2018年浙江省绍兴市中考数学试卷及答案解析版
- 格式:pdf
- 大小:588.92 KB
- 文档页数:20
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1. 如果向东走记为,则向西走可记为()A. B. C. D.【答案】C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.【点评】考查了相反意义的量,相反意义的量用正数和负数来表示.2. 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将116000000用科学记数法表示为:.故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】D【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.考点:简单组合体的三视图.4. 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.【答案】A【解析】【分析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5. 下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【答案】C【解析】【分析】根据完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方进行选择即可.【解答】①.故错误.②.故错误.③.正确.④故错误.故选C.【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.6. 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小【答案】A【解析】【分析】根据一次函数的图象对各项分析判断即可.【解答】观察图象可知:A. 当时,图象呈上升趋势,随的增大而增大,正确.B. 当时,图象呈上升趋势,随的增大而减小, 故错误.C. 当时,随的增大而减小,当时,随的增大而增大,故错误.D. 当时,随的增大而减小,当时,随的增大而增大,故错误.故选A.【点评】考查一次函数的图象与性质,读懂图象是解题的关键.7. 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.【答案】C【解析】【分析】根据相似三角形的判定定理可得△AOB∽△COD,根据相似三角形的性质计算即可.【解答】,,△AOB∽△COD,即解得:故选C.【点评】考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.8. 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【答案】B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【解答】A. 第一行数字从左到右依次为1,0,1,0,序号为,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为,表示该生为9班学生.D. 第一行数字从左到右依次为0,1,1,1,序号为,表示该生为7班学生.故选B.【点评】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.9. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. B. C. D.【答案】B【解析】【分析】根据抛物线与轴两个交点间的距离为2,对称轴为直线,求得抛物线与轴两个交点分别为用待定系数法求出抛物线的解析式,根据平移规律求得平移后的抛物线解析式,再把点的坐标代入进行验证即可.【解答】抛物线与轴两个交点间的距离为2,对称轴为直线,可知抛物线与轴两个交点分别为代入得:解得:抛物线的方程为:将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:即当时,抛物线过点.故选B.【点评】考查待定系数法求二次函数解析式,二次函数的图形与性质,以及平移规律.掌握待定系数法求二次函数解析式是解题的关键.10. 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【答案】D【解析】【分析】每张作品都要钉在墙上,要用4个图钉,相邻的可以用同一个图钉钉住两个角或者四个角,相邻的越多,用的图钉越少,把这些作品摆成长方形,使四周的最少.【解答】A. 最少需要图钉枚.B. 最少需要图钉枚.C. 最少需要图钉枚.D. 最少需要图钉枚.还剩余枚图钉.故选D.【点评】考查学生的空间想象能力以及动手操作能力,通过这道题使学生掌握空间想象能力和动手能力,并且让学生能够独立完成类似问题的解决.二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:__________.【答案】【解析】【分析】根据平方差公式直接进行因式分解即可.【解答】原式故答案为:【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法.12. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.【答案】 (1). 20 (2). 15【解析】【分析】设索长为尺,竿子长为尺.根据题目中的等量关系列方程组求解即可.【解答】设索长为尺,竿子长为尺.根据题意得:解得:故答案为:20,15.【点评】考查二元一次方程组的应用,解题的关键是找到题目中的等量关系.13. 如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)【答案】15【解析】【分析】过O作OC⊥AB于C,分别计算出弦AB的长和弧AB的长即可求解.【解答】过O作OC⊥AB于C,如图,∴AC=BC,∵∴∴∴∴又∵弧AB的长=米步.故答案为:15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.易证≌,同理:≌,故答案为:或【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 15. 过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.【答案】12或4【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:故答案为:12或4.【点评】考查反比例函数图象上点的坐标特征,注意数形结合思想在数学中的应用.16. 实验室里有一个水平放置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点的三条棱的长分别是,,,当铁块的顶部高出水面时,,满足的关系式是__________.【答案】或【解析】【分析】根据长方体实心铁块的放置情况可以分两种情况进行讨论.根据铁块的顶部高出现在水面,列出函数关系式.【解答】当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,整理得:.当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,整理得:.故答案为:或【点评】考查函数关系式的建立,解题的关键是找到题目中的等量关系.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17. (1)计算:.(2)解方程:.【答案】(1)2;(2),.【解析】【分析】根据实数的运算法则直接进行运算即可.用公式法直接解方程即可.【解答】(1)原式.(2),,.【点评】本题主要考查了实数的综合运算能力以及解一元二次方程,是各地中考题中常见的计算题型.解决实数的综合运算题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18. 为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法. 【答案】(1)3.40万辆.人民路路口的堵车次数平均数为120次;学校门口的堵车次数平均数为100次;(2)见解析.【解析】【分析】(1)观察图象,即可得出写出2016年机动车的拥有量,根据平均数的计算方法计算计算2010年~2017年在人民路路口和学校门口堵车次数的平均数即可.(2)言之有理即可.【解答】(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低. 【点评】考查了折线统计图和条形统计图,根据折线统计图和条形统计图得出解题所需的数据是解题的关键.19. 一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【答案】(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数解析式,再代入进行运算即可.【解答】(1)汽车行驶400千米,剩余油量30升,即加满油时,油量为70升.(2)设,把点,坐标分别代入得,,∴,当时,,即已行驶的路程为650千米.【点评】考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.20. 学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1),,.(2),,.【答案】(1)绘制线段,;(2)绘制抛物线.【解析】【分析】(1),,,绘制线段,.(2),,,,绘制抛物线,用待定系数法求函数解析式即可.【解答】(1)∵,,,∴绘制线段,.(2)∵,,,,∴绘制抛物线,设,把点坐标代入得,∴,即.【点评】属于新定义问题,考查待定系数法求二次函数解析式,解题的关键是弄懂程序框图.21. 如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块可以左右滑动,支点,,始终在一直线上,延长交于点.已知,,.(1)窗扇完全打开,张角,求此时窗扇与窗框的夹角的度数.(2)窗扇部分打开,张角,求此时点,之间的距离(精确到).(参考数据:,)【答案】(1);(2).【解析】【分析】(1)根据两组对边分别平行的四边形是平行四边形得出四边形ACDE是平行四边形,根据平行四边形的对边平行得出CA∥DE,根据二直线平行,同位角相等得出答案;(2)如图,过点作于点,根据锐角三角函数进行求解即可.【解答】(1)∵,,∴四边形是平行四边形,∴,∴.(2)如图,过点作于点,∵,∴,,∵,,∴,在中,,∴.【点评】考查平行四边形的判定与性质,平行线的判定与性质,解直角三角形等,注意辅助线的作法. 22. 数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.【答案】(1)或或;(2)当且,有三个不同的度数.【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【解答】(1)当为顶角,则,当为底角,若为顶角,则,若为底角,则,∴或或.(2)分两种情况:①当时,只能为顶角,∴的度数只有一个.②当时,若为顶角,则,若为底角,则或,当且且,即时,有三个不同的度数.综上①②,当且,有三个不同的度数.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.23. 小敏思考解决如下问题:原题:如图1,点,分别在菱形的边,上,,求证:.(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)证明见解析;(2)证明见解析;(3)见解析【解析】【分析】(1)证明,即可求证.(2)如图2,,即可求证.(3)不唯一.【解答】(1)如图1,在菱形中,,,,∵,∴,∴,∵,∴,∴,,∴,∴.(2)如图2,由(1),∵,∴,∵,,∴,∵,∴,∴.(3)不唯一,举例如下:层次1:①求的度数.答案:.②分别求,的度数.答案:.③求菱形的周长.答案:16.④分别求,,的长.答案:4,4,4.层次2:①求的值.答案:4.②求的值.答案:4.③求的值.答案:.层次3:①求四边形的面积.答案:.②求与的面积和.答案:.③求四边形周长的最小值.答案:.④求中点运动的路径长.答案:.【点评】考查菱形的性质,三角形全等的判定与性质等,熟练掌握全等三角形的判定方法是解题的关键.24. 如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到站、第一班下行车到站分别用时多少?(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.【答案】(1)第一班上行车到站用时小时,第一班下行车到站用时小时;(2)当时,,当时,;(3)或.【解析】【分析】(1)根据速度=路程除以时间即可求出第一班上行车到站、第一班下行车到站的用时. (2)分当时和当时两种情况进行讨论.(3)由(2)知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,分当x=2.5时,当x<2.5时,当x>2.5时三种情况进行讨论。
