析】解:如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P . 此时PBC △是等腰三角形,线段PD 最短, ∵四边形ABCD 是菱形,60ABC ︒∠=,∴AB BC CD AD ===,60ABC ADC ︒∠=∠=, ∴ABC △,ADC △是等边三角形,∴2BO DO ==,∴2BD BO ==∴PD最小值2BD BP =-=.故答案为2.【提示】如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P .此时PBC △是等腰三角形,11 / 18线段PD 最短,求出BD 即可解决问题.【考点】菱形的性质,等腰三角形的判定,等边三角形的性质.三、解答题15.2【解析】解:原式)11=+2=2【提示】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【考点】实数的运算,零指数幂.16.【答案】243x x -+【解析】解:原式()()()213331x x x x x -+-=+- ()()13x x =-- 243x x =-+【提示】根据分式的除法,可得答案.【考点】分式的混合运算. 17.【答案】解:如图,AD 为所作.【提示】过点A 作AD BC ⊥于D ,利用等角的余角相等可得到BAD C ∠=∠,则可判断ABD △与CAD △相似.【考点】相似变换.18.【答案】(1)由题意可得,调查的学生有:3025120÷=%(人)选B 的学生有:1201830666---=(人)B 所占的百分比是:6612010055÷⨯=%%,D 所占的百分比是:61201005÷⨯=%%,故补全的条形统计图与扇形统计图如下图所示,数学试卷 第23页(共36页)数学试卷 第24页(共36页)(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:96025240⨯%=(人),即该年级学生中对数学学习“不太喜欢”的有240人.【提示】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B 的学生数和选B 和选D 的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数. 【考点】众数,用样本估计总体,扇形统计图,条形统计图.19.【答案】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∴12∠=∠,∵BF DE =,∴BF BD DE BD +=+,即DF BE =,在ADF △和CBE △中,12AD BC DF BE =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CBE SAS △≌△,∴AFD CEB ∠=∠,∴AF CE ∥.【提示】由平行四边形的性质得出AD BC ∥,AD BC =,证出12∠=∠,DF BE =,由SAS 证明ADF CBE△≌△,得出对应角相等,再由平行线的判定即可得出结论. 【考点】平行四边形的性质,全等三角形的判定与性质.20.【答案】99m【解析】解:由题意可得:90ABC EDC GFH ︒∠=∠=∠=,13 / 18ACB ECD ∠=∠,AFB GHF ∠=∠,故ABC EDC △∽△,ABF GFH △∽△, 则AB BC ED DC =,AB BF GF FH=, 即1.52AB BC =,181.65 2.5AB BC +=, 解得:99AB =, 答:“望月阁”的高AB 的长度为99 m .【提示】根据镜面反射原理结合相似三角形的判定方法得出ABC EDC △∽△,ABF GFH △∽△,进而利用相似三角形的性质得出AB 的长【考点】相似三角形的应用.21.【答案】(1)()9619202y x x =-+≤≤(2)4时【解析】解:(1)设线段AB 所表示的函数关系式为:y kx b =+,依题意有19220b k b =⎧⎨+=⎩, 解得96192k b =-⎧⎨=⎩. 故线段AB 所表示的函数关系式为:()9619202y x x =-+≤≤;(2)()1237 6.61513.6 1.4+-+=-=(小时)112 1.480÷=(千米/时)80801÷=(小时)314+=(时)答:他下午4时到家.【提示】(1)可设线段AB 所表示的函数关系式为:y kx b =+,根据待定系数法列方程组求解即可; (2)先根据=÷速度路程时间求出小明回家的速度,再根据=÷时间路程速度,列出算式计算即可求解.【考点】一次函数的应用.22.【答案】(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样; ∴一次“有效随机转动”可获得“乐”字的概率为15; (2)画树状图得:数学试卷第27页(共36页)数学试卷 第28页(共36页) ∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况, ∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为225. 【提示】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【考点】列表法与树状图法,概率公式.23.【答案】证明:(1)∵EF BC ∥,AB BG ⊥,∴EF AD ⊥,∵E 是AD 的中点,∴FA FD =,∴FAD D ∠=∠,∵GB AB ⊥,∴90GAB G D DCB ︒∠+∠=∠+∠=,∴DCB G ∠=∠,∵DCB GCF ∠=∠,∴GCF G ∠=∠,∴FC FG =.(2)连接AC ,如图所示:∵AB BG ⊥,∴AC 是O 的直径,∵FD 是O 的切线,切点为C ,∴DCB CAB ∠=∠,∵DCB G ∠=∠,∴CAB G ∠=∠,∵90CBA GBA ︒∠=∠=,∴ABC GBA △∽△, ∴AB BCGB AB =,∴2AB BC BG =.15 / 18【提示】(1)由平行线的性质得出EF AD ⊥,由线段垂直平分线的性质得出FA FD =,由等腰三角形的性质得出FAD D ∠=∠,证出DCB G ∠=∠,由对顶角相等得出GCF G ∠=∠,即可得出结论;(2)连接AC ,由圆周角定理证出AC 是O 的直径,由弦切角定理得出DCB CAB ∠=∠,证出CAB ∠G =∠,再由90CBA GBA ︒∠=∠=,证明ABC GBA △∽△,得出对应边成比例,即可得出结论.【考点】相似三角形的判定与性质,垂径定理,切线的性质.24.