2019年上海数学·自招(中考)第02讲 实数及其运算
- 格式:docx
- 大小:246.95 KB
- 文档页数:5
2019上海中学自主招生试卷及答案1、已知0a ≠,求2323a a a a a a++=___________ 【答案】3或1-【解析】①0a >时,23231113a a a a a a++=++=; ②0a <时,23231111a a a a a a++=-+-=-; 2、因式分解:332x x -+【答案】()()212x x -+【解析】拆项()()3323222121x x x x x x x x -+=--+=--- ()()()()()()()2211211212x x x x x x x x x =+---=-+-=-+ 3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________【答案】3【解析】设m ,n 分别为20ax ax b ++=与20ax bx b ++=的两个实数根,1m n ⋅=,1n m ∴=,由题意得20am an b ++=①与20an bn b ++=②,将1n m=代入到20an bn b ++=有2110a b b m m++=,变形得20bm bm a ++=③,由①③联立得()()()20b a m b a m a b -+-+-=,讨论:1)0b a -=,0b a =≠时,m ,n 为210x x ++=的实数根,22131024x x x ⎛⎫++=++> ⎪⎝⎭恒成立,所以此种情况无解;2)0b a -≠时,有210m m +-=,有11m m -=-,且222221123m n m m m m ⎛⎫+=+=-+= ⎪⎝⎭4、求三边为整数,且最大边小于16的三角形个数为________个【答案】372【解析】设较小的两边为x 、y ,且x y ≤,则最大边为15的三角形有如下情况:15x y ≤≤,15x y +>①1x =时,15y =;②2x =时,15y =,14y =;③3x =时,15y =,14y =,13y =;④4x =时,15y =,14y =,13y =,12y =;⑤5x =时,15y =,14y =,13y =,12y =,11y =;⑥6x =时,15y =,14y =,13y =,12y =,11y =,10y =;⑦7x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =;⑧8x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =,8y =; ⑨9x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =; ……共有12345678765432164++++++++++++++=种同理:最大边为14的有1234567+765432156++++++++++++=种 最大边为13的有123456765432149++++++++++++=最大边为12的有12345665432142+++++++++++=最大边为11的有1234565432136++++++++++=最大边为10的有123455432130+++++++++=最大边为9的有12345432125++++++++=最大边为8的有1234432120+++++++=最大边为7的有123432116++++++=最大边为6的有12332112+++++=最大边为5的有123219++++=最大边为4的有12216+++=最大边为3的有1214++=最大边为2的有112+=最大边为1的有1综合共有:1246912162025303642495664=372++++++++++++++种5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________ 【答案】737+6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________【答案】815【解析】利用比例,延长AF 、DC 交于点G ,//AB CD ,::1:4AM MG AE DG ∴== ::1:2AN NG AB DG ∴==:3:2AM NM ∴=,:3:2AM NM ∴=且::2:1DN NB AD BF ==,2224825531515DMN DAN ABD S S S ==⨯=⨯= 7、已知1a >a a x x -+=143a -+- 【解析】8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、1002 【答案】D9、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADEACB 时,AE =_________ 【答案】32或83【解析】进行分类,按照斜A 形分为两类,画图计算可得32或83 10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥【答案】见解析【解析】延长BH ,CP 交于点M ,联结AM ,借用垂直平分线求证AB AM AC ==,从而易得AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?【答案】216个附:无答案试卷题目1、已知0a ≠,求2323a a a a a a++=___________ 2、因式分解:332x x -+3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________4、求三边为整数,且最大边小于16的三角形个数为________个5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________7、已知1a >,解方程:a a x x -+= 8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、10029、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADE ACB 时,AE =_________10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?。