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1. 如果向东走记为,则向西走可记为()A. B. C. D.2. 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()A. B. C. D.3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()学§科§网...学§科§网...A. B. C. D.4. 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.5. 下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④6. 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小7. 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.8. 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.9. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. B. C. D.10. 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:__________.12. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.13. 如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.15. 过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.16. 实验室里有一个水平放置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点的三条棱的长分别是,,,当铁块的顶部高出水面时,,满足的关系式是__________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17. (1)计算:.(2)解方程:.18. 为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19. 一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20. 学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1),,.(2),,.21. 如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块可以左右滑动,支点,,始终在一直线上,延长交于点.已知,,.(1)窗扇完全打开,张角,求此时窗扇与窗框的夹角的度数.(2)窗扇部分打开,张角,求此时点,之间的距离(精确到).(参考数据:,)22. 数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.23. 小敏思考解决如下问题:原题:如图1,点,分别在菱形的边,上,,求证:.(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24. 如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到站、第一班下行车到站分别用时多少?(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.。
---------------- 密★启用前 浙江省绍兴市、义乌市 2018 年初中毕业生学业考试数学_ --------------------____ __ __ _号 卷__ 生 ____ ___ __ 上 __ __ __ _ 答 __ __ _ 题 __ ABCD--------------------_ __考 __ __淤泥约 116 000 000 方,数字 116 000 000 用科学记数法可以表示为 ( )__ _ _ _ _ _ _ _ _ 名 __ 姓 _ _ _ __ __ __ 校 -------------绝在--------------------本试卷满分 150 分,考试时间 120 分钟.此 第Ⅰ卷(选择题 共 40 分)一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果向东走 2m 记为 +2m ,则向西走 3m 可记为 ( )A . +3mB . +2mC . -3mD . -2m--------------------2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省 2017 年清理河湖库塘A .1.16 ⨯109B .1.16 ⨯108C .1.16 ⨯107D . 0.116 ⨯1093.有 6 个相同的立方体搭成的几何体如图所示,则它的主视图是 ( )----------------------------------------学 4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字 1,2,3,4,5,6,则2 d .206B .C . 1D . 56.如图,一个函数的图象由射线 B A 、线段 BC 、射线 CD 组成,其中点 A(-1,2) , B(1,3),C(2,1) , D(6,5) ,则此函数 ( )A .当x < 1 时, y 随 x 的增大而增大B.当 x < 1 时, y 随 x 的增大而减小C.当 x > 1 时, y随 x 的增大而增大 D.当 x > 1 时, y 随 x 的增大而减小7. 学 校 门 口 的 栏 杆 如 图 所 示 , 栏 杆 从 水 平 位 置 BD 绕 O 点 旋 转 到 AC 位 置 , 已 知 AB ⊥ BD , CD ⊥ BD ,垂足分别为 B , D , AO = 4 m , AB = 1.6 m , CO = 1m ,则栏杆C 端应下降的垂直距离 CD 为( )A . 0.2 mB . 0.3 mC . 0.4 mD . 0.5 m8.利用如图 1 的二维码可以进行身份识别.某校建立了一个身份识别系统,图 2 是某个学生的识别图案,黑色小正方形表示 1,白色小正方形表示 0.将第一行数字从左到右依次记为 a , b , c , d , 那么可以转换为该生所在班级序号 , 其序号为a ⨯ 23 +b ⨯22 +c ⨯1 + ⨯如图 2 第一行数字从左到右依次为 0,1,0,1,序号为0 ⨯ 23 + 1⨯ 22 + 0 ⨯ 21 + 1⨯ 20 = 5 ,表示该生为 5 班学生.表示 6 班学生的识别图案是业毕朝上一面的数字为 2 的概率是 ( ) ( )无A .113 2 6--------------------5.下面是一位同学做的四道题:① (a + b )2 = a 2 + b 2 .② (-2a 2 )2 = -4a 4 .③ a 5 ÷ a 3 = a 2 .④ a 3 ⋅ a 4 = a 12 .其中做对的一道题的序号是()A .①B .②C .③D .④效数学试卷 第 1 页(共 22 页) 数学试卷 第 2 页(共 22 页)x (k >0) 的动点 A 作 AB ⊥ x 轴于点 B , P 是直线 AB 上的点 ,且满足AB C D9.若抛物线 y = x 2 + ax + b 与 x 轴两个交点间的距离为 2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线 x = 1 ,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,得到的抛物线过点()A . (-3, -6)B . (-3,0)C . (-3, -5)D . (-3,-1)10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合) .现需要在每张作品的四个角落都钉上图钉 ,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用 9 枚图钉将 4 张作品钉在墙上, 如图).若有 34 枚图钉可供选用,则最多可以展示绘画作品()A .16 张B .18 张C .20 张D .21 张第Ⅱ卷(非选择题 共 110 分)二、填空题(本大题共 6 小题,每小题 5 分,共 30 分.把答案填写在题中的横线上)11.因式分解: 4 x 2 - y 2 =.12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果 1 托为 5 尺,那么索长为尺,竿子长为尺.13. 如图 , 公园内有一个半径为20 米的圆形草坪 , A , B 是圆上的点 , O 为圆心 ,∠AOB = 120 ,从 A 到 B 只有路 AB ,一部分市民为走“捷径”,踩坏了花草,走出了一 条小路 AB .通过计算可知,这些市民其实仅仅少走了 步(假设 1 步为 0.5 米, 结果保留整数).(参考数据: 3 ≈ 1.732 , π 取 3.142)14. 等腰三角形 ABC 中 , 顶角 A 为 40 , 点 P 在以 A 为圆心 , BC 长为半径的圆上 , 且BP = BA ,则 ∠PBC 的度数为 .15.过双曲线 y = kAP = 2 AB ,过点 P 作 x 轴的平行线交此双曲线于点 C .如果 ∆APC 的面积为 8,则 k的值是 .16.实验室里有一个水平放置的长方体容器 ,从内部量得它的高是 15 cm ,底面的长是30 cm ,宽是 20 cm ,容器内的水深为 x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面 ) , 过顶点 A 的三条棱的长分别是 10 cm , 10 cm ,y cm( y ≤15) ,当铁块的顶部高出水面 2 cm 时, x , y 满足的关系式是 .三、解答题(本大题共 8 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 8 分)1(1)计算: 2tan60 - 12 - ( 3 - 2)0 + ( )-1 .3(2)解方程: x 2 - 2 x - 1 = 0 .数学试卷 第 3 页(共 22 页) 数学试卷 第 4 页(共 22 页)--------------------2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统 ____ ___ __ __ 名 __ 姓 _____ 答_ ___ __ _ __ _ --------------------的油量. _ 卷 -------------18.(本小题满分 8 分)----------------为了解某地区机动机拥有量对道路通行的影响 ,学校九年级社会实践小组对 2010在年~计,并绘制成下列统计图:_ 此 _--------------------__ __ __ __ __ 号生 __ --------------------根据统计图,回答下列问题:考 __ (1)写出 2016 年机动车的拥有量,分别计算 2010 年~2017 年在人民路路口和学校__ 门口堵车次数的平均数._ _ (2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次 __ __ 上 数,说说你的看法.--------------------_ _ _ _ _ _ 19.(本小题满分 8 分) _ 一辆汽车行驶时的耗油量为 0.1 升/千米,如图是油箱剩余油量 y (升)关于加满油后-------------------- 已行驶的路程 x (千米)的函数图象._ _ _校题 学-------------------- 业 毕(1)根据图象,直接写出汽车行驶 400 千米时,油箱内的剩余油量,并计算加满油时无 油箱(2)求 y 关于 x 的函数关系式,并计算该汽车在剩余油量 5 升时,已行驶的路程.20.(本小题满分 8 分)学校拓展小组研制了绘图智能机器人(如图 1),顺次输入点 P , P , P 的坐标,机器1 2 3人能根据图 2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1) P (4,0) , P (0,0) , P (6,6) .1 2 3(2) P (0,0) , P (4,0) , P (6,6) .1 2 321.(本小题满分 10 分)如图 1,窗框和窗扇用“滑块铰链”连接.图 3 是图 2 中“滑块铰链”的平面示意图,滑轨 MN 安装在窗框上,托悬臂 DE 安装在窗扇上,交点 A 处装有滑块,滑块可以左右滑动,支点 B , C , D 始终在一直线上,延长 DE 交 MN 于点 F .已 AC = DE = 20 cm ,AE = CD = 10 cm , BD = 40 cm .(1)窗扇完全打开,张角 ∠CAB = 85 ,求此时窗扇与窗框的夹角 ∠DFB 的度数.(2)窗扇部分打开,张角 ∠CAB = 60 ,求此时点 A , B 之间的距离(精确到0.1cm ).(参考数据: 3 ≈ 1.732 , 6 ≈ 2.449 )效数学试卷 第 5 页(共 22 页) 数学试卷 第 6 页(共 22 页)__ _ ___ __22.(本小题满分12分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110,求∠B的度数.(答案:35)例2等腰三角形ABC中,∠A=40,求∠B的度数.(答案:40或70或100)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x,当∠B有三个不同的度数时,请你探索x的取值范24.(本小题满分14分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.__ _ __围.23.(本小题满分12分)小敏思考解决如下问题:(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式.(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,_ _ _ _ _ __原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠P AQ=∠B,求证:AP=AQ.BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.(1)小敏进行探索,若将点P,Q的位置特殊化:把∠P AQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2,此时她证明了AE=AF.