【答案】(1)由抛物线过M 、N 两点,把M 、N 坐标代入抛物线解析式可得539355a b a b ++=⎧⎨++=⎩,解得13a b =⎧⎨=-⎩, ∴抛物线解析式为235y x x =-+,令0y =可得2350x x -+=,该方程的判别式为()23415920110∆=--⨯⨯=-=-<,∴抛物线与x 轴没有交点;(2)∵AOB △是等腰直角三角形,()2,0A -,点B 在y 轴上,∴B 点坐标为()0,2或()0,2-,可设平移后的抛物线解析式为2y x mx n =++, ①当抛物线过点()2,0A -,()0,2B 时,代入可得2420n m n =⎧⎨-+=⎩,解得32m n =⎧⎨=⎩, ∴平移后的抛物线为232y x x =++, ∴该抛物线的顶点坐标为31,24⎛⎫-- ⎪⎝⎭,而原抛物线顶点坐标为311,24⎛⎫ ⎪⎝⎭, ∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过()2,0A -,()0,2B -时,代入可得2420n m n =-⎧⎨-+=⎩,解得12m n =⎧⎨=-⎩, ∴平移后的抛物线为22y x x =+-, ∴该抛物线的顶点坐标为19,24⎛⎫-- ⎪⎝⎭,而原抛物线顶点坐标为311,24⎛⎫ ⎪⎝⎭, ∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【提示】(1)把M 、N 两点的坐标代入抛物线解析式可求得a 、b 的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x 轴的交点情况;(2)利用A 点坐标和等腰三角形的性质可求得B 点坐标,设出平移后的抛物线的解析式,把A 、B 的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【考点】二次函数综合题.数学试卷 第31页(共36页)数学试卷 第32页(共36页)25.【答案】(1)如图1,ADC △即为所求;(2)存在 (3)能裁得【解析】(2)理由:作E 关于CD 的对称点E′,作F 关于BC 的对称点F′,连接E′F′,交BC 于G ,交CD 于H ,连接FG ,EH ,则F G FG =’,E H EH =’,则此时四边形EFGH 的周长最小,由题意得:2BF BF AF ===‘,2DE DE ==‘,90A ︒∠=,∴6AF =‘,8AE =‘,∴10E F =‘‘,EF =,∴四边形EFGH的周长的最小值10EF FG GH HE EF E F =+++=+=’’,∴在边BC 、CD 上分别存在点G 、H ,使得四边形EFGH 的周长最小,最小值为10;(3)能裁得,理由:∵EF FG ==90A B ︒∠=∠=,1290AFE AFE ︒∠+∠=∠+∠=,∴12∠=∠,在AEF △与BGF △中,12A B EF FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF BGF △≌△,∴AF BG =,AE BF =,设AF x =,则3AE BF x ==-,∴()2223x x +-=,解得1x =,2x =(不合题意,舍去),17 / 18∴1AF BG ==,2BF AE ==,∴4DE =,5CG =,连接EG ,作EFG △关于EG 的对称EOG △,则四边形EFGO 是正方形,90EOG ︒∠=,以O 为圆心,以EG 为半径作O ,则45EHG ︒∠=的点在O 上,连接FO ,并延长交O 于H ′,则H′在EG 的垂直平分线上,连接EH′GH′,则45EH G ︒∠=’,此时,四边形EFGH ′是要想裁得符合要求的面积最大的,∴C 在线段EG 的垂直平分线设,∴点F ,O ,H ′,C 在一条直线上,∵EG =∴OF EG ==∵CF =∴OC =∵OH OE FG ===’∴OH OC <’,∴点H ′在矩形ABCD 的内部,∴可以在矩形ABCD 中,裁得符合条件的面积最大的四边形EFGH′部件,这个部件的面积11522EG FH ==⨯=+’, ∴当所裁得的四边形部件为四边形EFGH ′时,裁得了符合条件的最大部件,这个部件的面积为25m ⎛+ ⎝⎭.【提示】(1)作B 关于AC 的对称点D ,连接AD ,CD ,ACD △即为所求;(2)作E 关于CD 的对称点E ′,作F 关于BC 的对称点F ′,连接E ′F ′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到2BF BF AF ===‘,2DE DE ==‘,90A ︒∠=,于是得到6AF =‘,8AE =‘,求数学试卷 第35页(共36页) 数学试卷 第36页(共36页) 出10E F =‘‘,EF =即可得到结论;(3)根据余角的性质得到12∠=∠,推出AEF BGF △≌△,根据全等三角形的性质得到AF BG =,AE BF =,设AF x =,则3AE BF x ==-根据勾股定理列方程得到1AF BG ==,2BF AE ==,作EFG △关于EG 的对称EOG △,则四边形EFGO 是正方形,90EOG ︒∠=,以O 为圆心,以EG 为半径作O ,则45EHG ︒∠=的点在O 上,连接FO ,并延长交O 于H ′,则H ′在EG 的垂直平分线上,连接EH ′GH ′,则45EH G ︒∠=’,于是得到四边形EFGH ′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【考点】四边形综合题.。
2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1. 计算:(−23)0=()A.1B.−32C.0 D.232. 如图是一个螺母的示意图,它的俯视图是()A. B. C. D.3. 下列计算正确的是()A.a2⋅a3=a6B.(−2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4. 如图,AB // CD,直线EF分别交直线AB,CD于点E,F.若∠1=46∘30′,则∠2的度数为()A.43∘30′B.53∘30′C.133∘30′D.153∘30′5. 设正比例函数y=mx的图象经过点A(m, 4),且y的值随x的增大而减小,则m=()A.2B.−2C.4D.−46. 如图,在△ABC中,∠A=36∘,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个7. 不等式组{12x+1≥−3x−2(x−3)>0的最大整数解为()A.8B.6C.5D.48. 在平面直角坐标系中,将直线l1:y=−2x−2平移后,得到直线l2:y=−2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9. 在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810. 下列关于二次函数y=ax2−2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)将实数√5,π,0,−6由小到大用“<”号连起来,可表示为________.正八边形一个内角的度数为________.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为________(用科学计算器计算,结果精确到0.1∘).如图,在平面直角坐标系中,过点M(−3, 2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为________.