年上海交通大学自主招生试题解析福建省厦门市叶超杰1.已知解:因为,则2.已知,试解:易知当时则3.已知方程各个实根为,同侧,求的取值范围解:因为,则与两点,则易知4.已知复数满足,求负实数的值解:,因为,则情形一:当时,则解得情形二:当时,则,所以此时无解综上所述:5.若方程的三个根可以作为三角形的三边长,求的范围解:因为,则,令且,解得情形一:当,满足题意,则此时情形二:当即解得6.对于的最小值解:,所以时,又则所以时,即,此时7.已知数列,若,求的最小值解:因为所以的最小值为8.展开式中奇次幂的项的和为解:由题意可知则9.解:而所以,当且仅当时,等号成立10.,在线段上,在线段上,在线段上,且满足,若解:设,则而此时由三元均值不等式可知当且仅当时,等号成立11.对定义域内任意的,,则称为凸函数,下列函数是凸函数的是()解:易知选12.已知复数所对应的点为,,且满足的面积解:设,因为,则情形一:当而情形二:当13.实数解:解得当且仅当时,等号成立14.15.数列是的末两位数,求解:易知数列的周期为,而所以16.,则()解:因为则所以同理可得17.定义平面上两点,若平面上一点到,的折线距离之和最小,则点坐标为解:设点,则折线距离之和由绝对值的几何意义可知此时点坐标为18.已知的充要条件是()解:由题意可知当抛物线与圆相切时整理可得而,解得故选。
2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x?2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x?2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根(3)△<0?方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′?sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO?AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。
经典精品试卷2019年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A)A .AD BCDF CE=B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 7.分母有理化:81=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.A B D C E F图1=1410.已知函数1()1f x x =-,那么(3)f = —1/2 . 11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b /2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分) 解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0) 21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC . (1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3 图2AA 图3B M CA D2y x =BC b =AB a =(2)8 22.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).根据上述信息,回答下列问题(直接写出结果): (1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ; (3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ;(4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分) 在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所九年级 八年级 七年级六年级 25%30%25% 图5 图6 O D CAB E F b示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径. 解:(1)点B (—1,0),代入得到 b=1 直线BD : y=x+1 Y=4代入 x=3 点D (3,1) (2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.2019年上海市初中毕业统一学业考试数学卷答案要点与评分标准说明:1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位.一.选择题:(本大题共6题,满分24分)1. B ; 2.C ; 3.A; 4.B; 5.C; 6.A . 二.填空题:(本大题共12题,满分48分)7.55; 8.2=x ; 9.14; 10.-12; 11.一、三;12.21y x =-; 13.16; 14.2)1(100m -; 15.b a 21+;16.5; 17.AC BD =(或︒=∠90ABC 等); 18. 2.三.解答题:(本大题共7题,满分78分)19.解:原式=2)1()1)(1(111)1(2-+--+⋅-+a a a a a a ··········································· (7分) =1112-+--a a a ······································································· (1分) =11--a a·············································································· (1分)=1-. ················································································ (1分) 20.