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).数学试卷第7页(共22页)数学试卷第8页(共22页)CO=∴4浙江省绍兴市、义乌市2018年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】解:若向东走2m记作+2m,则向西走3m记作-3m,故选:C.【考点】正数和负数2.【答案】B【解析】116000000=1.16⨯108,故选:B.【考点】科学记数法——表示较大的数3.【答案】D【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.③a5÷a3=a2,正确;④a3g a4=a7,故此选项错误.故选:C.【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;完全平方公式6.【答案】A【解析】由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【考点】函数的图象7.【答案】C【解析】Q AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90︒,又Q∠AOB=∠COD,∴△ABO∽△CDO,【考点】简单组合体的三视图4.【答案】A 则AO ABCD,【解析】Q抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,1∴朝上一面的数字为2的概率为,6故选:A.【考点】概率公式5.【答案】C【解析】①(a+b)2=a2+2ab+b2,故此选项错误;②(-2a2)2=4a4,故此选项错误;数学试卷第9页(共22页)Q AO=4m,AB=1.6m,CO=1m,1.61=CD,解得:CD=0.4,故选:C.【考点】相似三角形的应用8.【答案】B【解析】A、第一行数字从左到右依次为1、0、1、0,序号为1⨯23+0⨯22+1⨯21+0⨯20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0⨯23+1⨯22+1⨯21+0⨯20=6,符合题意;数学试卷第10页(共22页)根据题意得:⎨⎩y=15.C、第一行数字从左到右依次为1,0,0,1,序号为1⨯23+0⨯22+0⨯21+1⨯20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0⨯23+1⨯22+1⨯21+1⨯20=7,不符合题意;故选:B.【考点】规律型:图形的变化类9.【答案】B【解析】Q某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x-2)=x2-2x=(x-1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为)y=(x-1+2)2-1-3=(x+1)2-4.当x=-3时,y=(x+1)2-4=0,∴得到的新抛物线过点(-3,0).故选:B.【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;④如果所有的画展示成四行,34÷(4+1)=6(枚)⋯⋯4(枚), 6-1=5(张),4⨯5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)⋯⋯4(枚), 5-1=4(张),5⨯4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.【考点】规律型:图形的变化类第Ⅱ卷二、填空题11.【答案】(2x+y)(2x-y)【解析】解:原式=(2x+y)(2x-y),故答案为:(2x+y)(2x-y)【考点】因式分解——运用公式法12.【答案】2015【解析】设索长为x尺,竿子长为y尺,抛物线与x轴的交点10.【答案】D ⎧x-y=5⎪1⎪⎩y-2x=5,【解析】①如果所有的画展示成一行,34÷(1+1)-1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)⋯⋯1(枚), 11-1=10(张),2⨯10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)⋯⋯2(枚),8-1=7(张),3⨯7=21(张),∴34枚图钉最多可以展示21张画;数学试卷第11页(共22页)⎧x=20解得:⎨答:索长为20尺,竿子长为15尺.故答案为:20;15.【考点】二元一次方程组的应用13.【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,数学试卷第12页(共22页)∴∠ A = ∠B = (180︒ - ∠AOB) = (180︒ - 120︒) = 30︒ ,【解析】设点 A 的坐标为 ( x , ) ,∴ 点 C 的坐标为 (- x , - ) ,∴ 点 C 的坐标为 ( x ,2 OA = 10 , AC = 3OC = 103 ,180 ≈ 84 (步), x = 8 , x ) ,3 x ,2 3 x ⨯x = 8 ,» » Q O A = OB ,1 12 2在 Rt △AOC 中, OC = 1∴ AB = 2 AC = 20 3 ≈ 69 (步);而 AB 的长 = 120 g πg20AB的长与 AB 的长多 15 步.所以这些市民其实仅仅少走了 15 步.故答案为 15.【考点】勾股定理的应用;垂径定理的应用 14.【答案】 30︒ 或110︒【解析】如图,当点 P 在直线 AB 的右侧时.连接 AP .Q AB = AC , ∠BAC = 40︒ ,∴∠ABC = ∠C = 70︒ ,Q AB = AB , AC = PB , BC = P A ,∴△ABC ≌△BAP ,∴∠ABP = ∠BAC = 40︒ ,∴∠PBC = ∠ABC -∠ A BP = 30︒ ,当点 P ' 在 AB 的左侧时,同法可得 ∠ABP ' = 40︒ ,∴∠P 'BC = 40︒+ 70︒ = 110︒ ,故答案为 30︒ 或110︒ .数学试卷 第 13 页(共 22 页)【考点】全等三角形的判定与性质;等腰三角形的性质15.【答案】12 或 4kx当点 P 在 AB 的延长线上时, Q AP = 2AB ,∴ AB = AP ,Q PC ∥x 轴,k x1 2k由题意得, ⨯ 2 x ⨯2解得, k = 4 ,当点 P 在 BA 的延长线上时, Q AP = 2AB , PC ∥x 轴,1 3k 3∴ P 'C ' = 21 2 2k 由题意得, ⨯ 解得, k = 12 ,当点 P 在第三象限时,情况相同,故答案为:12 或 4.数学试卷 第 14 页(共 22 页)2a=2±222=1±2,5(0<x≤2(6≤x<8) 6)或y=2,54+82+86+98+124+156+196+164=8=100(次)2(6≤x<8),5(0<x≤6),5(0<x≤2(6≤x<8)【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征方程有两个不相等的实数根,x=-b±b2-4ac则x=1+2,x=1-2.12【考点】实数的运算,零指数幂,负整数指数幂,解一元二次方程——配方法,特殊角的三角函数值18.【答案】(1)12010016.【答案】y=6x+1065120-15x(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通【解析】解:①当长方体实心铁块的棱长为10cm和y cm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8-x)cm(x<8),铁块浸在水中的体积为10⨯8⨯y=80y cm3,∴80y=30⨯20⨯(8-x),10cm∴y=120-15x部分别加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.【解析】解:(1)由图可得,2016年机动车的拥有量为3.40万辆,xQ y…15,∴x…6,x65+85+121+144+128+108+77+72即:y=120-15x②当长方体实心铁块的棱长为和10cm的那一面平放在长方体的容器底面时,即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通同①的方法得,y=6x+1065部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.故答案为:y=6x+10656)或y=120-15x【考点】条形统计图,折线统计图,加权平均数19.【答案】(1)70【考点】根据实际问题列一次函数关系式三、填空题17.【答案】(1)原式=23-23-1+3=2;(2)a=1,b=-2,c=-1,∆=b2-4ac=4+4=8>0,数学试卷第15页(共22页)(2)650【解析】(1)由图象可知:汽车行驶400千米,剩余油量30升,Q行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400⨯0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),数学试卷第16页(共22页)2x2-2x 2,2x(x-4)=2x2-2x.2)︒;2≠180-2x且180-2x≠x且把(0,70),(400,30)坐标代入可得:k=-0.1,b=70∴y=-0.1x+70,当y=5时,x=650即已行驶的路程的为650千米.【考点】一次函数的应用20.【答案】(1)4(2)y=1【解析】解:(1)Q P(4,0),P(0,0),4-0=4>0,12∴绘制线段P P,PP=4;1212(2)Q P(0,0),0-0=0,1∴绘制抛物线,设y=ax(x-4),把(6,6)代入得:6=12a,解得:a=1∴C G=103,AG=10,Q BD=40,CD=10,∴CB=30,∴B G=302-(103)2=106,∴AB=AG+BG=10+106≈10+10⨯2.449=34.49≈34.5cm,即A、B之间的距离为34.5cm.【考点】解直角三角形的应用22.【答案】(1)50︒或20︒或80︒(2)0<x<90且x≠60【解析】解:(1)若∠A为顶角,则∠B=(180︒-∠A)÷2=50︒;若∠A为底角,∠B为顶角,则∠B=180︒-2⨯80︒=20︒;∴y=11若∠A为底角,∠B为底角,则∠B=80︒;故∠B=50︒或20︒或80︒;【考点】二次函数的应用21.【答案】(1)85︒(2)34.5cm【解析】解:(1)Q AC=DE=20cm,AE=CD=10cm,∴四边形ACDE是平行四边形,∴AC//D E,∴∠DFB=∠CAB,Q∠CAB=85︒,(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=(180-x若∠A为底角,∠B为顶角,则∠B=(180-2x)︒;若∠A为底角,∠B为底角,则∠B=x︒.∴∠DFB=85︒;(2)作CG⊥AB于点G,Q AC=20,∠CGA=90︒,∠CAB=60︒,当180-x即x≠60时,∠B有三个不同的度数.180-x2≠x,数学试卷第17页(共22页)综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.数学试卷第18页(共22页)∴四边形AECF的面积=⨯四边形ABCD的面积,2AB=2,OB=∴四边形ABCD的面积=⨯2⨯23⨯4=83,⎨∠B=∠D,⎪A B=AD⎨A E=AF,⎪∠EAP=∠FAQ (2)当0≤t≤时,s=15-60t当<t≤时,s=60t-157或4≤x<530=30=(2)当0≤t≤时,s=15-60t,当<t≤时,s=60t-15;【考点】等腰三角形的性质23.【答案】(1)证明:Q四边形ABCD是菱形,∴∠B+∠C=180︒,∠B=∠D,AB=AD,Q∠EAF=∠B,同理,CF=FD,12由(2)得,四边形APCQ的面积=四边形AECF的面积,∴∠EAF+∠C=180︒,∴∠AEC+∠A FC=180︒,OA=132AB=23,Q AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,⎧∠AEB=∠AFD⎪⎩≥?AEB≌△AFD,∴AE=AF;(2)证明:由(1)得,∠P AQ=∠EAF=∠B,AE=AF,∴∠E AP=∠FAQ,在△AEP和△AFQ中,⎧∠AEP=∠AFQ=90︒⎪⎩∴△AEP≌△AFQ,∴AP=AQ;(3)解:已知:AB=4,∠B=60︒,12∴四边形APCQ的面积=43.【考点】四边形综合题24.【答案】(1)16141142(3)0<x≤10【解析】解:(1)第一班上行车到B站用时516小时,求四边形APCQ的面积,解:连接AC、BD交于O,∠ABC=60︒,BA=BC,第一班下行车到C站分别用时51416小时;∴△ABC为等边三角形, AE⊥BC,∴B E=EC,1142(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站数学试卷第19页(共22页)数学试卷第20页(共22页)5 ≤ 30 ,解得: x ≥5 ,不合题意.如果能乘上右侧的第一辆下行车,则 ≤ 5 - x 5 30 ,解得: x ≤ ,5 ≤ 30 ,解得 x …4 ,∴ 0<x ≤ ,Q18 ≤t <20 ,30,解得 x ≥3 , 5 ≤ ∴ 0<x ≤ 符合题意;7 ,7 或 4≤x <5 .7 < x … 7 < x … 7 , 5 ≤ 30 ,解得: x ≤ ∴ 10 7 <x ≤ 7 , 35 ≤t <37 7 ;总时间为 t 分钟,他右边最近的下行车离 C 站也是 (5 - x) 千米.①当 x = 2.5 时,往 B 站用时 30 分钟,还需要再等下行车 5 分钟,t = 30 + 5 + 10 = 45 ,不合题意;如果乘上右侧第一辆下行车,则 5 - x5 - x②当 x <2.5 时,只能往 B 站乘下行车,他离 B 站 x 千米,则离他右边最近的下行车离 C 站也是 x 千米,这辆下行车离 B 站 (5 - x) 千米,x 57574757如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车, x > 5∴ x ≥5 ,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车, x <5 ,5 - x 10 - x∴4≤x <5 , 30<t ≤32 ,∴4≤x <5 符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车, x <4 ,5 - x 15 - x∴3≤x <4 , 42<t ≤44 ,∴3≤x <4 不合题意.综上,得 4≤x <5 .x 10 - x 5 … 30 ,解得: x …107 , 综上所述, 0<x ≤10∴ 5∴ 510 1 4 7 , 22 7 … t < 28 7 ,10 7 符合题意;【考点】一元一次不等式的应用;一次函数的应用如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车, x >10x 15 - x 157 ,15 5 71 7 ,不合题意,∴综上,得 0<x ≤10 ③当 x >2.5 时,乘客需往 C 站乘坐下行车.离他左边最近的下行车离 B 站是 (5 - x) 千米,离数学试卷 第 21 页(共 22 页)数学试卷 第 22 页(共 22 页)。