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45∘.若点M,N分别是AB,BC的中点,则MN长的最大值是________.三、解答题(共11小题,计78分,解答时写出过程)计算:√3×(−√6)+|−2√2|+(12)−3.解分式方程:x−2x+3−3x−3=1.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在________等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE // BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.如图,在每一个四边形ABCD中,均有AD // BC,CD⊥BC,∠ABC=60∘,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为________;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.参考答案与试题解析2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.【答案】A【考点】零指数幂、负整数指数幂【解析】根据零指数幂:a0=1(a≠0),求出(−23)0的值是多少即可.【解答】解:(−23)0=1.故选:A.2.【答案】B【考点】简单组合体的三视图【解析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.3.【答案】B【考点】同底数幂的乘法幂的乘方与积的乘方整式的除法【解析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】A、a2⋅a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;4.【答案】C 【考点】平行线的判定与性质【解析】先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.【解答】解:∵AB // CD,∠1=46∘30′,∴∠EFD=∠1=46∘30′,∴∠2=180∘−46∘30′=133∘30′.故选C.5.【答案】B【考点】待定系数法求正比例函数解析式正比例函数的性质【解析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x的增大而减小,所以m=−2.故选B.6.【答案】D【考点】等腰三角形的判定与性质【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36∘,∴∠ABC=∠C=72∘.∵BD是△ABC的角平分线,∴∠ABD=∠DBC=12∠ABC=36∘,∴∠A=∠ABD=36∘,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∠BDC=180∘−∠DBC−∠C=180∘−36∘−72∘=72∘,∴∠C=∠BDC=72∘,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∵∠BED=(180∘−36∘)÷2=72∘,∴∠ADE=∠BED−∠A=72∘−36∘=36∘,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形.综上所述,图中的等腰三角形有5个.故选D.7.【答案】C【考点】一元一次不等式组的整数解【解析】先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】{1x+1≥−3 x−2(x−3)>0∵解不等式①得:x≥−8,解不等式②得:x<6,∴不等式组的解集为−8≤x<6,∴不等式组的最大整数解为5,8.【答案】A【考点】一次函数图象与几何变换【解析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l1:y=−2x−2平移后,得到直线l2:y=−2x+4,∴−2(x+a)−2=−2x+4,解得:a=−3,故将l1向右平移3个单位长度.故选A.9.【答案】D【考点】正方形的性质平行四边形的性质勾股定理【解析】设AE的长为x,根据正方形的性质可得BE=14−x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.【解答】解:如图:设AE的长为x,根据正方形的性质可得BE=14−x,在△ABE中,根据勾股定理可得x2+(14−x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选D.10.【答案】D【考点】抛物线与x轴的交点【解析】根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.【解答】解:当y=0时,ax2−2ax+1=0,∵a>1∴△=(−2a)2−4a=4a(a−1)>0,ax2−2ax+1=0有两个根,函数与有两个交点,x=2a−√4a(a−1)2a>0,故选:D.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)【答案】−6<0<√5<π【考点】实数大小比较【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:√5≈2.236,π≈3.14,∵−6<0<2.236<3.14,∴−6<0<√5<π.故答案为:−6<0<√5<π.【答案】135∘【考点】多边形内角与外角【解析】首先根据多边形内角和定理:(n−2)⋅180∘(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】正八边形的内角和为:(8−2)×180∘=1080∘,每一个内角的度数为18×1080∘=135∘.【答案】27.8∘【考点】解直角三角形的应用-坡度坡角问题【解析】直接利用坡度的定义求得坡角的度数即可.【解答】解:∵tan∠A=BCAC =2.85.3≈0.5283,∴∠A=27.8∘,故答案为:27.8∘.【答案】10【考点】反比例函数系数k的几何意义【解析】设点A的坐标为(a, b),点B的坐标为(c, d),根据反比例函数y=4x的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=12|ab|=2,S△BOD=12|cd|=2,S矩形MCD0=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCD0,即可解答.