解:由方程①得1+=x y , ③ ························································ (1分)将③代入②,得02)1(22=-+-x x x , ·········································· (1分)整理,得022=--x x , ······························································ (2分) 解得1221x x ==-,, ·································································· (3分) 分别将1221x x ==-,代入③,得1230y y ==,, ·························· (2分)所以,原方程组的解为1123x y =⎧⎨=⎩,;2210.x y =-⎧⎨=⎩,····································· (1分) 21.解:(1) 过点A 作BC AE ⊥,垂足为E . ··········································· (1分)在Rt △ABE 中,∵︒=∠60B ,8=AB , ∴460cos 8cos =︒⨯=⋅=B AB BE , ·············································· (1 分)3460sin 8sin =︒⨯=⋅=B AB AE . ·················································· (1分)∵12=BC ,∴8=EC . ······························································· (1 分) 在Rt △AEC 中,23834tan ===∠EC AE ACB . ··································· (1分) (2) 在梯形ABCD 中,∵DC AB =,︒=∠60B ,∴︒=∠=∠60B DCB . ········································································ (1分) 过点D 作BC DF ⊥,垂足为F ,∵︒=∠=∠90AEC DFC ,∴DF AE //. ∵BC AD //,∴四边形AEFD 是平行四边形.∴EF AD =. ···················· (1分) 在Rt △DCF 中, 460cos 8cos =︒⨯=∠⋅=DCF DC FC , ···················· (1分) ∴4=-=FC EC EF .∴4=AD .∵M 、N 分别是AB 、DC 的中点,∴821242=+=+=BC AD MN . ······· (2分)22.(1) %20; ················································································· (2分) (2) 6; ··················································································· (3分) (3) %35; ················································································ (2分) (4) 5. ······················································································ (3分)23.(1) 证明:OFE OEF ∠=∠ ,∴OF OE =. ··································································· (1分) ∵E 为OB 的中点,F 为OC 的中点, ∴OE OB 2=,OF OC 2=. ············································· (1分) ∴OC OB =. ··································································· (1分) ∵D A ∠=∠,DOC AOB ∠=∠,∴△AOB ≌△DOC . ························································ (2分) DC AB =∴. ··································································· (1分) (2) 真; ························································································ (3分) 假. ··························································································· (3分)24.解:(1) ∵点A 的坐标为(10),,点B 与点A 关于原点对称,∴点B 的坐标为(10)-,. ································································· (1分) ∵直线b x y +=经过点B ,∴01=+-b ,得1=b . ··························· (1分) ∵点C 的坐标为(04),,直线x CM //轴,∴设点D 的坐标为(4)x ,. ······· (1分) ∵直线1+=x y 与直线CM 相交于点D ,∴3=x .∴D 的坐标为(34),.