浙江省2018年初中毕业生学业考试绍兴市试卷含解析数学试题卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1. 如果向东走记为,则向西走可记为()A. B. C. D.【答案】C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.【点评】考查了相反意义的量,相反意义的量用正数和负数来表示.2. 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将116000000用科学记数法表示为:.故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】D【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.考点:简单组合体的三视图.4. 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.【答案】A【解析】【分析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5. 下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【答案】C【解析】【分析】根据完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方进行选择即可.【解答】①.故错误.②.故错误.③.正确.④故错误.故选C.【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.6. 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小【答案】A【解析】【分析】根据一次函数的图象对各项分析判断即可.【解答】观察图象可知:A. 当时,图象呈上升趋势,随的增大而增大,正确.B. 当时,图象呈上升趋势,随的增大而减小, 故错误.C. 当时,随的增大而减小,当时,随的增大而增大,故错误.D. 当时,随的增大而减小,当时,随的增大而增大,故错误.故选A.【点评】考查一次函数的图象与性质,读懂图象是解题的关键.7. 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.【答案】C【解析】【分析】根据相似三角形的判定定理可得△AOB∽△COD,根据相似三角形的性质计算即可.【解答】,,△AOB∽△COD,即解得:故选C.【点评】考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.8. 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【答案】B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【解答】A.第一行数字从左到右依次为1,0,1,0,序号为,表示该生为10班学生.B.第一行数字从左到右依次为0,1, 1,0,序号为,表示该生为6班学生.C.第一行数字从左到右依次为1,0,0,1,序号为,表示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为,表示该生为7班学生. 故选B.【点评】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.9. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. B. C. D.【答案】B【解析】【分析】根据抛物线与轴两个交点间的距离为2,对称轴为直线,求得抛物线与轴两个交点分别为用待定系数法求出抛物线的解析式,根据平移规律求得平移后的抛物线解析式,再把点的坐标代入进行验证即可.【解答】抛物线与轴两个交点间的距离为2,对称轴为直线,可知抛物线与轴两个交点分别为代入得:解得:抛物线的方程为:将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:即当时,抛物线过点.故选B.【点评】考查待定系数法求二次函数解析式,二次函数的图形与性质,以及平移规律.掌握待定系数法求二次函数解析式是解题的关键.10. 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【答案】D【解析】【分析】每张作品都要钉在墙上,要用4个图钉,相邻的可以用同一个图钉钉住两个角或者四个角,相邻的越多,用的图钉越少,把这些作品摆成长方形,使四周的最少.【解答】A. 最少需要图钉枚.B.最少需要图钉枚.C.最少需要图钉枚.D.最少需要图钉枚.还剩余枚图钉.故选D.【点评】考查学生的空间想象能力以及动手操作能力,通过这道题使学生掌握空间想象能力和动手能力,并且让学生能够独立完成类似问题的解决.二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:__________.【答案】【解析】【分析】根据平方差公式直接进行因式分解即可.【解答】原式故答案为:【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法.12. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.【答案】(1). 20(2). 15【解析】【分析】设索长为尺,竿子长为尺.根据题目中的等量关系列方程组求解即可.【解答】设索长为尺,竿子长为尺.根据题意得:解得:故答案为:20,15.【点评】考查二元一次方程组的应用,解题的关键是找到题目中的等量关系.13. 如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)【答案】15【解析】【分析】过O作OC⊥AB于C,分别计算出弦AB的长和弧AB的长即可求解.【解答】过O作OC⊥AB于C,如图,∴AC=BC,∵∴∴∴∴又∵弧AB的长=米步.故答案为:15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.易证≌,同理:≌,故答案为:或【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用.15. 过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.【答案】12或4【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:故答案为:12或4.【点评】考查反比例函数图象上点的坐标特征,注意数形结合思想在数学中的应用.16. 实验室里有一个水平放置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点的三条棱的长分别是,,,当铁块的顶部高出水面时,,满足的关系式是__________.【答案】或【解析】【分析】根据长方体实心铁块的放置情况可以分两种情况进行讨论.根据铁块的顶部高出现在水面,列出函数关系式.【解答】当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,整理得:.当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,整理得:.故答案为:或【点评】考查函数关系式的建立,解题的关键是找到题目中的等量关系.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17. (1)计算:.(2)解方程:.【答案】(1)2;(2),.【解析】【分析】根据实数的运算法则直接进行运算即可.用公式法直接解方程即可【解答】(1)原式.(2),,.【点评】本题主要考查了实数的综合运算能力以及解一元二次方程,是各地中考题中常见的计算题型.解决实数的综合运算题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18. 为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数. (2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【答案】(1)3.40万辆.人民路路口的堵车次数平均数为120次;学校门口的堵车次数平均数为100次;(2)见解析.【解析】【分析】(1)观察图象,即可得出写出2016年机动车的拥有量,根据平均数的计算方法计算计算2010年~2017年在人民路路口和学校门口堵车次数的平均数即可.(2)言之有理即可.【解答】(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.【点评】考查了折线统计图和条形统计图,根据折线统计图和条形统计图得出解题所需的数据是解题的关键.19. 一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【答案】(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数解析式,再代入进行运算即可.【解答】(1)汽车行驶400千米,剩余油量30升,即加满油时,油量为70升.(2)设,把点,坐标分别代入得,,∴,当时,,即已行驶的路程为650千米.【点评】考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.20. 学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1),,.(2),,.【答案】(1)绘制线段,;(2)绘制抛物线.【解析】【分析】(1),,,绘制线段,.(2),,,,绘制抛物线,用待定系数法求函数解析式即可.【解答】(1)∵,,,∴绘制线段,.(2)∵,,,,∴绘制抛物线,设,把点坐标代入得,∴,即.【点评】属于新定义问题,考查待定系数法求二次函数解析式,解题的关键是弄懂程序框图.21. 如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块可以左右滑动,支点,,始终在一直线上,延长交于点.已知,,.(1)窗扇完全打开,张角,求此时窗扇与窗框的夹角的度数.(2)窗扇部分打开,张角,求此时点,之间的距离(精确到).(参考数据:,)【答案】(1);(2).【解析】【分析】(1)根据两组对边分别平行的四边形是平行四边形得出四边形ACDE是平行四边形,根据平行四边形的对边平行得出CA∥DE,根据二直线平行,同位角相等得出答案;(2)如图,过点作于点,根据锐角三角函数进行求解即可.【解答】(1)∵,,∴四边形是平行四边形,∴,∴.(2)如图,过点作于点,∵,∴,,∵,,∴,在中,,∴.【点评】考查平行四边形的判定与性质,平行线的判定与性质,解直角三角形等,注意辅助线的作法. 22. 数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.【答案】(1)或或;(2)当且,有三个不同的度数.【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【解答】(1)当为顶角,则,当为底角,若为顶角,则,若为底角,则,∴或或.(2)分两种情况:①当时,只能为顶角,∴的度数只有一个.②当时,若为顶角,则,若为底角,则或,当且且,即时,有三个不同的度数.综上①②,当且,有三个不同的度数.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.23. 小敏思考解决如下问题:原题:如图1,点,分别在菱形的边,上,,求证:.(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)证明见解析;(2)证明见解析;(3)见解析【解析】【分析】(1)证明,即可求证.(2)如图2,,即可求证.(3)不唯一.【解答】(1)如图1,在菱形中,,,,∵,∴,∴,∵,∴,∴,,∴,∴.(2)如图2,由(1),∵,∴,∵,,∴,∵,∴,∴.(3)不唯一,举例如下:层次1:①求的度数.答案:.②分别求,的度数.答案:.③求菱形的周长.答案:16.④分别求,,的长.答案:4,4,4.层次2:①求的值.答案:4.②求的值.答案:4.③求的值.答案:.层次3:①求四边形的面积.答案:.②求与的面积和.答案:.③求四边形周长的最小值.答案:④求中点运动的路径长.答案:.【点评】考查菱形的性质,三角形全等的判定与性质等,熟练掌握全等三角形的判定方法是解题的关键. 24. 如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到站、第一班下行车到站分别用时多少?(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.【答案】(1)第一班上行车到站用时小时,第一班下行车到站用时小时;(2)当时,,当时,;(3)或.【解析】【分析】(1)根据速度=路程除以时间即可求出第一班上行车到站、第一班下行车到站的用时. (2)分当时和当时两种情况进行讨论.(3)由(2)知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,分当x=2.5时,当x<2.5时,当x>2.5时三种情况进行讨论。