【解答】如图,设点A的坐标为(a, b),点B的坐标为(c, d),∵反比例函数y=4x的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=12|ab|=2,S△BOD=12|cd|=2,∵点M(−3, 2),∴S矩形MCD0=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCD0=2+2+6=10,【答案】3√2【考点】等腰直角三角形三角形中位线定理圆周角定理【解析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【解答】∵点M,N分别是AB,BC的中点,∴MN=12AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45∘,AB=6,∴AD=6√2,∴MN=12AD=3√2三、解答题(共11小题,计78分,解答时写出过程)【答案】解:原式=−√3×6+2√2+8=−3√2+2√2+8=8−√2.【考点】二次根式的混合运算负整数指数幂【解析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=−√3×6+2√2+8,然后化简后合并即可.【解答】解:原式=−√3×6+2√2+8=−3√2+2√2+8=8−√2.【答案】解:去分母得:x2−5x+6−3x−9=x2−9,解得:x=34,经检验x=34是分式方程的解.【考点】解分式方程【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2−5x+6−3x−9=x2−9,解得:x=34,经检验x=34是分式方程的解.【答案】解:如图,直线AD即为所求:【考点】作图—复杂作图【解析】作BC边上的中线,即可把△ABC分成面积相等的两部分.【解答】解:如图,直线AD即为所求:【答案】;良好650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.【考点】扇形统计图用样本估计总体条形统计图【解析】(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.【解答】;∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.【答案】证明:∵AE // BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,{∠B=∠EACAB=AC∠BAD=∠ACE,∴△ABD≅△CAE,∴AD=CE.【考点】全等三角形的性质与判定【解析】根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≅△CAE,从而得出AD=CE.【解答】证明:∵AE // BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,{∠B=∠EACAB=AC∠BAD=∠ACE,∴△ABD≅△CAE,∴AD=CE.【答案】解:由题意得:∠CAD=∠MND=90∘,∠CDA=MDN,∴△CAD∼△MND,∴CAMN =ADND,∴ 1.6MN =1×0.8(5+1)×0.8,∴MN=9.6,又∵∠EBF=∠MNF=90∘,∠EFB=∠MFN,∴△EFB∼△MFN,∴EBMN =BFNF,∴EB9.6=2×0.8(2+9)×0.8∴EB≈1.75,∴小军身高约为1.75米.【考点】相似三角形的应用【解析】先证明△CAD∼△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB∼△MFN,即可解答.【解答】解:由题意得:∠CAD=∠MND=90∘,∠CDA=MDN,∴△CAD∼△MND,∴CAMN=ADND,∴ 1.6MN=1×0.8(5+1)×0.8,∴MN=9.6,又∵∠EBF=∠MNF=90∘,∠EFB=∠MFN,∴△EFB∼△MFN,∴EBMN=BFNF,∴EB9.6=2×0.8(2+9)×0.8∴EB≈1.75,∴小军身高约为1.75米.【答案】解:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+ 640×0.75(x−20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.【考点】一次函数的应用【解析】(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙两家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x−20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.【解答】解:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x−20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.【答案】∵ 向上一面的点数为奇数有3种情况,∴ 小亮掷得向上一面的点数为奇数的概率是:36=12. 填表如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴ P (小亮胜)=936=14,P (小丽胜)=936=14, ∴ 游戏是公平的. 【考点】 游戏公平性列表法与树状图法【解析】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可. 【解答】∵ 向上一面的点数为奇数有3种情况,∴ 小亮掷得向上一面的点数为奇数的概率是:36=12.填表如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴ P (小亮胜)=936=14,P (小丽胜)=936=14,∴ 游戏是公平的.【答案】证明:∵ AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE , ∴ ∠ABE =90∘,∴ ∠BAE +∠E =90∘, ∵ ∠DAE =90∘,∴ ∠BAD +∠BAE =90∘, ∴ ∠BAD =∠E ; 连接BC ,如图:∵ AB 是⊙O 的直径, ∴ ∠ACB =90∘,∵ AC =8,AB =2×5=10,∴ BC =√AB 2−AC 2=6,∵ ∠BCA =∠ABE =90∘,∠BAD =∠E , ∴ △ABC ∽△EAB , ∴AC EB =BC AB ,∴ 8EB =610, ∴ BE =403.【考点】 勾股定理 切线的性质相似三角形的性质与判定【解析】(1)根据切线的性质,和等角的余角相等证明即可; (2)根据勾股定理和相似三角形进行解答即可. 【解答】证明:∵ AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE , ∴ ∠ABE =90∘,∴ ∠BAE +∠E =90∘, ∵ ∠DAE =90∘,∴ ∠BAD +∠BAE =90∘, ∴ ∠BAD =∠E ; 连接BC ,如图:∵ AB 是⊙O 的直径, ∴ ∠ACB =90∘,∵ AC =8,AB =2×5=10,∴BC =√AB 2−AC 2=6,∵ ∠BCA =∠ABE =90∘,∠BAD =∠E , ∴ △ABC ∽△EAB , ∴ ACEB =BCAB , ∴ 8EB =610, ∴ BE =403.