大学物理机械振动试题
- 格式:doc
- 大小:209.00 KB
- 文档页数:4
机械振动基础试卷一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。
2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析( )系统的基础。
5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。
6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。
7、机械振动是指机械或结构在平衡位置附近的( )运动。
二、简答题(本题40分,每小题10分)1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)2、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程? (10分)3、 简述刚度矩阵[K]中元素k ij 的意义。
(10分)4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。
(10分)三、计算题(45分) 3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m I 1和r 2、m 2、I 2。
轮2的轮缘上连接一刚度为k 的弹簧,轮1上有软绳悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。
3.2、(16分)如图所示扭转系统。
设转动惯量I 1=I 2,扭转刚度K r1=K r2。
1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分)3)求出系统的固有频率; (4分)4)求出系统振型矩阵,画出振型图。
(4分)3.3、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5分)2)求出固有频率; (5分)3)求系统的振型,并做图。
(5分)参考答案及评分细则:填空题(本题15分,每空1分)1、线性振动;随机振动;自由振动;2、势能;动能;阻尼图2图33、简谐运动;正弦;余弦4、线性5、刚度;质量6、频响函数;传递函数7、往复弹性简答题(本题40分,每小题10分)5、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
《大学物理学》机械振动自主学习材料一、选择题9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )【旋转矢量转法判断初相位的方法必须掌握】9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=-;(B )222cos()33x t ππ=+;(C )422cos()33x t ππ=-;(D )422cos()33x t ππ=+。
【考虑在1秒时间内旋转矢量转过3ππ+,有43πω=】9-3.两个同周期简谐运动的振动曲线如图所示,1x 的相位比2x 的相位( )(A )落后2π; (B )超前2π; (C )落后π; (D )超前π。
【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2ν; (B )ν; (C )2ν; (D )4ν。
【考虑到动能的表达式为22211sin ()22kE mv kA t ωϕ==+,出现平方项】9-5.图中是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( )(A )32π; (B )2π; (C )π; (D )0。
【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则()A ()B()C()D )s--'/T T 为( )(A )2; (B )1; (C; (D )12。
【弹簧串联的弹性系数公式为12111k k k =+串,弹簧对半分割后,其中一根的弹性系数为2k ,两弹簧并联后形成新的弹簧整体,弹性系数为4k ,公式为12k k k =+并,利用ω=2T πω=,所以,'22T T π==】9--2.一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( ) (A )12;(B;(C)2;(D )34。
机械振动试题(含答案)一、机械振动选择题1.沿某一电场方向建立x轴,电场仅分布在-d≤x≤d的区间内,其电场场强与坐标x的关系如图所示。
规定沿+x轴方向为电场强度的正方向,x=0处电势为零。
一质量为m、电荷量为+q的带点粒子只在电场力作用下,沿x轴做周期性运动。
以下说法正确的是()A.粒子沿x轴做简谐运动B.粒子在x=-d处的电势能为12-qE0dC.动能与电势能之和的最大值是qE0dD.一个周期内,在x>0区域的运动时间t≤2mdqE2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A56TB65TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.下列说法中不正确的是( )A.将单摆从地球赤道移到南(北)极,振动频率将变大B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变4.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右5.甲、乙两单摆的振动图像如图所示,由图像可知A .甲、乙两单摆的周期之比是3:2B .甲、乙两单摆的摆长之比是2:3C .t b 时刻甲、乙两摆球的速度相同D .t a 时刻甲、乙两单摆的摆角不等 6.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 7.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )A .丙球最先到达D 点,乙球最后到达D 点B .甲球最先到达D 点,乙球最后到达D 点C .甲球最先到达D 点,丙球最后到达D 点D .甲球最先到达D 点,无法判断哪个球最后到达D 点8.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零9.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大B .B 和C 的振幅相等 C .B 的周期为2L gD .C 的周期为1L g10.如图所示,PQ 为—竖直弹簧振子振动路径上的两点,振子经过P 点时的加速度大小为6m/s 2,方向指向Q 点;当振子经过Q 点时,加速度的大小为8m/s 2,方向指向P 点,若PQ 之间的距离为14cm ,已知振子的质量为lkg ,则以下说法正确的是( )A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm11.如图所示,在水平地面上,有两个用轻质弹簧相连的物块A和B,它们的质量均为m,弹簧的劲度系数为k,现将一个质量也为m的物体C从A的正上方一定高度处由静止释放,C和A相碰后立即粘在一起,之后在竖直方向做简谐运动。