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .56 5.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数).(参考数据:3 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 6012(32)()3----+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P .(2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ). (参考数据:3 1.732≈,6 2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式2323132=--+=.(2)2222x ±=, 112x =+,212x =-.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12PP ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P ,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin60103CG ==,∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,106BG =, ∴1010634.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:43.②求ABP ∆与AQD ∆的面积和.答案:43.③求四边形APCQ 周长的最小值.答案:443+.④求PQ 中点运动的路径长.答案:23.24.解:(1)第一班上行车到B 站用时51306=小时.第一班下行车到C 站用时51306=小时. (2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米,如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.。
2018年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)(2018•绍兴)如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.(4分)(2018•绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.(4分)(2018•绍兴)有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.(4分)(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.(4分)(2018•绍兴)下面是一位同学做的四道题:①222()a b a b +=+,②224(2)4a a -=-,③532a a a ÷=,④3412a a a =.其中做对的一道题的序号是( )A .①B .②C .③D .④6.(4分)(2018•绍兴)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小 7.(4分)(2018•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =,1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.(4分)(2019•沙坪坝区)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.(4分)(2018•绍兴)若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.(4分)(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)(2018•绍兴)因式分解:224x y -= .12.(5分)(2018•绍兴)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.(5分)(2018•绍兴)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732,π取3.142)14.(5分)(2018•绍兴)等腰三角形ABC 中,顶角A 为40︒,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.(5分)(2018•绍兴)过双曲线(0)k y k x=>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.(5分)(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm ,10cm ,y (15)cm y …,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(2018•绍兴)(1)计算:0112tan 602)()3-︒+. (2)解方程:2210x x --=.18.(8分)(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8分)(2018•绍兴)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.(8分)(2018•绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P,2(0,0)P,3(6,6)P;(2)1(0,0)P,2(4,0)P,3(6,6)P.21.(10分)(2018•绍兴)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知20AC DE cm==,10AE CD cm==,40BD cm=.(1)窗扇完全打开,张角85CAB∠=︒,求此时窗扇与窗框的夹角DFB∠的度数;(2)窗扇部分打开,张角60CAB∠=︒,求此时点A,B之间的距离(精确到0.1)cm.1.732≈ 2.449)≈22.(12分)(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,110A∠=︒,求B∠的度数.(答案:35)︒例2等腰三角形ABC中,40A∠=︒,求B∠的度数,(答案:40︒或70︒或100)︒张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,80A∠=︒,求B∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A∠的度数不同,得到B∠的度数的个数也可能不同,如果在等腰三角形ABC中,设A x∠=︒,当B∠有三个不同的度数时,请你探索x的取值范围.23.(12分)(2018•绍兴)小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,PAQ B∠=∠,求证:AP AQ=.(1)小敏进行探索,若将点P,Q的位置特殊化;把PAQ∠绕点A旋转得到EAF∠,使=,请你证明.AE BC⊥,点E,F分别在边BC,CD上,如图2.此时她证明了AE AF(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC⊥,垂⊥,AF CD 足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:4AB=,60B∠=︒,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14分)(2018•绍兴)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,=千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站BP x乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.2018年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【解答】解:若向东走2m 记作2m +,则向西走3m 记作3m -,故选:C .2.(4分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯【解答】解:8116000000 1.1610=⨯,故选:B .3.(4分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形, 故选:D .4.(4分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .56【解答】解:抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为16, 故选:A .5.(4分)下面是一位同学做的四道题:①222()a b a b +=+,②224(2)4a a -=-,③532a a a ÷=,④3412a a a =.其中做对的一道题的序号是( )A .①B .②C .③D .④【解答】解:①222()2a b a ab b +=++,故此选项错误;②224(2)4a a -=,故此选项错误;③532a a a ÷=,正确;④347a a a =,故此选项错误.故选:C .6.(4分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小 【解答】解:由函数图象可得,当1x <时,y 随x 的增大而增大,故选项A 正确,选项B 错误,当12x <<时,y 随x 的增大而减小,当2x >时,y 随x 的增大而增大,故选项C 、D 错误, 故选:A . 7.(4分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m=,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m 【解答】解:AB BD⊥,CD BD⊥,90ABO CDO∴∠=∠=︒,又AOB COD∠=∠,ABO CDO∴∆∆∽,则AO ABCO CD=,4AO m=, 1.6AB m=,1CO m=,∴4 1.61CD =,解得:0.4CD=,故选:C.8.(4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为32102222a b c d⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A.B.C .D .【解答】解:A 、第一行数字从左到右依次为1、0、1、0,序号为32101202120210⨯+⨯+⨯+⨯=,不符合题意;B 、第一行数字从左到右依次为0,1,1,0,序号为3210021212026⨯+⨯+⨯+⨯=,符合题意;C 、第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,不符合题意;D 、第一行数字从左到右依次为0,1,1,1,序号为3210021212127⨯+⨯+⨯+⨯=,不符合题意;故选:B .9.(4分)若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--【解答】解:某定弦抛物线的对称轴为直线1x =,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为22(2)2(1)1y x x x x x =-=-=--.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为22(12)13(1)4y x x =-+--=+-.当3x =-时,2(1)40y x =+-=,∴得到的新抛物线过点(3,0)-.故选:B .10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张【解答】解:①如果所有的画展示成一行,34(11)116÷+-=(张),34∴枚图钉最多可以展示16张画;②如果所有的画展示成两行,34(21)11÷+=(枚)1⋯⋯(枚),11110-=(张),21020⨯=(张),34∴枚图钉最多可以展示20张画;③如果所有的画展示成三行,34(31)8÷+=(枚)2⋯⋯(枚),817-=(张),3721⨯=(张),34∴枚图钉最多可以展示21张画;④如果所有的画展示成四行,34(41)6÷+=(枚)4⋯⋯(枚),615-=(张),4520⨯=(张),34∴枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34(51)5÷+=(枚)4⋯⋯(枚),514-=(张),5420⨯=(张),34∴枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D .