【答案】令y =0,得x 2+5x +4=0, ∴ x 1=−4,x 2=−1, 令x =0,得y =4,∴ A(−4, 0),B(−1, 0),C(0, 4).∵ A ,B ,C 关于坐标原点O 对称后的点为(4, 0),(1, 0),(0, −4), ∴ 所求抛物线的函数表达式为y =ax 2+bx −4, 将(4, 0),(1, 0)代入上式,得{16a +4b −4=0a +b −4=0解得:{a =−1b =5 ,∴ y =−x 2+5x −4.如图,取四点A ,M ,A′,M′,连接AM ,MA′,A′M′,M′A ,MM′, 由中心对称性可知,MM′过点O ,OA =OA′,OM =OM′, ∴ 四边形AMA′M′为平行四边形, 又知AA′与MM′不垂直,∴ 平行四边形AMA′M′不是菱形, 过点M 作MD ⊥x 轴于点D ,∵ y =x 2+5x +4=(x +52)2−94, ∴ M(−52,−94),又∵ A(−4, 0),A′(4, 0) ∴ AA′=8,MD =94,∴ S 平行四边形AMA ′M ′=2S △AMA ′=2×12×8×94=18【考点】二次函数综合题 【解析】(1)令y =0,求出x 的值;令x =0,求出y ,即可解答;(2)先求出A ,B ,C 关于坐标原点O 对称后的点为(4, 0),(1, 0),(0, −4),再代入解析式,即可解答; (3)取四点A ,M ,A′,M′,连接AM ,MA′,A′M′,M′A ,MM′,由中心对称性可知,MM′过点O ,OA =OA′,OM =OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M 作MD ⊥x 轴于点D ,求出抛物线的顶点坐标M ,根据S 平行四边形AMA ′M ′=2S △AMA ′,即可解答. 【解答】令y =0,得x 2+5x +4=0, ∴ x 1=−4,x 2=−1, 令x =0,得y =4,∴ A(−4, 0),B(−1, 0),C(0, 4).∵ A ,B ,C 关于坐标原点O 对称后的点为(4, 0),(1, 0),(0, −4), ∴ 所求抛物线的函数表达式为y =ax 2+bx −4, 将(4, 0),(1, 0)代入上式,得{16a +4b −4=0a +b −4=0解得:{a =−1b =5 ,∴ y =−x 2+5x −4.如图,取四点A ,M ,A′,M′,连接AM ,MA′,A′M′,M′A ,MM′, 由中心对称性可知,MM′过点O ,OA =OA′,OM =OM′, ∴ 四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴ 平行四边形AMA′M′不是菱形, 过点M 作MD ⊥x 轴于点D ,∵ y =x 2+5x +4=(x +52)2−94,∴ M(−52,−94),又∵ A(−4, 0),A′(4, 0) ∴ AA′=8,MD =94,∴ S 平行四边形AMA ′M ′=2S △AMA ′=2×12×8×94=18【答案】24√3;(2)如图②,作点C 关于直线AD 的对称点C′,连接C′N ,C′D ,C′B 交AD 于点N′,连接CN′,则BN +NC =BN +NC′≥BC′=BN′+CN′,∴ △BNC 周长的最小值为△BN′C 的周长=BN′+CN′+BC =BC′+BC , ∵ AD // BC ,AE ⊥BC ,∠ABC =60∘, ∴ 过点A 作AE ⊥BC ,则CE =AD =8, ∴ BE =4,AE =BE ⋅tan 60∘=4√3, ∴ CC′=2CD =2AE =8√3, ∵ BC =12,∴ BC′=√BC 2+CC′2=4√21,∴ △BNC 周长的最小值为4√21+12;(3)如图③所示,存在点P ,使得cos ∠BPC 的值最小,作BC 的中垂线PQ 交BC 于点Q ,交AD 于点P ,连接BP ,CP ,作△BPC 的外接圆O ,圆O 与直线PQ 交于点N ,则PB =PC ,圆心O 在PN 上, ∵ AD // BC ,∴ 圆O 与AD 相切于点P ,∵ PQ =DC =4√3>6, ∴ PQ >BQ ,∴ ∠BPC <90∘,圆心O 在弦BC 的上方,在AD 上任取一点P′,连接P′B ,P′C ,P′B 交圆O 于点M ,连接MC , ∴ ∠BPC =∠BMC ≥∠BP′C ,∴ ∠BPC 最大,cos ∠BPC 的值最小, 连接OB ,则∠BON =2∠BPN =∠BPC ,∵ OB =OP =4√3−OQ ,在Rt △BOQ 中,根据勾股定理得:OQ 2+62=(4√3−OQ)2, 解得:OQ =√32, ∴ OB =7√32, ∴ cos ∠BPC =cos ∠BOQ =OQOB =17, 则此时cos ∠BPC 的值为17.【考点】四边形综合题 【解析】(1)如图①,过A 作AE ⊥BC ,可得出四边形AECF 为矩形,得到EC =AD ,BE =BC −EC ,在直角三角形ABE 中,求出AE 的长,即为三角形BMC 的高,求出三角形BMC 面积即可;(2)如图②,作点C 关于直线AD 的对称点C′,连接C′N ,C′D ,C′B 交AD 于点N′,连接CN′,则BN +NC =BN +NC′≥BC′=BN′+CN′,可得出△BNC 周长的最小值为△BN′C 的周长=BN′+CN′+BC =BC′+BC ,求出即可;(3)如图③所示,存在点P ,使得cos ∠BPC 的值最小,作BC 的中垂线PQ 交BC 于点Q ,交AD 于点P ,连接BP ,CP ,作△BPC 的外接圆O ,圆O 与直线PQ 交于点N ,则PB =PC ,圆心O 在PN 上,根据AD 与BC 平行,得到圆O 与AD 相切,根据PQ =DC ,判断得到PQ 大于BQ ,可得出圆心O 在BC 上方,在AD 上任取一点P′,连接P′B ,P′C ,P′B 交圆O 于点M ,连接MC ,可得∠BPC =∠BMC ≥∠BP′C ,即∠BPC 最小,cos ∠BPC 的值最小,连接OB ,求出即可.【解答】 解:(1)如图①,过A 作AE ⊥BC , ∴ 四边形AECD 为矩形,∴ EC =AD =8,BE =BC −EC =12−8=4, 在Rt △ABE 中,∠ABE =60∘,BE =4, ∴ AB =2BE =8,AE =√82−42=4√3, 则S △BMC =12BC ⋅AE =24√3;(2)如图②,作点C 关于直线AD 的对称点C′,连接C′N ,C′D ,C′B 交AD 于点N′,连接CN′,则BN +NC =BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD // BC,AE⊥BC,∠ABC=60∘,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE⋅tan60∘=4√3,∴CC′=2CD=2AE=8√3,∵BC=12,∴BC′=√BC2+CC′2=4√21,∴△BNC周长的最小值为4√21+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD // BC,∴圆O与AD相切于点P,∵PQ=DC=4√3>6,∴PQ>BQ,∴∠BPC<90∘,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4√3−OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4√3−OQ)2,解得:OQ=√32,∴OB=7√32,∴cos∠BPC=cos∠BOQ=OQOB =17,则此时cos∠BPC的值为17.。