…(1分)(2) ∵D 的坐标为(34),,∴5=OD . ··············································· (1分) 当5==OD PD 时,点P 的坐标为(60),; ····································· (1分) 当5==OD PO 时,点P 的坐标为(50),, ····································· (1分) 当PD PO = 时,设点P 的坐标为(0)x ,)0(>x ,∴224)3(+-=x x ,得625=x ,∴点P 的坐标为25(0)6,. ··········· (1分) 综上所述,所求点P 的坐标是(60),、(50),或25(0)6,. (3) 当以PD 为半径的圆P 与圆O 外切时, 若点P 的坐标为(60),,则圆P 的半径5=PD ,圆心距6=PO , ∴圆O 的半径1=r . ····································································· (2分) 若点P 的坐标为(50),,则圆P 的半径52=PD ,圆心距5=PO ,∴圆O 的半径525-=r . ·························································· (2分) 综上所述,所求圆O 的半径等于1或525-.25.解:(1) ∵BC AD //, ∴DBC ADB ∠=∠.∵2==AB AD ,∴ADB ABD ∠=∠.∴ABD DBC ∠=∠. ∵︒=∠90ABC .∴︒=∠45PBC . ················································ (1分)∵ABADPC PQ =,AB AD =,点Q 与点B 重合,∴PC PQ PB ==. ∴︒=∠=∠45PBC PCB . ······························································ (1分)∴︒=∠90BPC . ········································································· (1分)在Rt △BPC 中,22345cos 3cos =︒⨯=⋅=C BC PC . ···················· (1分) (2) 过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F . ···················· (1分)∴︒=∠=∠=∠90BEP FBE PFB .∴四边形FBEP 是矩形. ∴BC PF //,BF PE =.∵BC AD //,∴AD PF //.∴ABADBF PF =. ∵23=AD ,2=AB ,∴43=PE PF . ················································ (1分) ∵x QB AB AQ -=-=2,3=BC ,∴22APQ x S PF -=△,32PBC S PE =△.∴42x S S PBC APQ -=∆∆,即42x y -= . ················································· (2分) 函数的定义域是0≤x ≤87. ··························································· (1分)(3) 过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .易得四边形PNBM 为矩形,∴BC PN //,BN PM =,︒=∠90MPN .∵BC AD //,∴AD PN //.∴AB AD BN PN =.∴ABADPM PN =. ·············· (1分) ∵AB AD PC PQ =,∴PCPQ PM PN =. ······················································ (1分) 又∵︒=∠=∠90PNQ PMC ,∴Rt △PCM ∽Rt △PQN . ··············· (1分) ∴QPN CPM ∠=∠. ··································································· (1分) ∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC . ········································································· (1分)文档说明(Word文档可以删除这部分)专注于精品小学试卷教案合同协议施工组织设计、期中、期末等测试文档解放你双手,时间就是生命,工作之外我们应该拥有更多享受生活的时间,本文档目的是为了节省读者的工作时间,提高读者的工作效率,读者可以放心下载文档进行编辑使用.文档来源网络,由于文档太多,审核有可能疏忽,如果有错误或侵权,请联系本店马上删除。
高中自主招生练习卷数学试卷考生注意:1.本试卷共18题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、填空题(41分,第1~5题每题3分,第6~7题每题8分,第8题10分)1.32++-=x x y 的最小值是.2.不等式0232≥++bx x 的解是全体实数,则b 的取值范围是.3.如图,梯形ABCD 中,DC ∥AB ,DC =3cm ,AB =6cm ,且MN ∥PQ ∥AB ,DM =MP =PA ,则MN =cm ,PQ =cm.4.已知关于x 的不等式122++mx mx >0的解是一切实数,则m 的取值范围为___________.5.已知关于x 的方程111112-=--+-x mx x x 有两个不相等的实数根,则m 的取值范围是.6.若多项式b x x -+1732分解因式的结果中有一个因式为4+x ,则b 的值为.7.若y x ,为正实数,且4=+y x ,则4122+++y x 的最小值为.8.对任意A 中任取两个元素x ,y ,定义运算x*y =ax+by+cxy ,其中a ,b ,c 是常数,等式右边的运算是通常的加法和乘法运算.已知1*2=3,2*3=4,并且集合A 中存在一个非零常数m ,使得对任意x ,都有x*m =x ,则称m 是集合A 的“钉子”.集合A ={x|0≤x ≤4}的“钉子”为.二、简答题(共109分)9.(8分)已知实数a ,b 满足122=b a +,0>ab ,求2211a b b a -+-的值.10.(8分)已知集合A ={0,1},B ={a 2,2a },其中a ∈R ,我们把集合{x |x =D C MP N Q ABx 1+x 2,x 1∈A ,x 2∈B },记作A ×B ,若集合A ×B 中的最大元素是2a +1,求a 的取值范围.11.(8分)设f x ax bx ()=+2,且112214≤-≤≤≤f f ()(),,求f ()-2的取值范围。
