【K12】贵州专用2017秋九年级数学上册4.3相似多边形教案2
- 格式:doc
- 大小:312.50 KB
- 文档页数:2
4.3相似多边形
两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()
在矩形ABCD中,E,F分别为AB,CD的中点,如果矩形ABCD∽矩形EFCB,那么它们
一个多边形的边长为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这如果多边形ABCDEF∽多边形A`B`C`D`E`F`,且∠A=68o,则∠A`等于()
相似多边形对应边之比叫做______.
两个相似多边形的最长边分别为10cm和20cm,其中一个多边形的最短边为5cm,则在梯形ABCD中,AB∥CD,AB=60,CD=15,E,F分别为AD,BC上一点,且EF∥AB,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD∽矩形EABF,AB=1,
梯形ABCD中,AD∥BC,E,F分别为AB,CD上一点,且梯形AEFD∽梯形EBCF,若AD
10.对应角相等的两个多边形一定是相似多边形吗?两个多边形的对应边的比值都相等,
这样的两个多边形也是相似多边形吗?试分别举例说明。
11.在长为10,宽为8的矩形ABCD中,点E在长AD上,F在AB上,若所得到的矩形EFCD
∽矩形ABCD,试问AE之长是多少?请说明理由。
4.3 相似多边形一、学生知识状况分析学生的知识技能基础:学生已学习了全等图形,对全等图形的慨念及性质已有所了解,同时在本章前几课中,又学习了比例线段等的有关知识,初步对相似图形有了较为清晰地认识,具备了学习相似多边形的基本技能和方法。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些形状相似图的认识,解决了一些简单的现实问题,感受相似图形在生活中的必要性和作用,获得必需的一些数学活动经验;同时在以前的学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和合作与交流的能力。
二、教学任务分析教科书基于学生的生活经验,提出了本课的具体学习任务:通过学生的收集、观察、思考、归纳及师生互动得出“相似多边形”的具体的内涵,初步掌握相似多边形的基本性质。
但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。
教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个教学的远期目标,或者说,教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《相似多边形》内容从属于“图形的相似”这一数学学习领域,因而务必服务于相似图形教学的远期目标:“让学生经历图形收集、观察、思考、归纳作出推断的全过程,发展学生的类比意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)经历相似多边形概念的形成过程,了解相似多边形的含义(2)在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平。
(3)使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造。
三、教学过程分析本节课设计了八个教学环节:第一环节:课前准备——收集各种形状相似的图形;第二环节:情境引入;第三环节:例题讲解;第四环节:合作学习;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节 课前准备活动内容:图片收集(提前布置) 以小组为单位,开展收集活动:(1)各尽所能收集生活中各类相似图形(在必要的情况下,教师可以对学生选择的对象给予一定的要求,使调查更接近本课教学)。
设计人审核人上课时间第周科目数学班级共1课时,第 1 课时教学内容北师大版数学书86页至88页课题 4.3相似多边形学习目标1、经历相似多边形概念的形成过程,了解相似多边形的含义.2、在探索相似多边形边、角的关系中,进一步发展学生的观察、判断、归纳能力.3、在交流和反思过程中,体验数学活动中充满了探索性和创造性.重难点教学重点:探索相似多边形的概念过程,以及从定义的角度去判断两个多边形是否相似教学难点:探索相似多边形的概念过程导学流程情境引入一、自主学习请找出形状相同的图形:探索发现:六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的图形;其中∠A与∠A1, ∠B与∠B1, ∠C与∠C1, ∠D时间二、点拨归纳概念总结:例1、如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′,AD=4,A′D′=6,AB=6,B′C′=12,∠C=60°.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)∠D′的大小..64126AB CD A'B'C'D'如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠KB.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.以上答案都不对EFAB CD KLGHIJ例2、如图,G是正方形ABCD的对角线AC上一点,。
4.3 相似多边形一、学生知识状况分析学生的知识技能基础:学生已学习了全等图形,对全等图形的慨念及性质已有所了解,同时在本章前几课中,又学习了比例线段等的有关知识,初步对相似图形有了较为清晰地认识,具备了学习相似多边形的基本技能和方法。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些形状相似图的认识,解决了一些简单的现实问题,感受相似图形在生活中的必要性和作用,获得必需的一些数学活动经验;同时在以前的学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和合作与交流的能力。