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前陕西省2015年初中毕业学业考试数学 .................................................................................. 1 陕西省2015年初中毕业学业考试数学答案解析 (5)陕西省2015年初中毕业学业考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:02()3-= ( )A .1B .32-C .0D .232.如图是一个螺母的示意图,它的俯视图是 ( )ABC D3.下列计算正确的是( )A .236a a a =B .222(2)4ab a b -=C .235()a a =D .322233a b a b ab ÷=4.如图,AB CD ∥,直线EF 分别交直线,AB CD 于点,E F .若14630'∠=,则2∠的度数为 ( ) A .4330' B .5330' C .13330' D .15330'5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m =( )A .2B .2-C .4D .4-6.如图,在ABC △中,36A ∠=,AB AC =,BD 是ABC △的角平分线.若在边AB 上截取BE BC =,连接DE ,则图中等腰三角形共有 ( )A .2个B .3个C .4个D .5个7.不等式组113,22(3)0x x x ⎧+⎪⎨⎪--⎩≥->的最大整数解为( )A .8B .6C .5D .48.在平面直角坐标系中,将直线1:22l y x =--平移后,得到直线2:24l y x =-+,则下列平移作法正确的是 ( ) A .将1l 向右平移3个单位长度 B .将1l 向右平移6个单位长度 C .将1l 向上平移2个单位长度 D .将1l 向上平移4个单位长度 9.在□ABCD 中,10AB =,14BC =,E ,F 分别为边BC ,AD 上的点.若四边形AECF为正方形,则AE 的长为( )A .7B .4或10C .5或9D .6或810.下列关于二次函数221(1)y ax ax a =-+>的图象与x 轴交点的判断,正确的是 ( ) A .没有交点B .只有一个交点,且它位于y 轴右侧C .有两个交点,且它们均位于y 轴左侧D .有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 11.π,0,6-由小到大用“<”号连起来,可表示为 . 12.请从以下两小题中任选一个作答,若多选,则按第一题计分.A .正八边形一个内角的度数为 .B .如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则A ∠的度数约为 (用科学计算器计算,结果精确到0.1).13.如图,在平面直角坐标系中,过点()32M -,分别作x 轴、y 轴的垂线与反比例函数4y x=的图象交于,A B 两点,则四边形MAOB 的面积为 .14.如图,AB 是O 的弦,6AB =,点C 是O 上的一个动点,且45ACB ∠=.若点,M N 分别是,AB BC 的中点,则MN 长的最大值是.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)31(|()2-+-+.16.(本小题满分5分) 解分式方程:23133x x x --=+-.17.(本小题满分5分)如图,已知ABC △,请用尺规过点A 作一条直线,使其将ABC △分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本小题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x ).现在我们将这些同学的测试结果分为四个等级:优秀(44)x ≥、良好(3643)x ≤≤、及格(2535)x ≤≤和不及格(24)x ≤,并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题: (1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本小题满分7分)如图,在ABC △中AB AC =,.作AD AB ⊥交BC 的延长线于点D ,作AE BD ∥,CE AC ⊥,且,AE CE 相交于点E . 求证:AD CE =.20.(本小题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN NQ ⊥,AC NQ ⊥,BE NQ ⊥.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)21.(本小题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本小题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由. (骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23.(本小题满分8分) 如图,AB 是O 的直径,AC 是O 的弦,过点B 作O 的切线DE ,与AC 的延长线交于点D ,作AE AC ⊥交DE 于点E .(1)求证:BAD E ∠=∠;(2)若O 的半径为5,8AC =,求BE 的长.24.(本小题满分10分)在平面直角坐标系中,抛物线254y x x =++的顶点为M ,与x 轴交于,A B 两点,与y 轴交于C 点.(1)求点,,A B C 的坐标;(2)求抛物线254y x x =++关于坐标原点O 对称的抛物线的函数表达式; (3)设(2)中所求抛物线的顶点为M ',与x 轴交于,A B ''两点,与y 轴交于C '点.在以,,,,,,,A B C M A B C M ''''这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25.(本小题满分12分)如图,在每一个四边形ABCD 中,均有AD BC ∥,CD BC ⊥,60ABC ∠=,8AD =,12BC =.(1)如图1,点M 是四边形ABCD 边AD 上的一点,则BMC △的面积为 ;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015年陕西省中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,计30分)1.