上海自招数学专题02 绝对值考点点拨典例精选1.(新编)若x、y、z为整数,且|x﹣y|2019+|z﹣x|2021=1,则|z﹣x|+|x﹣y|+|y﹣z|的值为()A.2 B.1 C.0 D.3【点拨】由于x,y,z为整数,且|x﹣y|2019+|z﹣x|2021=1,则|x﹣y|2019和|z﹣x|2021=1必须一项为0,一项为1.依此得出x,y,z之间的关系,从而求解.【解析】解:∵x,y,z为整数,且|x﹣y|2019+|z﹣x|2021=1,|x ﹣y |2019和|z ﹣x |2021=1必须一项为0,一项为1.假设x ﹣y =0,|z ﹣x |=1,所以x =y ,所以|z ﹣y |=1.原式=1+0+1=2;假设x ﹣y =1,|z ﹣x |=0,所以x =z ,所以|x ﹣y |=1,|y ﹣x |=1,原式=0+1+1=2.故选:A .【点睛】本题考查了有理数的乘方和绝对值的性质,由x ,y ,z 为整数,和已知条件得出|x ﹣y |2019和|z ﹣x |2021必须一项为0,一项为1是解题的关键.2.(新编)如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .6【点拨】若s 为定值,则化简后x 的系数为0,由此可判定出x 的取值范围,然后再根据绝对值的性质进行化简.【解析】解:∵s 为定值,∴s 的表达式化简后x 的系数为0,由于2+3=5,∴x 的取值范围是:2﹣3x ≥0且2﹣5x ≤0,即25≤x ≤23,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.【点睛】本题考查了绝对值的知识,能够根据s为常数的条件判断出x的取值范围是解答此题的关键.3.(南充自主招生)当式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1999|取得最小值时,实数x的值是()A.1 B.999 C.1000 D.1999【点拨】观察已知条件可以发现,|x﹣a|表示x到a的距离.要使题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.【解析】解:由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到1999的距离时,式子取得最小值.所以当x=1+19992=1000时,式子取得最小值.故选:C.【点睛】本题考查了绝对值,做此题需要一定的技巧,要结合绝对值的定义来考虑.另外还要知道,当x与最小数和最大数距离相等时,式子才能取得最小值.4.(郫县校级自主招生)如果对于某一特定范围内的x的任意允许值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|为定值,则此定值是()A.20 B.30 C.40 D.50【点拨】若P为定值,则化简后x的系数为0,由此可判定出x的取值范围,然后再根据绝对值的性质进行化简.【解析】解:∵P=|10﹣2x|+|10﹣3x|+|10﹣4x|+…+|10﹣10x|为定值,∴求和后,P最后结果不含x,亦即x的系数为0.∵2+3+4+5+6+7=8+9+10.∴x的取值范围是:10﹣7x≥0且10﹣8x≤0或10﹣7x≤0且10﹣8x≥0解得:54≤x ≤107; ∴P =(10﹣2x )+(10﹣3x )+…+(10﹣7x )﹣(10﹣8x )﹣(10﹣9x )﹣(10﹣10x )=60﹣30=30. 故选:B .【点睛】此题主要考查了绝对值的性质,利用已知得出P 的表达式化简后x 的系数为0进而求出是解题关键.5.(怀柔区期末)a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .0 【点拨】根据绝对值的性质求得符合题意的整数,再得出它们的和,即可得出结论.【解析】解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .【点睛】本题考查了绝对值,能求出符合的所有整数是解此题的关键.6.(徐汇区校级自主招生)设x 、y 、z 为整数且满足|x ﹣y |2012+|y ﹣z |2013=1,则代数式|x ﹣y |3+|y ﹣z |3+|z ﹣x |3的值为 2 .【点拨】根据x 、y 、z 为整数,则x ﹣y 和y ﹣z 都是整数而|x ﹣y |和y ﹣z |都≥0,故|x ﹣y |2012和|y ﹣z |2013都是非负的整数,只能是|x ﹣y |=1,|y ﹣z |=0或者|x ﹣y |=0,|y ﹣z |=1,进而得出即可.【解析】解:∵x 、y 、z 为整数,∴x ﹣y 和y ﹣z 都是整数∵|x﹣y|和y﹣z|都≥0,∴|x﹣y|2012和|y﹣z|2013都是非负的整数,∴只能是|x﹣y|=1,|y﹣z|=0或者|x﹣y|=0,|y﹣z|=1,当|x﹣y|=1,|y﹣z|=0,∴y=z,∴z﹣x=y﹣x,∴|x﹣y|+|y﹣z|+|z﹣x|=2,∴|x﹣y|3+|y﹣z|3+|z﹣x|3=2,当|x﹣y|=0,|y﹣z|=1,∴x=y,z﹣x=z﹣y,∴|x﹣y|+|y﹣z|+|z﹣x|=2,∴|x﹣y|3+|y﹣z|3+|z﹣x|3=2.故答案为:2.【点睛】此题主要考查了绝对值的应用,根据题意得出|x﹣y|=1,|y﹣z|=0或者|x﹣y|=0,|y﹣z|=1进而求出是解题关键.7.(乐清市校级月考)已知实数a、b满足|a+2|+|1﹣a|=9﹣|b﹣5|﹣|1+b|,设a+b的最大值为m,最小值为n,则m+n的值为3.【点拨】原式化为|a+2|+|a﹣1|+|b+1|+|b﹣5|=9,a分三种情况讨论:a≤﹣2,﹣2<a<1,a≥1;b也是分三种情况:b≤﹣1,﹣1<b<5,b≥5,分情况讨论,一共9种情况,最后得出a+b最大可取6,最小为﹣3,因此m+n=3.