二、教学任务分析教科书基于学生的生活经验,提出了本课的具体学习任务:通过学生的收集、观察、思考、归纳及师生互动得出“相似多边形”的具体的内涵,初步掌握相似多边形的基本性质。
但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。
教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个教学的远期目标,或者说,教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《相似多边形》内容从属于“图形的相似”这一数学学习领域,因而务必服务于相似图形教学的远期目标:“让学生经历图形收集、观察、思考、归纳作出推断的全过程,发展学生的类比意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)经历相似多边形概念的形成过程,了解相似多边形的含义(2)在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平。
(3)使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造。
三、教学过程分析本节课设计了八个教学环节:第一环节:课前准备——收集各种形状相似的图形;第二环节:情境引入;第三环节:例题讲解;第四环节:合作学习;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节 课前准备活动内容:图片收集(提前布置) 以小组为单位,开展收集活动:(1)各尽所能收集生活中各类相似图形(在必要的情况下,教师可以对学生选择的对象给予一定的要求,使调查更接近本课教学)。
4.3 相似多边形教学目的:(1)探索相似图形的性质,知道相似图形的对应角相等,对应边的比相等.(2)探索相似图形的判定,知道“如果两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”(3)在探索相似图形的性质的探究过程中,让学生运用观察—猜想—思考—验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.(4)在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 知道相似图形的对应角相等,对应边的比相等.教学难点: 能运用相似图形的性质解决问题.一.创设情境活动1观察图片,体会相似图形性质(1) 图27.1-4(1)中的△A 1B 1C 1是由正△ABC 放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?图27.1-4(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?教师活动:教师出示图片,提出问题;学生活动:学生细心观察思考,小组讨论后回答问题: 它们的对应角相等,对应边的比相等. 111;;C C B B A A ∠=∠∠=∠∠=∠.111111C A AC C B BC B A AB == 教师活动:在活动中,教师应重点关注:(1) 学生参与活动的热情及语言归纳数学结论的能力;(2) 学生对正三角形和正六边形的图形性质的认识是否到位.活动2 探究:图27.1-5(1)中是两个相似三角形, 它们的对应角有什么关系?对应边的比是否相等?对于图27.1-5(2)中两个相似四边形,它们的对应角、对应边是否也有同样的结论?(1) (2)图27.1-5教师活动:教师出示图片,提出问题;为了验证学生自己的猜想,可以鼓励学生用刻度尺和量角器量一量.学生活动:学生猜想,小组讨论后回答问题:学生归纳总结:相似多边形的对应角相等,对应边的比相等;(1)如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似;(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:α和的大小和EH的长度x.如图27.1-6,四边形ABCD和EFGH相似,求角β27.1-6教师活动:教师出示例题,提出问题;α和的大小和EH的长度x.(2人板演) 学生活动:学生通过例题运用相似多边形的性质,正确解答出角β活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边a、b、c、d的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
(贵州专用)2017秋九年级数学上册4.3 相似多边形教案2 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((贵州专用)2017秋九年级数学上册4.3 相似多边形教案2 (新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(贵州专用)2017秋九年级数学上册4.3 相似多边形教案2 (新版)北师大版的全部内容。
4。
3 相似多边形教学目的:(1)探索相似图形的性质,知道相似图形的对应角相等,对应边的比相等.(2)探索相似图形的判定,知道“如果两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”(3)在探索相似图形的性质的探究过程中,让学生运用观察—猜想—思考—验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.(4)在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 知道相似图形的对应角相等,对应边的比相等.教学难点: 能运用相似图形的性质解决问题.一.创设情境活动1观察图片,体会相似图形性质(1) 图27。