计算:023⎛⎫-= ⎪⎝⎭( ) A .1 B .32- C .0 D .232.如图是一个螺母的示意图,它的俯视图是( )A .B .C .D .3.下列计算正确的是( )A .a 2•a 3=a 6B .(﹣2ab )2=4a 2b 2C .(a 2)3=a 5D .3a 3b 2÷a 2b 2=3ab4.如图,AB ∥CD ,直线EF 分别交直线AB ,CD 于点E ,F .若∠1=46°30′,则∠2的度数为( )A .43°30′B .53°30′C .133°30′D .153°30′5.设正比例函数y=mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m=( )A .2B .﹣2C .4D .﹣46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE=BC ,连接DE ,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个7.不等式组()1132230x x x ⎧+≥-⎪⎨⎪--⎩>的最大整数解为( )A .8B .6C .5D .48.在平面直角坐标系中,将直线l 1:y=﹣2x ﹣2平移后,得到直线l 2:y=﹣2x+4,则下列平移作法正确的是( )A .将l 1向右平移3个单位长度B .将l 1向右平移6个单位长度C .将l 1向上平移2个单位长度D .将l 1向上平移4个单位长度9.在▱ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A .7B .4或10C .5或9D .6或810.下列关于二次函数y=ax 2﹣2ax+1(a >1)的图象与x 轴交点的判断,正确的是( )A .没有交点B .只有一个交点,且它位于y 轴右侧C .有两个交点,且它们均位于y 轴左侧D .有两个交点,且它们均位于y 轴右侧二、填空题(本大题共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11π,0,﹣6由小到大用“<”号连起来,可表示为 .12.正八边形一个内角的度数为 .13.如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则∠A 的度数约为 (用科学计算器计算,结果精确到0.1°).14.如图,在平面直角坐标系中,过点M (﹣3,2)分别作x 轴、y 轴的垂线与反比例函数4y x=的图象交于A ,B 两点,则四边形MAOB 的面积为 .15.如图,AB 是⊙O 的弦,AB=6,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .三、解答题(本大题共11小题,计78分)16.(5(31|2-⎛⎫+-+ ⎪⎝⎭. 17.(5分)解分式方程:23133x x x --=+-. 18.(5分)如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,计30分)1.计算:23⎛⎫-=⎪⎝⎭()A.1 B.32-C.0 D.23【知识考点】零指数幂.【思路分析】根据零指数幂:a0=1(a≠0),求出(23⎛⎫-⎪⎝⎭的值是多少即可.【解题过程】解:213⎛⎫-=⎪⎝⎭.故选:A.【总结归纳】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.如图是一个螺母的示意图,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得答案.【解题过程】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.【总结归纳】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【知识考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解题过程】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【总结归纳】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()。
2015年陕西省初中毕业数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1 B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( ) A.2 B.-2 C.4 D.-46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( ) A.没有交点 B.只有一个交点,且它位于y 轴右侧 C.有两个交点,且它们均位于y 轴左侧 D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
2015年陕西中考数学一、选择题(共10小题;共50.0分)1. 计算: ( )A. B. C. D.2. 如图是一个螺母的示意图,它的俯视图是A.B.C.D.3. 下列计算正确的是 ( )A. B.C. D.4. 如图,,直线分别交直线,于点,,若,则的度数为A. B. C. D.5. 设正比例函数的图象经过点,且的值随值的增大而减小,则 ( )A. B. C. D.6. 如图,在中,,,是的角平分线,若在边上截取,连接,则图中等腰三角形共有A. 个B. 个C. 个D. 个7. 不等式组的最大整数解为 ( )A. B. C. D.8. 在平面直角坐标系中,将直线平移后,得到直线,则下列平移作法正确的是 ( )A. 将向右平移个单位长度B. 将向右平移个单位长度C. 将向上平移个单位长度D. 将向上平移个单位长度9. 在平行四边形中,,,,分别为边,上的点,若四边形为正方形,则的长为 ( )A. B. 或 C. 或 D. 或10. 下列关于二次函数的图象与轴交点的判断,正确的是 ( )A. 没有交点B. 只有一个交点,且它位于轴右侧C. 有两个交点,且它们均位于轴左侧D. 有两个交点,且它们均位于轴右侧二、填空题(共4小题;共20.0分)11. 将实数,,,由小到大用“ ”号连起来,可表示为.12. 请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正八边形一个内角的度数为.B.如图,有一滑梯,其水平宽度为米,铅直高度为米,则的度数约为.(用科学计算器计算,结果精确到)13. 如图,在平面直角坐标系中,过点分别作轴、轴的垂线与反比例函数的图象交于,两点,则四边形的面积为14. 如图,是的弦,,点是上的一个动点,且,若点,分别是,的中点,则长的最大值是三、解答题(共11小题;共143.0分)15. 计算:.16. 解分式方程:.17. 如图,已知,请用尺规过点作一条直线,使其将分成面积相等的两部分.(保留作图痕迹,不写作法)18. 