【解析】解:原式化为:|a+2|+|a﹣1|+|b+1|+|b﹣5|=9,a分三种情况讨论:a≤﹣2,﹣2<a<1,a≥1当a≤﹣2时,|a+2|+|a﹣1|=﹣2a﹣1;当﹣2<a<1时,|a+2|+|a﹣1|=3;当a≥1时,|a+2|+|a﹣1|=2a+1;b也是分三种情况:b≤﹣1,﹣1<b<5,b≥5 |b+1|+|b﹣5|=﹣2b+4或6 或2b﹣4,分情况讨论,一共9种情况,①当a≤﹣2,b≤﹣1时,﹣2a﹣1﹣2b+4=9,∴a+b=﹣3;②当a≤﹣2,﹣1<b<5时,﹣2a﹣1+6=9,∴a=﹣2,∴a+b最大值小于3,最小值大于﹣3;③当a≤﹣2,b≥5时,﹣2a﹣1+2b﹣4=9,∴a﹣b=﹣7,∴a+b最大值为3;④当﹣2<a<1,b≤﹣1时,3﹣2b+4=9,∴b=﹣1,∴a+b最大值小于0,最小值大于﹣3;⑤当﹣2<a<1,﹣1<b<5时,3+6=9,∴a+b最大值小于6,最小值大于﹣3;⑥当﹣2<a<1,b≥5时,3+2b﹣4=9,∴b=5,∴a +b 最大值为6,最小值大于3;⑦当a ≥1,b ≤﹣1时,2a +1﹣2b +4=9,∴a ﹣b =2,∴a +b 最大值小于0,最小值大于﹣2;⑧当a ≥1,b ≤﹣1时,2a +1+6=9,∴a =32,∴a +b 最大值12,没有最小值; ⑨当a ≥1,b ≤﹣1时,2a +1+2b ﹣4=9,∴a +b =6;最后得出a +b 最大可取6,最小为﹣3,因此m +n =3.故答案为:3.【点睛】本题主要考查了绝对值的知识点,解答本题的关键是分类讨论得出a +b 的最大值和最小值.8.(新编)将7个1,3个0共10个数任意分成两组(每组中个数比不一定相同).第一组数的平均值为a ,第二组数的平均值为b ,|a ﹣b |的最小值为 121 .【点拨】根据题意得出所有数据的总平均值为0.7,进而得出当a =57,b =23两数最接近0.7,即可得出,|a ﹣b |的最小值.【解析】解:∵将7个1,3个0共10个数任意分成两组(每组中个数比不一定相同),第一组数的平均值为a ,第二组数的平均值为b ,|∴要使,|a ﹣b |最小,只有两数最接近时,则其差的绝对值最小,∵(1×7+0×3)÷10=0.7,∴只有两数都最接近0.7时,其差的绝对值最小,∴当5个1,2个0组合,2个1和1个0组合,此时a=57,b=23两数最接近0.7,∴|a﹣b|的最小值为:|a﹣b|=57−23=121,故答案为:121.【点睛】此题主要考查了绝对值,根据题意得出当两数最接近总平均值是其绝对值最小进而求出是解题关键.9.(武侯区校级自主招生)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.【点拨】(1)利用数轴的特点和函数y=|x﹣1|+|x﹣3|的最小值的几何意义即可;(2)借助(1)的结论即可得出x=2时,求出y的最小值即可;(3)借助(1)(2)结论分n为偶数和奇数分类讨论求出即可,(4)借助(3)的结论,类比出结论,即可求出.【解析】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x−n2|+|x﹣(n 2+1)|), 由(1)知,当n 2<x <n 2+1时,|x ﹣1|+|x ﹣n |有最小值n ﹣1,|x ﹣2|+|x ﹣(n ﹣1)|有最小值(n ﹣1)﹣2=n ﹣3,…|x −n 2|+|x ﹣(n 2+1)|有最小值1,∴当n 2<x <n 2+1时,y min =1+3+5+…+(n ﹣3)+(n ﹣1)=n 24, 当n 为奇数时,y =|x ﹣1|+|x ﹣2|+…+|x ﹣n |=(|x ﹣1|+|x ﹣n |)+(|x ﹣2|+|x ﹣(n ﹣1)|)+…+(|x −n−12|+|x ﹣(n+12+1)|)+|x −n+12|, 由(1)知,当x =n+12时, |x ﹣1|+|x ﹣n |有最小值n ﹣1,|x ﹣2|+|x ﹣(n ﹣1)|有最小值(n ﹣1)﹣2=n ﹣3,…|x −n 2|+|x ﹣(n 2+1)|有最小值1,|x −n+12|的最小值为0,∴当x =n+12时,ymin =0+2+4+…+(n ﹣3)+(n ﹣1)=n 2−14, (4)类似(3)的做法可知,y =|x ﹣a 1|+|x ﹣a 2|+…+|x ﹣a n |,如果n 为偶数时,当a n 2<x <a n 2+1时,y 有最小值, 如果n 为奇数时,当x =a n+12时,y 有最小值;∵y =|x ﹣1|+|2x ﹣1|+…+|8x ﹣1|+|9x ﹣1|=|x −19|+⋯+|x −19|9个+|x −18|+⋯+|x −18|8个+⋯+|x −12|+|x −12|2个+|x ﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x =17时,ymin =|17−1|+|27−1|+…+|87−1|+|97−1|=247 【点睛】此题是绝对值题目,主要考查了绝对值的几何意义和两个绝对值的和的几何意义,分类讨论思想,解本题的关键是找出规律,运用规律.是一道难度比较大竞赛题.10.(渝中区校级一模)认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为|a ﹣b |.问题(1):点A 、B 、C 在数轴上分别表示有理数x 、﹣2、1,那么A 到B 的距离与A 到C 的距离之和可表示为 |x +2|+|x ﹣1| (用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x ﹣3|+|x +1|=6的x 的所有值是 ﹣2,4 ,②设|x ﹣3|+|x +1|=p ,当x 的值取在不小于﹣1且不大于3的范围时,p 的值是不变的,而且是p 的最小值,这个最小值是 4 ;当x 的值取在 不小于0且不大于2 的范围时,|x |+|x ﹣2|的最小值是 2 .问题(3):求|x ﹣3|+|x ﹣2|+|x +1|的最小值以及此时x 的值.问题(4):若|x ﹣3|+|x ﹣2|+|x |+|x +1|≥a 对任意的实数x 都成立,求a 的取值.【点拨】问题(1)根据两点间的距离公式,可得答案;问题(2)根据两点间的距离公式,点在线段上,可得最小值;问题(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;问题(4)根据两点间的距离公式,点在线段上,可得答案.