0318一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图. 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m 3.060=k 有50/==m k ω rad ·s -1 2分系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分3014一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为t A x ωcos =,则 t A ωωsin -=v(1) 在x = 6 cm ,v = 24 cm/s 状态下有t ωcos 126=t ωωsin 1224-=解得 3/4=ω,∴ 72.2s 2/3/2=π=π=ωT s 2分(2) 设对应于v =12 cm/s 的时刻为t 2,则由t A ωωsin -=v得 2sin )3/4(1212t ω⨯⨯-=,解上式得 1875.0sin 2-=t ω相应的位移为 8.10sin 1cos 222±=-±==t A t A x ωω cm 3分 3021一木板在水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速率是24 cm/s .如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数μ为多少?解:若从正最大位移处开始振动,则振动方程为)cos(t A x ω=, t A xωωsin -=在6=x cm 处,24=xcm/s ∴ 6 =12|cos ω t |, 24=|-12 ω sin ω t |,解以上二式得3/4=ωrad/s 3分t A xωωcos 2-= , 木板在最大位移处x 最大,为 2ωA x = ① 2分 若mA ω2稍稍大于μmg ,则m 开始在木板上滑动,取2ωμmA mg = ② 2分∴ 0653.0/2≈=g A ωμ ③ 1分 3022一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分 (1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x (SI) 1分 (2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分 3027在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T= 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板?解:选平板位于正最大位移处时开始计时,平板的振动方程为t A x π=4cos (SI)t A x π4cos π162-= (SI) 1分 (1) 对物体有 x m N mg=- ① 1分 t A mg x m mg N ππ+=-=4cos 162 (SI) ② 物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4cos 28.16.192 ③ 2分 x(2) 物体脱离平板时必须N = 0,由②式得 1分04cos 162=ππ+t A mg (SI)A q t 2164cos π-=π 1分 若能脱离必须 14cos ≤πt (SI)即 221021.6)16/(-⨯=π≥g A m 2分3264 一质点作简谐振动,其振动方程为 )4131cos(100.62π-π⨯=-t x (SI) (1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 221kx W P = 总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m 2分 (2) 周期 T = 2π/ω = 6 s 从平衡位置运动到2Ax ±=最短时间 ∆t 为 T /8.∴ ∆t = 0.75 s . 3分3265在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯= N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分3273一弹簧振子沿x 轴作简谐振动(弹簧为原长时振动物体的位置取作x 轴原点).已知振动物体最大位移为x m = 0.4 m 最大恢复力为F m = 0.8 N ,最大速度为v m = 0.8π m/s ,又知t =0的初位移为+0.2 m ,且初速度与所选x 轴方向相反.(1) 求振动能量;(2) 求此振动的表达式.解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J 3分 (2) π===2mm m x A v v ω rad /s 2分由 t = 0, φc o s 0A x ==0.2 m , 0sin 0<-=φωA v可得 π=31φ 2分 则振动方程为 )312cos(4.0π+π=t x 1分 3391在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =. 选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得 220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分 ∴ )1.9cos(1022t x π⨯=- 2分3827质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x v (SI) )318cos(103222π+π⨯π-==-t x a (SI) 2分 (3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分 (4) 平均动能 ⎰=T K t m T E 02d 21)/1(v ⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21+x )同理 E E P 21== 3.95×10-5 J 3分 3828一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.解:(1) 1s 10/-==m k ω 1分63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分 ∵ x 0 > 0 ,∴ π=31φ (3) )3110cos(10152π+⨯=-t x (SI) 2分 3834一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.解:(1) 221kA E E E p K =+= 2/1]/)(2[k E E A p K +== 0.08 m 3分(2)222121v m kx = )(sin 22222φωωω+=t A m x m )(sin 222φω+=t A x 2222)](cos 1[x A t A -=+-=φω222A x =, 0566.02/±=±=A x m 3分(3) 过平衡点时,x = 0,此时动能等于总能量221v m E E E p K =+= 8.0]/)(2[2/1±=+=m E E p K v m/s 2分3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x0 则 02020)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分 2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分 解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ), kA F = 2分 2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分5191一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ;(2) 加速度的最大值a m ;(3) 振动方程的数值式.解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2 m/s 2 2分 (3) π=21φ 5511如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )c o s(φω+=t A x . 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分x = 0.02)215.1cos(π+t (SI) 3分 3078一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为 )2c o s(φν+π=t A y 由图可知,t = t '时 0)2cos(=+'π=φνt A y 1分0)2sin(2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ221 2分 x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν 1分 (2) 该波的表达式为 ]21)/(2cos[π+-'-π=u x t t A y ν 3分 3082如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4c o s 1032 (SI).