1-4(1)中的△A 1B 1C 1是由正△ABC 放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?图27。
1—4(2)对于图27.1—4(2)中两个相似的正六边形,是否也能得到类似的结论?教师活动:教师出示图片,提出问题; 学生活动:学生细心观察思考,小组讨论后回答问题: 它们的对应角相等,对应边的比相等.111;;C C B B A A ∠=∠∠=∠∠=∠.111111C A AC C B BC B A AB == 教师活动:在活动中,教师应重点关注:(1) 学生参与活动的热情及语言归纳数学结论的能力;(2) 学生对正三角形和正六边形的图形性质的认识是否到位.活动2 探究:图27。
4.3 相似多邊形教學目的:(1)探索相似圖形的性質,知道相似圖形的對應角相等,對應邊的比相等.(2)探索相似圖形的判定,知道“如果兩個多邊形滿足對應角相等,對應邊的比相等.那麼這兩個多邊形相似”(3)在探索相似圖形的性質的探究過程中,讓學生運用觀察—猜想—思考—驗證的數學思想,並體會由特殊到一般的思想方法.能運用相似圖形的性質解決問題.(4)在探索相似圖形的性質過程中,培養學生與他人交流、合作的意識和品質.重點、難點教學重點: 知道相似圖形的對應角相等,對應邊的比相等.教學難點: 能運用相似圖形的性質解決問題.一.創設情境活動1觀察圖片,體會相似圖形性質(1) 圖27.1-4(1)中的△A 1B 1C 1是由正△ABC 放大後得到的,觀察這兩個圖形,它們的對應角有什麼關係?對應邊又有什麼關係呢?圖27.1-4(2)對於圖27.1-4(2)中兩個相似的正六邊形,是否也能得到類似的結論?教師活動:教師出示圖片,提出問題;學生活動:學生細心觀察思考,小組討論後回答問題:它們的對應角相等,對應邊的比相等.111;;C C B B A A ∠=∠∠=∠∠=∠.111111C A AC C B BC B A AB == 教師活動:在活動中,教師應重點關注:(1) 學生參與活動的熱情及語言歸納數學結論的能力;(2) 學生對正三角形和正六邊形的圖形性質的認識是否到位.活動2 探究:圖27.1-5(1)中是兩個相似三角形, 它們的對應角有什麼關係?對應邊的比是否相等? 對於圖27.1-5(2)中兩個相似四邊形,它們的對應角、對應邊是否也有同樣的結論?(1) (2)圖27.1-5教師活動:教師出示圖片,提出問題;為了驗證學生自己的猜想,可以鼓勵學生用刻度尺和量角器量一量.學生活動:學生猜想,小組討論後回答問題:學生歸納總結:相似多邊形的對應角相等,對應邊的比相等;(1)如果兩個多邊形的對應角相等,對應邊的比相等,那麼這兩個多邊形相似;(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:α和的大小和EH的長度x.如圖27.1-6,四邊形ABCD和EFGH相似,求角β27.1-6教師活動:教師出示例題,提出問題;α和的大小和EH的長度x.學生活動:學生通過例題運用相似多邊形的性質,正確解答出角β(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什麼?3.如圖所示的兩個五邊形相似,求未知邊a、b、c、d的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對於相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節課你有哪些收穫.(2)佈置課外作業:教材P88頁習題4.4。
4.3 相似多边形一、学生知识状况分析学生的知识技能基础:学生已学习了全等图形,对全等图形的慨念及性质已有所了解,同时在本章前几课中,又学习了比例线段等的有关知识,初步对相似图形有了较为清晰地认识,具备了学习相似多边形的基本技能和方法。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些形状相似图的认识,解决了一些简单的现实问题,感受相似图形在生活中的必要性和作用,获得必需的一些数学活动经验;同时在以前的学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和合作与交流的能力。
二、教学任务分析教科书基于学生的生活经验,提出了本课的具体学习任务:通过学生的收集、观察、思考、归纳及师生互动得出“相似多边形”的具体的内涵,初步掌握相似多边形的基本性质。
但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。
教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个教学的远期目标,或者说,教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《相似多边形》内容从属于“图形的相似”这一数学学习领域,因而务必服务于相似图形教学的远期目标:“让学生经历图形收集、观察、思考、归纳作出推断的全过程,发展学生的类比意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)经历相似多边形概念的形成过程,了解相似多边形的含义(2)在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平。
(3)使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造。
三、教学过程分析本节课设计了八个教学环节:第一环节:课前准备——收集各种形状相似的图形;第二环节:情境引入;第三环节:例题讲解;第四环节:合作学习;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节 课前准备活动内容:图片收集(提前布置) 以小组为单位,开展收集活动:(1)各尽所能收集生活中各类相似图形(在必要的情况下,教师可以对学生选择的对象给予一定的要求,使调查更接近本课教学)。