二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)因式分解:224x y -= (2)(2)x y x y +- .【解答】解:原式(2)(2)x y x y =+-,故答案为:(2)(2)x y x y +-12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 20 尺,竿子长为 尺.【解答】解:设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y y x -=⎧⎪⎨-=⎪⎩, 解得:2015x y =⎧⎨=⎩. 答:索长为20尺,竿子长为15尺.故答案为:20;15.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 15 步(假设1步为0.5米,结果保留整数).1.732,π取3.142)【解答】解:作OC AB ⊥于C ,如图,则AC BC =,OA OB =,11(180)(180120)3022A B AOB ∴∠=∠=︒-∠=︒-︒=︒, 在Rt AOC ∆中,1102OC OA ==,AC ==,269AB AC ∴==(步);而AB 的长1202084180π=≈(步), AB 的长与AB 的长多15步.所以这些市民其实仅仅少走了 15步.故答案为15.14.(5分)等腰三角形ABC 中,顶角A 为40︒,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 30︒或110︒ .【解答】解:如图,当点P 在直线AB 的右侧时.连接AP .AB AC =,40BAC ∠=︒,70ABC C ∴∠=∠=︒,AB AB =,AC PB =,BC PA =,ABC BAP ∴∆≅∆,40ABP BAC ∴∠=∠=︒,30PBC ABC ABP ∴∠=∠-∠=︒,当点P '在AB 的左侧时,同法可得40ABP ∠'=︒,4070110P BC ∴∠'=︒+︒=︒,故答案为30︒或110︒.15.(5分)过双曲线(0)k y k x=>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 12或4 .【解答】解:设点A 的坐标为(,)k x x, 当点P 在AB 的延长线上时,2AP AB =,AB AP ∴=,//PC x 轴,∴点C 的坐标为(,)k x x--, 由题意得,12282k x x⨯⨯=, 解得,4k =,当点P 在BA 的延长线上时,2AP AB =,//PC x 轴,∴点C 的坐标为1(3x ,3)k x, 23P C x ∴''=, 由题意得,122823k x x ⨯⨯=, 解得,12k =,当点P 在第三象限时,情况相同,故答案为:12或4.16.(5分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm ,10cm ,y (15)cm y …,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 61065(0)56x y x +=<…或12015(68)2x y x -=<… .【解答】解:①当长方体实心铁块的棱长为10cm 和ycm 的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm ,此时,水位上升了(8)(8)x cm x -<,铁块浸在水中的体积为310880y ycm ⨯⨯=,803020(8)y x ∴=⨯⨯-,120152x y -∴=, 15y …,6x ∴…, 即:12015(68)2x y x -=<…, ②当长方体实心铁块的棱长为10cm 和10cm 的那一面平放在长方体的容器底面时, 同①的方法得,61065(0)56x y x +=<…, 故答案为:61065(0)56x y x +=<…或12015(68)2x y x -=<… 三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(1)计算:0112tan 602)()3-︒+. (2)解方程:2210x x --=.【解答】解:(1)原式132=+=;(2)1a =,2b =-,1c =-,△244480b ac =-=+=>,方程有两个不相等的实数根,1x ===±,则11x =21x =-.18.(8分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【解答】解:(1)由图可得,2016年机动车的拥有量为3.40万辆,548286981241561961641208x +++++++==人民路口(次), 658512114412810877721008x +++++++==学校路口(次) 即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油4000.140⨯=(升)∴加满油时油箱的油量是403070+=升.(2)设(0)y kx b k =+≠,把(0,70),(400,30)坐标代入可得:0.1k =-,70b =0.170y x ∴=-+,当5y = 时,650x =即已行驶的路程的为650千米.20.(8分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P ;(2)1(0,0)P ,2(4,0)P ,3(6,6)P .【解答】解:(1)1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =;(2)1(0,0)P ,000-=,∴绘制抛物线,设(4)y ax x =-,把(6,6)代入得:612a =, 解得:12a =, 211(4)222y x x x x ∴=-=-. 21.(10分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=︒,求此时窗扇与窗框的夹角DFB ∠的度数;(2)窗扇部分打开,张角60CAB ∠=︒,求此时点A ,B 之间的距离(精确到0.1)cm .1.732≈2.449)≈【解答】解:(1)20AC DE cm ==,10AE CD cm ==,∴四边形ACDE 是平行四边形,//AC DE ∴,DFB CAB ∴∠=∠,85CAB ∠=︒,85DFB ∴∠=︒;(2)作CG AB ⊥于点G ,20AC =,90CGA ∠=︒,60CAB ∠=︒,CG ∴=,10AG =,40BD =,10CD =,30CB ∴=,BG ∴101010 2.44934.4934.5AB AG BG cm ∴=+=+≈+⨯=≈, 即A 、B 之间的距离为34.5cm .22.(12分)数学课上,张老师举了下面的例题: 例1 等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒ 例2 等腰三角形ABC 中,40A ∠=︒,求B ∠的度数,(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,80A ∠=︒,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同,如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠有三个不同的度数时,请你探索x 的取值范围.【解答】解:(1)若A ∠为顶角,则(180)250B A ∠=︒-∠÷=︒; 若A ∠为底角,B ∠为顶角,则18028020B ∠=︒-⨯︒=︒; 若A ∠为底角,B ∠为底角,则80B ∠=︒;故50B ∠=︒或20︒或80︒;(2)分两种情况:①当90180x <…时,A ∠只能为顶角,B ∴∠的度数只有一个;②当090x <<时,若A ∠为顶角,则180()2x B -∠=︒; 若A ∠为底角,B ∠为顶角,则(1802)B x ∠=-︒; 若A ∠为底角,B ∠为底角,则B x ∠=︒. 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时,B ∠有三个不同的度数.综上所述,可知当090x <<且60x ≠时,B ∠有三个不同的度数.23.(12分)小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化;把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2.此时她证明了AE AF =,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=︒,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【解答】(1)证明:四边形ABCD 是菱形,180B C ∴∠+∠=︒,B D ∠=∠,AB AD =,EAF B ∠=∠,180EAF C ∴∠+∠=︒,180AEC AFC ∴∠+∠=︒,AE BC ⊥,AF CD ∴⊥,在AEB ∆和AFD ∆中,AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEB AFD ∴∆≅∆,AE AF ∴=;(2)证明:由(1)得,PAQ EAF B ∠=∠=∠,AE AF =,EAP FAQ ∴∠=∠,在AEP ∆和AFQ ∆中,90AEP AFQ AE AFEAP FAQ ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, AEP AFQ ∴∆≅∆,AP AQ ∴=;(3)解:已知:4AB =,60B ∠=︒,求四边形APCQ 的面积,解:连接AC 、BD 交于O ,60ABC ∠=︒,BA BC =,ABC ∴∆为等边三角形,AE BC ⊥,BE EC ∴=,同理,CF FD =,∴四边形AECF 的面积12=⨯四边形ABCD 的面积, 由(2)得,四边形APCQ 的面积=四边形AECF 的面积,122OA AB ==,OB = ∴四边形ABCD的面积1242=⨯⨯=, ∴四边形APCQ的面积=24.(14分)如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车,第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式;(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.【解答】解:(1)第一班上行车到B 站用时51306=小时, 第一班下行车到C 站分别用时51306=小时;(2)当104t剟时,1560s t =-, 当1142t <…时,6015s t =-;(3)由(2)可知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,①当 2.5x =时,往B 站用时30分钟,还需要再等下行车5分钟,3051045t =++=,不合题意; ②当 2.5x <时,只能往B 站乘下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米, 如果能乘上右侧的第一辆下行车,则5530x x -…,解得:57x …, 507x ∴<…, 418207t <…, 507x ∴<…符合题意; 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -…,解得:107x …,∴51077x <…,14222877t <…, ∴51077x <…符合题意; 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -…,解得:157x …, ∴101577x <…,51353777t <…,不合题意, ∴综上,得1007x <…; ③当 2.5x >时,乘客需往C 站乘坐下行车.离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米. 如果乘上右侧第一辆下行车,则55530x x --…,解得:5x …,不合题意. 5x ∴…,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --…,解得4x …, 45x ∴<…,3032t <…,45x ∴<…符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --…,解得3x …, 34x ∴<…,4244t <…,34x ∴<…不合题意.综上,得45x <…. 综上所述,1007x <…或45x <….。