(1) 以A 点为坐标原点写出波的表达式; (2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-x t y (SI) 2分 3083一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.解:由题 λ = 24 cm, u = λν = 24×25 cm/s =600 cm/s 2分A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0s i n 0>-=φωA yx u O t =t ′yA B x uπ-=21φ 2分 ]21)6/(50cos[100.32π--π⨯=-x t y (SI) 2分 3084一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程. (3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为0c o s 0==φA y , 0s i n 0<-=φωA v所以 π=21φ波的表达式为 ]21)/(c o s [π+-=u x t A y ωω4分 (2) 8/λ=x 处振动方程为]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω1分 8/3λ=x 的振动方程为]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω1分 (3) )21/2sin(/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -=1分 t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分 3108两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速;(2) 两波叠加后的节点位置;(3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m ,各1分 波速 u = λν = 6.00 m/s1分 (2) 节点位置 )21(3/4π+π±=πn x x u Oy)21(3+±=n x m , n = 0,1,2,3, … 3分 (3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, … 2分3109设入射波的表达式为 )(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分 (3) 波腹位置: π=π+πn x 21/2λ, 2分 λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分 λn x 21= , n = 1, 2, 3, 4, (3110)一弦上的驻波表达式为 t x y ππ⨯=-550c o s )6.1(c o s 1000.32 (SI).(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.解:(1) 将 t x y ππ⨯=-550cos 6.1cos 1000.32与驻波表达式 )2cos()/2cos(2t x A y νλππ= 相对比可知:A = 1.50×10-2 m, λ = 1.25 m , ν = 275 Hz波速 u = λν = 343.8 m/s 5分(2) 相邻波节点之间距离 λ21=∆x = 0.625 m 2分 (3) 2.4600,-=∂∂=t y t x v m/s 3分 3111 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2c o s [1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分 合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分 因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分 3138某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程 )22cos(06.00π+π=t y )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(c o s[06.0π+-π=u x t y 3分 ])21(c o s [06.0π+-π=x t (SI) (3) 波长 4==uT λ m 2分 3141图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式;(2) P 处质点的振动方程. 解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分 又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2c o s [04.0π--π=x ty (SI) 4分 (2) P 处质点的振动方程为 ]2)4.02.05(2cos[04.0π--π=ty P )234.0cos(04.0π-π=t (SI) 2分 3142 (m) -图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φc o s 0A =, φωs i n 00A -=<v ,故 π-=21φ 2分 又t = 2 s ,O 处质点位移为 )214cos(2/π-π=νA A 所以 π-π=π-21441ν, ν = 1/16 Hz 2分振动方程为 )218/c o s (0π-π=t A y (SI) 1分 (2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2cos[π-+π=x t A y (SI) 3分 3143如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求 (1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分 由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2c o s [π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分 3144一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程;(2) 求此波的波动表达式; t (s)0-A 1y P (m)(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.解:(1) 由振动曲线可知,P 处质点振动方程为])4/2cos[(π+π=t A y P )21cos(π+π=t A (SI) 3分 (2) 波动表达式为 ])4(2c o s [π+-+π=λd x tA y (SI) 3分(3) O 处质点的振动方程 )21cos(0t A y π= 2分 3158在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.