第四章图形的相似3.相似多边形一、学生知识状况分析学生的知识技能基础:学生已学习了全等图形,对全等图形的慨念及性质已有所了解,同时在本章前几课中,又学习了比例线段等的有关知识,初步对相似图形有了较为清晰地认识,具备了学习相似多边形的基本技能和方法。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些形状相似图的认识,解决了一些简单的现实问题,感受相似图形在生活中的必要性和作用,获得必需的一些数学活动经验;同时在以前的学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和合作与交流的能力。
二、教学任务分析教科书基于学生的生活经验,提出了本课的具体学习任务:通过学生的收集、观察、思考、归纳及师生互动得出“相似多边形”的具体的内涵,初步掌握相似多边形的基本性质。
但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。
教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个教学的远期目标,或者说,教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《相似多边形》内容从属于“图形的相似”这一数学学习领域,因而务必服务于相似图形教学的远期目标:“让学生经历图形收集、观察、思考、归纳作出推断的全过程,发展学生的类比意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)经历相似多边形概念的形成过程,了解相似多边形的含义(2)在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平。
(3)使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造。
三、教学过程分析本节课设计了八个教学环节:第一环节:课前准备——收集各种形状相似的图形;第二环节:情境引入;第三环节:例题讲解;第四环节:合作学习;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第四章图形的相似4.3 相似多边形一、教学目标1.经历相似多边形概念的形成过程,了解相似多边形的含义.2.进一步发展归纳、类比、反思、交流等方面的能力,提高数学思维水平,体会反例的作用.二、教学重点及难点重点:探索相似多边形的定义,判断两个多边形是否相似.难点:探索相似多边形的定义的过程.三、教学用具多媒体课件、直尺或三角板.四、相关资《生活中的相似多边形》图片,《相似多边形》微课.五、教学过程【情境引入】生活中同学们常会看到这样的图片.很明显,上面几组中的两个图形不是全等图形,但每组中的两个图形的形状相同,满足这种关系的两个图形是什么关系呢?与全等图形有怎样的联系?它们的边之间、角之间又有怎样的特征呢?带着这些问题让我们一起开始今天的学习吧!设计意图:从生活中常见的图形入手,让学生感受到形状相同、大小不等的两个图形间存在着密切的联系,同时提出疑问,过渡自然,引入本课研究内容.【探究新知】想一想下图中的两个多边形分别是计算机显示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗?(1)在这两个多边形中,是否有对应相等的内角?设法验证你的猜想.(2)在这两个多边形中,夹相等内角的两边是否成比例?师生活动:教师出示问题,对于问题(1),学生根据生活经验和直观判断容易得出结论,教师应鼓励学生用自己的方法验证所得的结论.例如,可以用量角器度量;还可以把两多边形画在透明纸上,然后剪下来把对应的角重叠在一起进行比较.对于问题(2)的结论不如问题(1)的结论那样直观易得.教师可以引导学生通过度量比较的方法获得结论.答:图中的六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的多边形.(1)在这两个多边形中,有对应相等的内角,即∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等,这些角称为对应角.(2)在这两个多边形中,夹相等内角的两边成比例,即AB与A1B1,BC与B1C1,CD 与C1D1,DE与D1E1,EF与E1F1,FA与F1A1的比都相等,这些边称为对应边.我们把各角分别相等、各边成比例的两个多边形叫做相似多边形.例如,在上图中,六边形ABCDEF与六边形A1B1C1D1E1F1相似,记作六边形ABCDEF ∽六边形A1B1C1D1E1F1,“∽”读作“相似于”.在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上.相似多边形对应边的比叫做相似比.例如,五边形ABCDE∽五边形A1B1C1D1E1,对应边的比,因此五边形ABCDE与五边形A1B1C1D1E1的相似比为,五边形A1B1C1D1E1与五边形ABCDE的相似比为.设计意图:从特例入手,学生比较容易接受,而从特例的探索过程得到的活动经验对一般情况的探索起到铺垫的作用,从而降低难度.议一议(1)任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n边形呢?(2)任意两个菱形相似吗?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.答:(1)任意两个等边三角形相似,任意两个正方形相似,任意两个正n边形相似,因为它们的各角对应相等,各边对应成比例.(2)任意两个菱形不一定相似,因为两个菱形的各边虽对应成比例,但它们的各角不一定分别对应相等.设计意图:巩固对相似多边形概念的理解.【典例精析】例一块长3 m、宽1.5 m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?