【解析】解:问题(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;问题(2)①﹣2、4,②4;不小于0且不大于2,2;问题(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;问题(4)|x﹣3|+|x﹣2|+|x|+|x+1|=(|x﹣3|+|x+1|)+(|x﹣2|+|x|)要使|x﹣3|+|x+1|的值最小,x的值取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|+|x1|的值最小,x取0到2之间(包括0、2)的任意一个数,显然当x取0到2之间(包括0、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x|+|x+1|=3+2+0+1=6方法二:当x取在0到2之间(包括0、2)时,|x﹣3|+|x﹣2|+|x|+|x+1|=﹣(x﹣3)﹣(x﹣2)+x+(x+1)=﹣x+3﹣x+2+x+x+1=6.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2.【点睛】本题考查了绝对值,读懂题目信息,理解绝对值的几何意义是解题的关键.精准预测1.如果实数a满足:﹣2014<a<0,则|x﹣a|+|x+2014|+|x﹣a+2014|的最小值是()A.2014 B.a+2014 C.4028 D.a+4028【点拨】首先根据﹣2014<a<0,得到a﹣2014<﹣2014<a,然后分当x<a﹣2014时;当a﹣2014≤x<﹣2014时;当﹣2014≤x<a时;当a≤x时;四种情况去掉绝对值后求得最小值即可.【解析】解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.【点睛】本题考查绝对值的知识,解题的关键是能够根据题意的已知条件确定分类讨论的范围,难度中等偏上.2.式子|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值是()A.2 B.4 C.6 D.8【点拨】分x≤2、2<x≤4、4<x≤8以及x>8四种情况考虑,消去绝对值符号,根据一次函数的性质找出每段|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的取值范围,由此即可得出结论.【解析】解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.【点睛】本题考查了绝对值,解题的关键是根据(x﹣2)(x﹣4)(x﹣8)=0确定将x分四段来考虑.3.化简|−√2|的结果是()A.−√2B.√2C.√2D.2【点拨】根据负数的绝对值是它的相反数即可求解.【解析】解:化简|−√2|的结果是√2.故选:C.【点睛】考查了绝对值,关键是熟练掌握绝对值的性质.4.绝对值小于5.4的整数和为()A.0 B.5 C.﹣5 D.﹣6【点拨】绝对值小于5.4的整数即为绝对值分别等于5、4、3、2、1、0的整数,再把它们相加即可求解.【解析】解:小于4的整数绝对值有0,1,2,3,4,5.∵互为相反数的两个数的绝对值相等,∴绝对值小于4的整数是0,±1,±2,±3,±4,±5,故绝对值小于5.4的整数和为0.故选:A.【点睛】考查了绝对值,本题应注意掌握互为相反数的两个数的绝对值相等,难度适中.5.已知100个整数a1,a2,a3,…,a100满足下列条件:a1=1,a2=﹣|a1+1|,a3=﹣|a2+1|,……a100=﹣|a99+1|,则a1+a2+a3+…+a100=()A.0 B.﹣50 C.100 D.﹣100【点拨】根据题意,可以分别求得这列数的各项的数值,从而可以求得从a3开始2个一循环,本题得以解决.【解析】解:∵a1=1,a2=﹣|a1+1|,a3=﹣|a2+1|,……a100=﹣|a99+1|,∴a2=﹣2,a3=﹣1,a4=0,a5=﹣1,a6=0,a7=﹣1,……,a100=0,∴从a3开始2个一循环,∴a1+a2+a3+…+a100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B.【点睛】考查了绝对值,规律型:数字的变化类,关键是得到这列数从a3开始2个一循环的规律.6.已知a、b、c≠0,且a|a|+b|b|+c|c|+abc|abc|的最大值为m,最小值为n,则2019(m+n+1)=2019.【点拨】分别利用①a,b,c都大于0,②a,b,c都小于0,③a,b,c,一负两正,④a,b,c,一正两负进而分析得出即可.【解析】解:∵a,b,c都不等于0,∴有以下情况:①a,b,c都大于0,原式=1+1+1+1=4;②a,b,c都小于0,原式=﹣1﹣1﹣1﹣1=﹣4;③a,b,c,一负两正,不妨设a<0,b>0,c>0,原式=﹣1+1+1﹣1=0;④a,b,c,一正两负,不妨设a>0,b<0,c<0,原式=1﹣1﹣1+1=0;∴m=4,n=﹣4,∴2019m+n+1=20194﹣4+1=2019.故答案为:2019.【点睛】此题主要考查了绝对值的性质,利用分类讨论得出是解题关键.7.|x+1|+|x+2|+|x+3|+…+|x+2014|的最小值为1024144.【点拨】研究|x+1|+|x+2|+|x+3|+…+|x+2014|的最小值,利用当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.从而得出对于|x+1|+|x+2|+|x+3|+…+|x+2014|,当x=﹣1012或﹣1013时取得最小值.【解析】解:由绝对值的几何意义可知,当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.因此,对于函数|x+1|+|x+2|+|x+3|+…+|x+2014|,当x=﹣1012或﹣1013时,取得最小值为:1011+1010+…+0+1+2+1012=1011×(1+1011)+1012=1024144.故答案为:1024144.【点睛】本小题主要考查带绝对值的函数、函数的最值等基础知识,考查运算求解能力,归纳能力.属于基础题.8.已知数x、y满足|x+7|+|1﹣x|=19﹣|y﹣10|﹣|1+y|,则x+y的最小值为﹣8,最大值为11.【点拨】先移项可得|x+7|+|1﹣x|+|y﹣10|+|1+y|=19,根据线段上的点与线段两端点的距离的和最小,可得答案.