解:(1) 设振幅最大的合振幅为A max ,有φ∆⋅++=cos 22)2(222max A A A A A式中 λφ/4x π=∆,又因为 1/4c o s c o s =π=∆λφx 时,合振幅最大,故 π±=πk x 2/4λ合振幅最大的点 λk x 21±= ( k = 0,1,2,…) 4分 (2) 设合振幅最小处的合振幅为A minφ∆⋅++=cos 22)2(222min A A A A A因为 1cos -=∆φ 时合振幅最小且 λφ/4x π=∆故 π+±=π)12(/4k x λ合振幅最小的点 4/)12(λ+±=k x ( k = 0,1,2,…) 4分 3335一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = λ /4处质点的位移;(3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) 3分 (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t t y -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 O P d26.1)21sin(4.02-=π-ππ-=v m/s 3分 3410一横波沿绳子传播,其波的表达式为 )2100c o s(05.0x t y π-π= (SI) (1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22cos(λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分u = λν = 50 m/s 1分(2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322m a x 22m a x 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分3476一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν , )212cos(22π+π=t A y ν 2分 ∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的 初相一样为π21. 4分 合振动方程 )212cos(π+π=t A y ν 1分 (2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν )2cos(2π+ππ=t A νν 3分 5199有一沿x 轴正方向传播的平面简谐波,其波速u = 400 m/s ,频率ν = 500 Hz .(1) 某时刻t ,波线上x 1处的相位为φ 1,x 2处的相位为φ 2,试写出 x 2 - x 1与φ 2 - φ 1的关系式,并计算出当x 2 - x 1 = 0.12 m 时φ 2 - φ 1的值.(2) 波线上某定点 x 在t 1时刻的相位为1φ',在t 2时刻的相位为2φ', 试写出t 2 - t 1与12φφ'-'的关系式,并计算出t 2 - t 1 = 10-3 s 时12φφ'-'的值. 解:该波波长 λ = u /ν = 0.8 m(1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分(2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分当 31210-=-t t s 时, π='-'12φφ rad 1分5319已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分(2) 波峰的位置,即y = A 的位置.由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4的波峰离坐标原点最近. 2分(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 5516平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )c o s (0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 2分 由波的传播概念,可得该平面简谐波的表达式为 )/22c o s (0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分 x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI) 1分 该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv 2分 = 6.28 m/s 1分5519在绳上传播的入射波表达式为)2cos(1λωxt A y π+=,入射波在x = 0处绳端反射,反射端为自由端.设反射波不衰减,求驻波表达式.解:入射波在x = 0处引起的振动方程为 t A y ωc o s 10=,由于反射端为自由端,所以反射波在O 点的振动方程为 t A y ωc o s 20= 2分∴反射波为 )2cos(2λωxt A y π-= 3分合成的驻波方程为 21y y y +=)2cos(λωx t A π+=)2cos(λωx t A π-+ t x A ωλcos )2cos(2π= 3分5520 在绳上传播的入射波表达式为)2cos(1λπωx t A y +=,入射波在x = 0处反射,反射端为固定端.设反射波不衰减,求驻波表达式. 解:入射波在x = 0处引起的振动方程为 t A y ωc o s 10=,由于反射端为固定端,∴反射波在 x = 0处的振动方程为)cos(20π+=t A y ω 或 )c o s (20π-=t A y ω 2分 ∴反射波为 )2cos(2λωxt A y π-π+=或 )2cos(2λωxt A y π-π-=3分 驻波表达式为 21y y y += )2cos(λωxt A π+=)2cos(λωxt A π-π-+)21cos()212cos(2π+π-π=t x A ωλ3分 或 )21cos()212cos(2π-π+π=t xA y ωλ。
机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。
A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。
A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。
A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。
B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。
A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。
机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。
答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。
答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。
w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。
解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。
2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。
若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。
弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。