某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为),现在我们将这些同学的测试结果分为四个等级:优秀()、良好()、及格()和不及格(),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有名女生,请你估计该年级女生中分钟“仰卧起坐”个数达到优秀的人数.19. 如图,在中,,作交的延长线于点,作,,且,相交于点.求证:.20. 晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线移动,如图,当小聪正好站在广场的点(距点块地砖长)时,其影长恰好为块地砖长;当小军正好站在广场的点(距点块地砖长)时,其影长恰好为块地砖长.已知广场地面由边长为米的正方形地砖铺成,小聪的身高为米,,,,请你根据以上信息,求出小军身高的长.(结果精确到米)21. 胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过人,每人都按九折收费,超过人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用(元)与(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22. 某中学要在全校学生中举办“中国梦我的梦”主题演讲比赛,要求每班选一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有,,,,,个小圆点的小正方体)23. 如图,是的直径,是的弦,过点作的切线,与的延长线交于点,作交于点.(1)求证:;(2)若的半径为,,求的长.24. 在平面直角坐标系中,抛物线的顶点为,与轴交于,两点,与轴交于点.(1)求点,,的坐标;(2)求抛物线关于坐标原点对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为,与轴交于,两点,与轴交于点,在以,,,,,,,这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25. 如图,在每一个四边形中,均有,,,,.(1)如图 1,点是四边形边上的一点,则的面积为;(2)如图 2,点是四边形边上的任意一点,请你求出周长的最小值;(3)如图3,在四边形的边上,是否存在一点,使得的值最小?若存在,求出此时的值;若不存在,请说明理由.答案第一部分1. A2. B3. B4. C5. B6. D7. C8. A9. D 10. D第二部分11.12. A.;B..13.14.第三部分原式15. (1)16. (1)经验证,是原方程的根.17. (1)如图,直线即为所求.18. (1) 补全的两幅统计图如图所示.18. (2) 良好18. (3) (人).该年级女生中分钟“仰卧起坐”个数达到优秀的人数是人.19. (1) ,,,,,在和中,.,.20. (1) 由题意得,,,.,,,,,.,小军身高约为米.21. (1) 甲旅行社:;乙旅行社:当时,;当时,;21. (2) 甲旅行社:当时,,乙旅行社:,当时,,,胡老师应选择乙旅行社.22. (1) 所求概率.22. (2) 游戏公平.理由如下:由上表可知,一共有种等可能的结果,其中小亮、小丽获胜各有种结果.小亮胜,小丽胜,游戏是公平的.23. (1) 与相切于点,是的直径,,,,,.23. (2) 连接,是的直径,,,,,,,,,,.24. (1) 令,得,,,令,得,,, [或,,也正确].24. (2) ,,关于坐标原点对称后的点为,,,所求抛物线的函数表达式为,将,代入上式,得,.即为所求.[ 或也正确]24. (3)如图,取四点,,,,连接,,,,,由中心对称性可知,过点,,,四边形为平行四边形,又知与不垂直,平行四边形不是菱形,过点作轴于点,,,又,,,.平行四边形(求得符合题意的平行四边形的面积为或平行四边形的面积为亦正确)25. (1)25. (2)如图,作点关于直线的对称点,连接,,,交于点,连接,则,周长的最小值为的周长为,,,,过点作于点,则,,,,,,周长的最小值为.25. (3)如图,存在点,使得的值最小.作的中垂线交于点,交于点,连接,,作的外接圆,与直线交于点,则,圆心在上,,与相切于点,,,,圆心在弦的上方,在上任取一点,连接,,交于点,连接,,最大,的值最小,连接,则,,在中,,,,,此时的值为.。
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
2015 年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题共30分)一、选择题(共10 小题,每小题 3 分,计 30 分,每小题只有一个选项是符合题意的)1.(20)()计算:332A.1B.C.0D.23 2.如图是一个螺母的示意图,它的俯视图是()3. 下列计算正确的是()A. a 2a3a6B.( 2ab)24a2b2C. (a 2)3a5D.3a3b2a2b23ab4. 如图, AB//CD, 直线 EF 分别交直线 AB、CD于点 E、F, 若∠ 1=46°30′,则∠ 2的度数为()A.43 °30′B.53°30′C.133°30′D.153°30′5.设正比例函数 y mx 的图象经过点A(m,4),且 y 的值随x值的增大而减小,则 m()A.2B.-2C.4D.-46.如图,在△ ABC中,∠ A=36°,AB=AC,BD是△ ABC的角平分线,若在边 AB上截取 BE=BC,连接 DE,则图中等腰三角形共有()A.2 个B.3个C.4 个D.5个7. 不等式组1x 13的最大整数解为()2x2(x>3)A.8B.6C.5D.48. 在平面直角坐标系中, 将直线 l 1 : y 2x 2平移后,得到直线 l 2 : y2x4 ,则下列平移作法正确的是( )A. 将 l 1向右平移 3 个单位长度B. 将 l 1 向右平移 6 个单位长度C. 将 l 1向上平移 2 个单位长度D.将 l 1向上平移 4 个单位长度9. 在□ABCD 中, AB=10,BC=14,E 、F 分别为边 BC 、AD 上的点,若四边形 AECF为正方形,则 AE 的长为()A.7B.4 或10C.5 或9D.6 或810. 下列关于二次函数 y ax 22ax 1(a >1)的图象与 x 轴交点的判断,正确的是()A. 没有交点B.只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点, 且它们均位于 y 轴右侧二、填空题(共 4 小题,每小题 3 分,计 12 分)11. 将实数 5,,0, 6 由小到大用“<” 号连起来,可表示为 _________________。
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23- C.0 D.32 2.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =•B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。