【解析】解:原式变形为:|x+7|+|1﹣x|+|y﹣10|+|1+y|=19,所以,要使等式满足,可得:﹣7≤x≤1,﹣1≤y≤10,所以x+y的最小值是﹣8,最大值是11.故答案为:﹣8,11.【点睛】此题主要考查了绝对值,正确利用绝对值的性质得出x,y的取值范围是解题关键.9.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应的点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1与数x2对应的点之间的距离;例1.解方程|x|=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x﹣1|>2.在数轴上找出|x﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x 对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为x=1或x=﹣7;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.【点拨】(1)利用在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7求解即可;(2)先求出|x﹣3|=5的解,再求|x﹣3|≥5的解集即可;(3)先在数轴上找出|x﹣3|+|x+4|=9的解,即可得出不等式|x﹣3|+|x+4|≥9的解集.【解析】解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.【点睛】本题主要考查了绝对值及不等式的知识,解题的关键是理解|x1﹣x2|表示在数轴上数x1与数x2对应的点之间的距离.10.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是4,数轴上表示1和﹣4的两点之间的距离是5.②数轴上表示x和﹣3的两点之间的距离表示为|x+3|.数轴上表示x和6的两点之间的距离表示为|x﹣6|.③若x表示一个有理数,则|x﹣1|+|x+4|的最小值=5.④若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的是﹣1或0或1或2或3.⑤若x表示一个有理数,当x为3,式子|x+2|+|x﹣3|+|x﹣4|有最小值为6.【点拨】①数轴上两点间的距离等于两个数的差的绝对值;②数轴上两点间的距离等于两个数的差的绝对值;③根据绝对值几何意义即可得出结论.④分情况讨论计算即可得出结论;⑤|x+2|+|x﹣3|+|x﹣4|表示数轴上某点到表示﹣2、3、4三点的距离之和,【解析】解:①数轴上表示2和6两点之间的距离是|6﹣2|=4,数轴上表示1和﹣4的两点之间的距离是|1﹣(﹣4)|=5;故答案为:4,5;②数轴上表示x和﹣3的两点之间的距离表示为|x﹣(﹣3)|=|x+3|,数轴上表示x和6的两点之间的距离表示为|x﹣6|;故答案为:|x+3|,|x﹣6|;③根据绝对值的定义有:|x﹣1|+|x+4|可表示为点x到1与﹣4两点距离之和,根据几何意义分析可知:当x在﹣4与1之间时,|x﹣1|+|x+4|有最小值5,故答案为:5;④当x<﹣1时,|x+1|+|x﹣3|=﹣x﹣1+3﹣x=﹣2x+2=4,解得:x=﹣1,此时不符合x<﹣1,舍去;当﹣1≤x≤3时,|x+1|+|x﹣3|=x+1+3﹣x=4,此时x=﹣1或x=0,x=1,x=2,x=3;当x>3时,|x+1|+|x﹣3|=x+1+x﹣3=2x﹣2=4,解得:x=3,此时不符合x>3,舍去;故答案为:﹣1或0或1或2或3;⑤:∵可看作是数轴上表示x的点到﹣2、3、4三点的距离之和,∴当x=3时,|x+2|+|x﹣3|+|x﹣4|有最小值.∴|x+2|+|x﹣3|+|x﹣4|的最小值=|3+2|+|3﹣3|+|3﹣4|=6.故答案为3,6.【点睛】此题是绝对值题目,主要考查的是绝对值的应用,明确|x+2|+|x﹣3|+|x﹣4|的几何意义是解题的关键.。
第02讲实数及其运算
挑战自我
例1.
<,求证:
例2 若,a b是两个有理数且a b
(1)一定存在一个有理数x,满足a x b
<<;
(2)一定存在一个无理数y,满足a y b
<<.
例3有理数,c d
c+,c d的值.
例4 是否存在实数x,使得tan x+cot x+
超越自我
例5 求证:若,r s 是有理数且0r ≠,α是无理数,则r s α+是无理数.
例6假设所有的形如m +,m n 是整数)的数组成一个集合,记作A ,证明:集合A 对实数中的乘法运算
是封闭的.
例7对于任意的两个实数,x y ,规定运算⊕:y ax y xy x b ⊕=++,(,a b 为常数),判断运算⊕是否满足交换律.
例8 定义[x ]表示不超过x 的最大整数.设α=
,则[16α]的值.
例9设
12,x x 是方程20x px q ++=的两个有理根,已知1221x x -++,求实数,p q 的值.
例10已知,,a b c +.
自主训练
1.
2、若记号“*”表示求两个实数a 与b 的算术平均数的运算,即2a b a b +*=.请写出一个等式,其中含有运算符合“*”和“+”,且对任意3个实数,,a b c 都能成立.
3、(1)有理数集合对于除法运算(分母不为零)是否封闭,并说明理由;
(2)无理数集合对于乘法运算是否封闭,并说明理由.
4、规定实数的∇运算:()()
a b a b a b b a a b -≤⎧∇=⎨
->⎩,请证明在实数内∇运算满足交换律.
5、所有的形如“
m -(,m n 为正整数)”的数组成一个集合,记作A.判断:集合A 对实数的乘法运算是否封闭?
6、已知,x y 为实数,规定4x y xy ⊕=.
(1)若2240,x x x ⊕+⊕-⊕=,求x 的值;
(2)若不论x 是什么数,总有a x x ⊕=,求a 的值.
7、定义[x ]表示不超过x 的最大整数.已知01a <<,且1229[][][]18303030
a a a +++++=.求[10]a 的值.
8、若,a b 是有理数,关于x 的方程
320x ax ax b +-+=,a b 的值.
9、设,a b 是正有理数,且满足
0a b ++,求,a b 的值.
10
b ,求4321237620b b b b +++-的值.
11
,,a x y .。