2018年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(4分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4分)有6个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.4.(4分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.5.(4分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④6.(4分)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A (﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小7.(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.9.(4分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)因式分解:4x2﹣y2=.12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O 为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k的值是.16.(5分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.18.(8分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.(8分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).21.(10分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)22.(12分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.23.(12分)小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D 站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.2018年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(4分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:116000000=1.16×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)有6个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.【分析】让向上一面的数字是2的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.【点评】此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.(4分)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A (﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.8.(4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查数字的变化类,解题的关键是根据题意弄清题干规定的运算规则.9.(4分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.【点评】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)因式分解:4x2﹣y2=(2x+y)(2x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为20尺,竿子长为15尺.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:,解得:.答:索长为20尺,竿子长为15尺.故答案为:20;15.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O 为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了15步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB 上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k的值是12或4.【分析】设点A的坐标为(x,),分点P在AB的延长线上、点P在BA的延长线上两种情况,根据比例系数k的几何意义、反比例函数图象上点的坐标特征计算.【解答】解:设点A的坐标为(x,),当点P在AB的延长线上时,∵AP=2AB,∴AB=AP,∵PC∥x轴,∴点C的坐标为(﹣x,﹣),由题意得,×2x×=8,解得,k=4,当点P在BA的延长线上时,∵AP=2AB,PC∥x轴,∴点C的坐标为(x,),∴P′C′=x,由题意得,×x×=8,解得,k=12,当点P在第三象限时,情况相同,故答案为:12或4.【点评】本题考查的是比例系数k的几何意义、反比例函数图象上点的坐标特征,根据坐标表示出线段的长度是解题的关键.16.(5分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是y=(0<x≤)或y=(6≤x<8).【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y=,∵y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算△,然后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x===1,则x1=1+,x2=1﹣.【点评】此题主要考查了实数的运算和一元二次方程的解法,关键是熟练掌握特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.18.(8分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【分析】(1)根据统计图中的数据可以解答本题;(2)根据统计图中的数据,结合生活实际,进行说明即可,本题答案不唯一,只要合情合理即可.【解答】解:(1)由图可得,2016年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.【点评】本题考查折线统计图、条形统计图、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.20.(8分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).【分析】(1)根据图2判断出绘制直线,根据两点间的距离公式可得答案;(2)根据图2判断出绘制抛物线,利用待定系数法求解可得.【解答】解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y=x(x﹣4)=x2﹣2x.【点评】本题主要考查二次函数的应用,解题的关键是看图2的判断条件及待定系数法求函数解析式.21.(10分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)【分析】(1)根据平行四边形的判定和性质可以解答本题;(2)根据锐角三角函数和题意可以求得AB的长,从而可以解答本题.【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形ACDE是平行四边形,∴AC∥DE,∴∠DFB=∠CAB,∵∠CAB=85°,∴∠DFB=85°;(2)作CG⊥AB于点G,∵AC=20,∠CGA=90°,∠CAB=60°,∴CG=,AG=10,∵BD=40,CD=10,∴CB=30,∴BG==,∴AB=AG+BG=10+10≈10+10×2.449=34.49≈34.5cm,即A、B之间的距离为34.5cm.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(12分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.23.(12分)小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.。
2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯ B .81.1610⨯ C .71.1610⨯ D .90.11610⨯ 3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( ) A .16 B .13 C .12 D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为3212222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(3,6)-- B .(3,0)- C .(3,5)-- D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数).3 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 . 15.过双曲线(0)ky k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 6012(32)()3--+. (2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数. (2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法. 19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. (2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式. (1)1(4,0)P ,2(0,0)P ,3(6,6)P . (2)1(0,0)P ,2(4,0)P ,3(6,6)P.21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数. (2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ). 3 1.732≈6 2.449≈) 22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数. (1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围. 23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使A E B C ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式.千米,(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP x此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 15 14. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2xy x -=≤< 三、解答题17.解:(1)原式2323132=+=. (2)2222x ±=,11x =212x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次). 学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低. 19.解:(1)汽车行驶400千米,剩余油量30升, 加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>, ∴绘制线段12PP ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=, ∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =, ∴四边形ACDE 是平行四边形, ∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G , ∵60CAB ∠=, ∴20cos6010AG ==,20sin60103CG ==,∵40BD =,10CD =,∴30BC =, 在Rt BCG ∆中,106BG =∴1010634.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=, 当A ∠为底角,若B ∠为顶角,则20B ∠=, 若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80. (2)分两种情况:①当90180x ≤<时,A ∠只能为顶角, ∴B ∠的度数只有一个. ②当090x <<时, 若A ∠为顶角,则1802x B -⎛⎫∠=⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802xx -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数. 23.解:(1)如图1, 在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠, ∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=, ∵AE BC ⊥,∴90AEB AEC ∠=∠=, ∴90AFC ∠=,90AFD ∠=, ∴AEB AFD ∆≅∆, ∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠, ∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠, ∵AE BC ⊥,AF CD ⊥, ∴90AEP AFQ ∠=∠=, ∵AE AF =, ∴AEP AFQ ∆≅∆, ∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=. ③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4. 层次2:①求PC CQ +的值.答案:4. ②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:43②求ABP ∆与AQD ∆的面积和.答案:43③求四边形APCQ 周长的最小值.答案:443+④求PQ 中点运动的路径长.答案:2324.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时. (2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟, 当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意.11 ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.。