3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的A 物体处在运动正方向的端点时,速度和加速度都达到最大值;B 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D 物体处在负方向的端点时,速度最大,加速度为零;2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =T 为周期时,质点的速度为A φωsin A v -=;B φωsin A v =;C φωcos A v-=; D φωcos A v =;3.一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=4cos πωt A x ;在4T t =T 为周期时刻,物体的加速度为 A 2221ωA -; B 2221ωA ; C 2321ωA -; D 2321ωA ; 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相A 落后2π;B 超前2π; C 落后π; D 超前π;5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x SI ;从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 A s 8/1; B s 4/1;C s 2/1;D s 3/1; 6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示;此振动的周期为A s 12;B s 10;C s 14;D s 11;8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是A 动能为零,势能最大;B 动能为零,机械能为零;C 动能最大,势能最大;D 动能最大,势能为零;9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J;当振子处于最大位移的1/4时,此时的动能大小为A250J ; B750J ; C1500J ; D 1000J;10.当质点以频率ν作简谐振动时,它的动能的变化频率为 A ν; B ν2 ; C ν4; D2ν;11.一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 AT /4; BT/2; CT ; D2T;12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振动的相位差为A π/3;B π/3; C2π/3; D5π/6;xABC D)s21-13.已知一平面简谐波的波动方程为()bx at A y -=cos ,a 、b 为正值,则 A 波的频率为a ; B 波的传播速度为a b /; C 波长为b /π; D 波的周期为a /2π;14.一个波源作简谐振动,周期为,以它经过平衡位置向正方向运动时为计时起点,若此振动的振动状态以s m u 400=的速度沿直线向右传播;则此波的波动方程为A ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=23400200cos ππx t A y ; B ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=23400200cos ππx t A y ; C ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=2400200cos ππx t A y ; D ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2400200cos ππx t A y ; 15.当波从一种介质进入另一种介质中时,下列哪个量是不变的 A 波长; B 频率; C 波速; D 不确定;16.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 AA 点相位为π; BB 点静止不动; CC 点向下运动; DD 点向下运动;17.一简谐波沿x 轴正方向传播,4/T t =时的波形曲线如图所示;若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 A 0点的初位相为00=φ;B1点的初位相为2/1πφ-=;C2点的初位相为πφ=2;D3点的初位相为2/3πφ-=;18.频率为Hz 100,传播速度为s m /300的平面简谐波,波线上两点振动的相位差为3/π,则此两点相距A m 2;B m 19.2;C m 5.0;D m 6.28;二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,uOYX1 2 3 4第题图1振子在负的最大位移处,则初位相为______________________; 2振子在平衡位置向正方向运动,则初位相为________________; 3振子在位移为2/A 处,且向负方向运动,则初位相为______; 2.一物体作余弦振动,振幅为m 21015-⨯,圆频率为16-sπ,初相为π5.0,则振动方程为=x ________________________SI ;3.一放置在水平桌面上的弹簧振子,振幅为A ,周期为T ;当0=t 时,物体在2/A x =处,且向负方向运动,则其运动方程为 ;4.一物体沿x 轴作简谐运动,振幅为cm 10,周期为s 0.4;当0=t 时物体的位移为cm x 0.50-=,且物体朝x 轴负方向运动;则s t 0.1=时,此物体的位移为 m ;5.一简谐运动曲线如图a 所示,图b 是其旋转矢量图,则此简谐振动的初相位为 ;s t 1=与0=t 的相位差φ∆= ;运动周期是 ;6.两列满足相干条件的机械波在空间相遇将发生干涉现象,其中相干条件包括:1频率_____________;2振动方向_____________和相差恒定; 7.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为___________; 8.同方向同频率振幅均为A ,相位差为2π的两个简谐运动叠加后,振幅为________;9.一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为 ()6/2cos 10421π+⨯=-t x ,()6/52cos 10322π-⨯=-t x SI则其合成振动的振幅为___________,初相为_______________;10.两个同方向同频率的简谐振动,其合振动的振幅为cm 20,与第一个简谐振动的位相差为6/1πφφ=-;若第一个简谐振动的振幅为cm cm 3.17310=,则第二个简谐振动的振幅为__________cm ,第一、二两个简谐振动的位相差21φφ-为__________;11.一平面简谐波沿x 轴正方向传播,波速s m u /100=,0=t 时刻的波形曲线如图所示;波长=λ____________;12.惠更斯原理表明,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的_______________就是新的波前; 包络包迹或包络面13.干涉型消声器结构原理如图所示,构可以消除噪声;达点A 时,分成两路而在点B 相遇,而相消;已知声波速度为s m /340,如果要消除频率为Hz 300的发动机排气噪声,则图中弯道与直管长度差至少应为____________;三、判断题1.对于给定的振动系统,周期或频率由振动系统本身的性质决定,而振幅和初相则由初始条件决定;2.对于一定的谐振子而言,振动周期与振幅大小无关; 3.简谐振动的能量与振幅的平方成正比;4.在简谐振动的过程中,谐振子的动能和势能是同相变化的; 5.两个同方向同频率简谐运动合成的结果必定是简谐运动;6.在简谐波传播过程中,沿传播方向相距半个波长的两点的振动速度必定大小相同,方向相反7.在平面简谐波传播的过程中,波程差和相位差的关系是21122x ∆=∆λπφ;8.频率相同、传播方向相同、相差恒定的两列波在空间相遇会发生干涉;第题图) 0-0。
专业班级 学号 姓名 批阅
机械振动
本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振
本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题
1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .
2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .
3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .
6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始
速率之比10
20:=v v .
7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .
8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.
9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .
10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(1032
1m t x ππ+⨯=-;))(4cos(1042
2m t x ϕπ+⨯=-
当ϕ= 时合振动的振幅最大,其值
max A = ;当ϕ= 时合振动的振幅最小,其值min A = .
11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x x
(____________________)。
图
5
二、选择题
1.一物体做简谐运动,运动方程为)4/cos(πω+=t A x
,在4/T t =时刻(T 为周期)
,物体的速度和加速度为 ( ) (A )ωA 22-,222ωA - (B )ωA 22-,222ωA (C )ωA 22,222ωA - (D )ωA 22,222ωA
2.一简谐振动方程为:m t x )3/28cos(1.0ππ-=,则振动的最大加速度的大小为( )
(A )22
64-⋅s m π
(B )28.0-⋅s m π (C )21.0-⋅s m (D )224.6-⋅s m π
3.一弹簧谐振子在振幅增大两倍时,其频率和最大速度的变化为( ) (A )频率和最大速度都增加 (B )频率增加,最大速度不变 (C )频率不变,最大速度增加 (D )频率和最大速度都不变
4.把单摆小球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放,使其摆动.从放手时开始计时,若用余弦函数表示运动方程,则该单摆振动的初相为( )
(A )π (B )0 (C )π/2 (D )θ
5.质点做简谐运动,其位移与时间的曲线如图6所示.则该质点做简谐运动的初相位为( )
(A )3
π
(B )3
π
- (C )6
π
(D )3
2π
6.当0=t
时,一简谐弹簧振子正经过其平衡位置向X 轴正向运动,此时弹簧振子的运动方程可表示为( )
(A ))2/cos(πω+=t A x (B ))cos(max πω+=t v v
(C ))2/sin(max πω-=t a a
(D ))2/3cos(πω+=t A x
7.一弹簧振子做简谐振动,当位移为振幅的一半时,其动能为总能量的( )
(A )
4
1
(B )
21
(C )4
3
(D )
2
2
8.一质点作周期为T 的简谐运动,质点由平衡位置运动到最大位移一半处所需的最短时间为( )
(A )T/2 (B )T/4 (C)T/8 (D )T/12
9.两个振动方向、振幅、频率均相同的简谐运动相遇叠加,测得某一时刻两个振动的位移都等于零,而运动方向相反.则表明两个振动的( )
(A )相位差π
ϕ=∆,合振幅
A A 2=' (
B )相位差π
ϕ=∆,合振幅
0='A
(C )相位差0=∆ϕ
,合振幅0='A (D )相位差0=∆ϕ,合振幅A A 2='
10.两个质点作同频率、同振幅的简谐振动,它们在振幅一半的地方相遇,但运动方向相反,则两者的相位差为( )
(A )π (B )
2π
(C )3π (D )
32π
11.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2
A
-,且向x 轴正方向运动,代表此简谐运动的旋转矢量为图7中( )
12.将频率为Hz a
400=ν的标准音叉和一待测频率的音叉同时振动,测得拍频为2.0Hz ,而将频率为Hz b 405=ν的标准音
叉与待测音叉同时振动时,测得拍频为3.0Hz ,则待测音叉的频率为( )
(A )400Hz (B )398Hz (C )402Hz (D )408Hz
三、计算题
1.若简谐振动方程为m t x
]4/20cos[1.0ππ+=,求:
(1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.
2.某振动质点的x -t 曲线如图8所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.
图8
3.一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t=0时位移为0.03m ,且向轴正方向运动,求:(1)t=0.5s 时,物体的位移、速度和加速度;(2)物体从0.03x m =-处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间?
图7
4.一物体质量为0.25Kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k=25N/m ,如果起始振动时具有势能0.06J 和动能0.02J ,求:(1)振幅; (2)动能恰等于势能时的位移; (3)经过平衡位置时物体的速度.
5.两个同方向的简谐振动的振动方程分别为:211
410cos 2()(),8x t SI π-=⨯+ 22
1310cos 2()()4x t SI π-=⨯+求:(1)合振动的振幅和
初相;(2)若另有一同方向同频率的简谐振动23510cos(2)()x t SI πϕ-=⨯+,则ϕ为多少时,31x x +的振幅最大?ϕ
又为多少
时,32x x +的振幅最小?
6.一质点同时参与两个同方向的简谐振动,其振动方程分别为21510cos(4/3)()x t SI π-=⨯+,22310sin(4/6)()x t SI π-=⨯-画出两振动的旋转矢量图,并求合振动的振动方程.。