师生活动:教师出示问题,学生思考、讨论,教师引导学生应用相似多边形的定义判断.答:不相似;因为,所以对应边不成比例.所以这两个矩形不相似.设计意图:加深对相似多边形概念的理解.【课堂练习】1.观察下图中的各组图,其中形状相同的有().A.1组B.2组C.3组D.4组2.下列四组图形中,一定相似的是().A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形3.在□ABCD与□A′B′C′D′中,若AB=4,BC=2,A′B′=2,B′C′=1,则□ABCD与□A′B′C′D′_____________相似(填“一定”或“不一定”).4.已知五边形ABCDE∽五边形A1B1C1D1E1,且AB=2,BC=3,A1B1=4,∠D=20°,∠E=50°,则B1C1=__________,∠E1=__________.5.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.师生活动:教师出示例题,学生尝试完成,教师给出规范的解题过程.6.如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x.师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.C.2.D.3.不一定.4.6;50°.5.解:(1)由已知,得MN=AB,MD=.∵矩形DMNC与矩形ABCD的相似,∴.∴.∵AB=4,∴AD=.(2)矩形DMNC与矩形ABCD的相似比为.设计意图:让学生进一步加深对相似多边形概念的理解,培养学生分析问题、解决问题的意识和能力.教师根据学生情况补充:两个多边形如果相似,不仅有对应角相等,对应边成比例的结论,它们的周长的比也等于相似比,面积的比等于相似比的平方.6.解:因为四边形ABCD和EFGH相似,所以它们的对应角相等,由此可得α=∠C=83°,∠A=∠E=118°.在四边形ABCD中,β=360°-(78°+83°+118°)=81°.因为四边形ABCD和EFGH相似,所以它们的对应边成比例,由此可得,即.解得x=28.设计意图:通过求相似多边形的对应边、角,巩固相似多边形的概念及性质.六、课堂小结1.相似多边形及其相关概念各角分别相等、各边成比例的两个多边形叫做相似多边形.相似用符号“∽”表示,读作“相似于”.相似多边形对应边的比叫做相似比.2.相似多边形的性质(1)相似多边形的对应角相等,对应边成比例;(2)相似多边形周长的比等于相似比;(3)相似多边形面积的比等于相似比的平方.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.3 相似多边形1.相似多边形及其相关概念2.相似多边形的性质。
4.3 相似多边形
教学目的:
(1)探索相似图形的性质,知道相似图形的对应角相等,对应边的比相等.
(2)探索相似图形的判定,知道“如果两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”
(3)在探索相似图形的性质的探究过程中,让学生运用观察—猜想—思考—验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.
(4)在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.
重点、难点
教学重点: 知道相似图形的对应角相等,对应边的比相等.
教学难点: 能运用相似图形的性质解决问题.
一.创设情境
活动1观察图片,体会相似图形性质
(1) 图27.1-4(1)中的△A 1B 1C 1是由正△ABC 放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
图27.1-4
(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?
教师活动:教师出示图片,提出问题; 学生活动:学生细心观察思考,小组讨论后回答问题: 它们的对应角相等,对应边的比相等.
111;;C C B B A A ∠=∠∠=∠∠=∠.
1
11111C A AC C B BC B A AB == 教师活动:在活动中,教师应重点关注:
(1) 学生参与活动的热情及语言归纳数学结论的能力;
(2) 学生对正三角形和正六边形的图形性质的认识是否到位.
活动2 探究:
图27.1-5(1)中是两个相似三角形, 它们的对应角有什么关系?对应边的比是否相等?
对于图27.1-5(2)中两个相似四边形,它们的对应角、对应边是否也有同样的结论?
(1) (2)
图27.1-5
教师活动:教师出示图片,提出问题;为了验证学生自己的猜想,可以鼓励学生用刻度尺和量角器量一量.学生活动:学生猜想,小组讨论后回答问题:
学生归纳总结:相似多边形的对应角相等,对应边的比相等;
(1)如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似;
(2)相似多边形的对应边的比称为相似比;
(3)当相似比为1时,两个多边形全等.
二、运用相似多边形的性质.
活动3 例:
α和的大小和EH的长度x.
如图27.1-6,四边形ABCD和EFGH相似,求角β
27.1-6
教师活动:教师出示例题,提出问题;
α和的大小和EH的长度x.(2人板演) 学生活动:学生通过例题运用相似多边形的性质,正确解答出角β
活动4
1.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?
3.如图所示的两个五边形相似,求未知边a、b、c、d的长度.
教师活动:在活动中,教师应重点关注:
(1)学生参与活动的热情及语言归纳数学结论的能力;
(2)学生对于相似多边形的性质的掌握情况.
三、回顾与反思.(1)谈谈本节课你有哪些收获.
(2)布置课外作业:教材P88页习题4.4。