2018年浙江省绍兴市初中数学中考试题及答案2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ一、选择题1.如果向东走2m记为?2m,则向西走3m 可记为A.?3m B.?2m C.?3m D.?2m 2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为A.?10 B.?10C.?10D.?10 3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是9879 A.B.C.D. 4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是A.1115 B.C.D.63265322222245.下面是一位同学做的四道题:①(a?b)?a?b.②(?2a)??4a.③a?a?a.④a?a?a.其中做对的一道题的序号是A.①B.②C.③D.④6.如图,一个函数的图象射线BA、线段BC、射线CD组成,其中点A(?1,2),B(1,3),3412C(2,1),D(6,5),则此函数A.当x?1时,y随x的增大而增大B.当x?1时,y随x的增大而减小C.当x?1时,y随x的增大而增大D.当x?1时,y随x的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC 位置,已知AB?BD,CD?BD,垂足分别为B,D,AO?4m,AB?,CO?1m,则栏杆C端应下降的垂直距离CD 为A.B.C.D.8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a?23?b?22?c?21?d?20.如图2第一行数字从左到右依次为0,1,0,1,序号为0?2?1?2?0?2?1?2?5,表示该生为5班学生.表示6班学生的识别图案是3210A.B.C.D.9.若抛物线y?x2?ax?b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x?1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点A.(?3,?6)B.(?3,0)C.(?3,?5) D.(?3,?1) 10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形.现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉.若有34枚图钉可供选用,则最多可以展示绘画作品A.16张B.18张C.20张D.21张卷Ⅱ二、填空题11.因式分解:4x?y?.12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,22?AOB?120,从A到B只有路AB,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步.14.等腰三角形ABC中,顶角A为40,点P在以A为圆心,BC 长为半径的圆上,且BP?BA,则?PBC的度数为.15.过双曲线y?k(k?0)的动点A作AB?x轴于点B,P是直线AB上的点,且满足xAP?2AB,过点P作x轴的平行线交此双曲线于点C.如果?APC的面积为8,则k的值是.16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块,过顶点A的三条棱的长分别是10cm,10cm,ycm(y?15),当铁块的顶部高出水面2cm 时,x,y满足的关系式是.三、解答题17.计算:2tan60?12?(3?2)?(). 解方程:x?2x?1?0. 18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:2013?1 根据统计图,回答下列问题:写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数. 根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为升/千米,如图是油箱剩余油量y关于加满油后已行驶的路程x的函数图象. 根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. 求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 20.学校拓展小组研制了绘图智能机器人,顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式. P1(4,0),P3(6,6). 2(0,0),PP1(0,0),P3(6,6). 2(4,0),P21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC?DE?20cm,AE?CD?10cm,BD?40cm. 窗扇完全打开,张角?CAB?85,求此时窗扇与窗框的夹角?DFB的度数. 窗扇部分打开,张角?CAB?60,求此时点A,B 之间的距离. 22.数学课上,张老师举了下面的例题:例 1 等腰三角形ABC中,?A?110,求?B的度数. 例2 等腰三角形ABC中,?A?40,求?B 的度数. 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,?A?80,求?B的度数. 请你解答以上的变式题. 解后,小敏发现,?A的度数不同,得到?B的度数的个数也可能不同.如果在等腰三角形ABC 中,设?A?x,当?B有三个不同的度数时,请你探索x的取值范围. 23.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD 上,?PAQ??B,求证:AP?AQ. 小敏进行探索,若将点P,Q的位置特殊化:把?PAQ绕点A旋转得到?EAF,使AE?BC,点E,F分别在边BC,CD上,如图2,此时她证明了AE?AF.请你证明. 受以上的启发,在原题中,添加辅助线:如图3,作AE?BC,AF?CD,垂足分别为E,F.请你继续完成原题的证明. 如果在原题中添加条件:AB?4,?B?60,如图 1.请你编制一个计算题,并直接给出答案. 24.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车,上行车、下行车的速度均为30千米/小时. 问第一班上行车到B站、第一班下行车到C站分别用时多少?若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式. 一乘客前往A站办事,他在B,C两站间的P处,刚好遇到上行车,BP?x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件. 浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC6-10: ACBBD 二、填空题11. (2x?y)(2x?y)12. 20,1513. 15 14. 30或11015. 12或 4 16. y?6x?1065120?15x(0?x?)或y?(6?x?8) 562三、解答题17.解:原式?23?23?1?3?2. x?2?22,2x1?1?2,x2?1?2. 18.解:万辆. 人民路路口的堵车次数平均数为120. 学校门口的堵车次数平均数为100. 不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,于进行了交通综合治理,人民路路口堵车次数反而降低. 19.解:汽车行驶400千米,剩余油量30升,加满油时,油量为70升. 设y?kx?b(k?0),把点(0,70),(400,30)坐标分别代入得b?70,k??,∴y???70,当y?5时,x?650,即已行驶的路程为650千米. 4?0?4?0,20.解:∵P1(4,0),P2(0,0),∴绘制线段PP12,PP12?4. ∵P1(0,0),P3(6,6),0?0?0,2(4,0),P ∴绘制抛物线,设y?ax(x?4),把点(6,6)坐标代入得a?∴y?1,211x(x?4),即y?x2?2x. 2221.解:∵AC?DE,AE?CD,∴四边形ACDE是平行四边形,∴CA//DE,∴?DFB??CAB?85. 如图,过点C作CG?AB于点G,∵?CAB?60,∴AG?20cos60?10,CG?20sin60?103,∵BD?40,CD?10,∴BC?30,在Rt?BCG中,BG?106,∴AB?AG?BG?10?106?22.解:当?A为顶角,则?B?50,当?A 为底角,若?B为顶角,则?B?20,若?B 为底角,则?B?80,∴?B?50或20或80. 分两种情况:①当90?x?180时,?A 只能为顶角,∴?B的度数只有一个. ②当0?x?90时,若?A为顶角,则?B???180?x??,?2?若?A为底角,则?B?x或?B?(180?2x),当180?x180?x?180?2x且?x且180?2x?x,即x?60时,22?B有三个不同的度数. 综上①②,当0?x?90且x?60,?B有三个不同的度数. 23.解:如图1,在菱形ABCD中,?B??C?180,?B??D,AB?AD,∵?EAF??B,∴?C??EAF?180,∴?AEC??AFC?180,∵AE?BC,∴?AEB??AEC?90,∴?AFC?90,?AFD?90,∴?AEB??AFD,∴AE?AF. 如图2,,∵?PAQ??EAF??B,∴?EAP??EAF??PAF??PAQ??PAF??FAQ ,∵AE?BC,AF?CD,∴?AEP??AFQ?90,∵AE?AF,∴?AEP??AFQ,∴AP?AQ. 不唯一,举例如下:层次1:①求?D 的度数.答案:?D?60. ②分别求?BAD,?BCD的度数.答案:?BAD??BCD?120. ③求菱形ABCD的周长.答案:16. ④分别求BC,CD,AD的长.答案:4,4,4. 层次2:①求PC?CQ的值.答案:4. ②求BP?QD 的值.答案:4. ③求?APC??AQC的值.答案:180. 层次3:①求四边形APCQ 的面积.答案:43. ②求?ABP与?AQD的面积和.答案:43. ③求四边形APCQ周长的最小值.答案:4?43. ④求PQ中点运动的路径长.答案:23. 24.解:第一班上行车到B站用时第一班下行车到C站用时51?小时. 30651?小时. 306当0?t?当1时,s?15?60t. 411?t?时,s?60t?15. 42知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,当x?时,往B站用时30分钟,还需再等下行车5分钟,t?30?5?10?45,不合题意. 当x?时,只能往B站坐下行车,他离B站x千米,则离他右边最近的下行车离C站也是x 千米,这辆下行车离B站(5?x)千米. 如果能乘上右侧第一辆下行车,x5?x55?,x?,∴0?x?,53077418?t?20,75∴0?x?符合题意. 7如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,7x10?x10?,x?,530751014∴?x?,27?t?28,7777510∴?x?符合题意. 77如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?10,7x15?x15?,x?,5307101551?x?,35?t?37,不合题意. ∴777710∴综上,得0?x?.7当x?时,乘客需往C站乘坐下行车,离他左边最近的下行车离B站是(5?x)千米,离他右边最近的下行车离C 站也是(5?x)千米,如果乘上右侧第一辆下行车,∴x?5,不合题意. 5?x5?x?,530如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,5?x10?x?,x?4,∴4?x?5,30?t?32,530∴4?x?5符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?4,5?x15?x?,3?x?4,42?t?44,530∴3?x?4不合题意. ∴综上,得4?x?5.综上所述,0?x?10或4?x?5. 7。
浙江省绍兴市2018年中考数学试卷一、选择题1.如果向东走2m记为+2m,则向西走3米可记为()A. +3mB. +2mC. -3mD. -2m2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约为116000000方,数字116000000用科学记数法可以表示为()A. 1.16×109B. 1.16×108C. 1.16×107D. 0.116×1093.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.5.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A. ①B. ②C. ③D. ④6.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A. 当x<1,y随x的增大而增大B. 当x<1,y随x的增大而减小C. 当x>1,y随x的增大而增大D. 当x>1,y随x的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A. 0.2mB. 0.3mC. 0.4mD. 0.5m8.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20。