初中数学最新-七年级数学去括号与添括号5精品
- 格式:pdf
- 大小:21.40 KB
- 文档页数:4
去括号与添括号学习目标1.使学生初步掌握去括号、添括号的法则;2.会运用去括号法则,会按照法则,并根据要求添括号;3.通过去括号与添括号的学习,渗透对立统一的思想.知识讲解一、重点、难点分析去括号、添括号法则既是本课的重点,又是难点,突破的关键是无论去括号,还是添括号,认真把握法则要点,注意形成技能.①关于去括号:去括号时,连同括号前的符号同时去掉,要特别注意括号前是“-”号时,去括号后括号里的各项的符号都改变.如a2-(2a-b+c)=a2-2a-b+c是错误的;②关于添括号:一般要明确把哪些项放在括号内,以及括号前用什么样的符号,要特别注意把某些项括到前面带“-”号的括号内时,各项符号都改变;③关于去添括号,都改变了原来式子的形式,但不改变式子的值.二、去括号法则为什么要学习“去括号法则”?我们也看一个例子:计算(a-3b)+(2a+b),这里a与2a,-3b与b是同类项,但括号把它们隔开了,“可望而不可并”,只有设法把括号去掉才能计算化简.这就是学习去括号法则的一个道理.怎样才能正确地应用去括号法则?由于乘法分配律a(b+c)=ab+ac具有去括号的功能,所以去括号法则a+(b+c)=a+b+c,a-(b+c)=a-b-c,也可以理解为把括号前的“+”号或“-”号看成是“+1”或“-1”,然后再应用乘法分配律推导得到的.这样理解、记忆去括号法则有助于减少应用去括号法则的错误.比如,计算3(x-2y)-5(3x-y)时,应该想到:3×x,3×(-2y),(-5)×3x,(-5)(-y),即可正确地得到:原式=3x-6y-15x+5y=-12x-y.去括号的法则应注意两个方面;括号前为正号时,去掉括号后,不影响括号内“去”出来的各项的符号,即把括号连同前面的“+”号去掉以后,括号内的各项原原本本的“拿”出来,就算完成了去括号;而括号前如果是负号,就说明“要减去整个括号内的各项”,考虑应用符号法则,(减正等于加负、减负等于加正),再用省略加号的写法,也就完成了“括号前如果是负号,把括号和它前面的‘-’号去掉,要改变括号内各项的符号”的去括号过程.三、添括号法则添括号是根据实际需要而考虑进行的.需要添括号时,也分两类进行:添括号后,括号前是“+”号,就把需要括起来的那几项,括起来就行了;若添括号后,括号前是“-”号,要把括起来的各项都改变符号.如a+b-c+d=a+(b-c+d)=a+b-(c-d).去括号、添括号都存在一个“变号”与“不变号”的问题.正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错).这些问题的关键是括号前的符号问题.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的.另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼.还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分.典型例题例1 去括号:(1);(2)分析:(1)题括号前是“-”号,去掉括号和“-”,括号内的各项都变号,即变为-,-变为,变为-;(2)题第一个括号前是“-”号,去掉括号和括号前的“-”,括号内各项都改变符号,即变为-,-变成;第二个括号前是“+”号去掉括号及“+”,括号内各项不变号,即仍为,.解:(1)(2)例2化简:(1);(2).解:(1)(2)说明:要特别注意括号前有数字因数的情形.先用分配律数字与括号内的各项相乘,然后再去括号,熟练后,也可省略第二步,直接去括号,如(2)题的处理.例3 先去括号,再合并同类项:.解法一:解法二:说明:本题指出了多项式化简的运算顺序,多重括号的去括号,一般按去小括号→去中括号→去大括号的程序,逐次去掉括号,每去一层括号都要合并同类项一次,以使运算简便.也可以由外向里脱即按去大括号→去中括号→去小括号的程序逐渐去掉括号.例4按下列要求,把多项式添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两括起来,括号前面带有“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面带有“-”号.分析:(1)题把后三项括起来,即把,,+4括起来,括号前面带有“+”号,因此把,,+4括到括号内时不变号;(2)题要求把多项式的前两项括起来,即把,括起来,括号前面带有“-”号,把,括到括号内时都要变号.(3)题、(4)题可进行类似地分析.解:(1);(2)(3);(4).说明:添括号和去括号正好相反,要想检查添括号是不是正确,可以用去括号法则检验.反馈练习1.化简:(1);(2);(3);(4).2.求下列各式的值:(1),其中;(2),其中.3.(1)在多项式中添括号:把含有的项放在前面带有“+”号的括号里,把含有的项放在前面带有“-”号的括号里;(2)把多项式化成以为被减数的两个式子的差的形式.答案:1.化简:(1);(2)(3)(4)2.求下列各式的值:(1);(2)3.(1);(2)。
七年级数学去括号与添括号人教版【本讲教育信息】一. 教学内容:去括号与添括号二. 教学目标和要求:掌握去括号与添括号法则,并能正确利用法则解决简单问题。
三. 教学重、难点:1. 重点:去括号与添括号法则2. 难点:括号前面是“-”号的情况下去括号和添括号四. 知识要点:1. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号一起去掉,括号里各项都不变符号。
(2)括号前是“-”号,把括号和它前面的“-”号一起去掉,括号里各项都改变符号。
2. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号。
(2)添括号后,括号前面是“-”号,括到括号里的各项都改变符号。
【典型例题】[例1] 先去括号,再合并同类项。
(1))3()34(5b a a b a +---+解:原式b a b a a b a 353345+=-+-+=(2))14(2)23()52(222-----+-a a a解:原式282352222+++---=a a a 132-=a[例2] 按要求,把多项式2332325b ab ab b a -+-添上括号。
(1)把后三项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+-)232(5233b ab ab b a +--= (2)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+-)23()25(233b ab ab b a +---+= (3)把四次项括到前面带有“+”号的括号里,把二次项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+- 2332235b ab ab b a --+=)22()35(233b ab ab b a +-+=[例3] 化简:x y x x y y x 5)]()3([)34(--+----解:原式x y x x y y x 5]3[34--++---=x y x y x 5)42(34----=x y x y x 54234-+--=y x +-=3[例4] 有理数a 、b 、c 在数轴上的位置如图所示,化简||6||||2||3c b a c b a a -+--+-解:由a 、b 、c 在数轴上的位置得,0,0,0,0<->-<+<c b a c b a a∴||6||||2||3c b a c b a a -+--+-)(6)()(23c b a c b a a ----++-=c b a c b a a 66223+-+-++-=b c 45-=[例5] 先化简,再求值。
七年级数学去括号和添括号知识精讲 人教义务代数 重点、难点重点:1.掌握去括号与添括号法则:(1)去括号法则:①括号前面是“+”号时,把括号连同它前边的“+”号都去掉,括号里的各数符号不变。
②括号前面是“-”号时,把括号连同它前边的“-”号都去掉,括号里的各数都变号。
(2)添括号法则:①添上带有“+”号的括号时,括号里的各数都不变号。
②添上带有“-”号的括号时,括号里的各数都变号。
2.会在有理数的加减法混合运算中,正确使用去添括号,使题目简化。
难点:正确应用去、添括号,使有理数的混合运算简便。
[讲一讲]例1:去括号(1)m-(a+b-c) (2)m+(a+b-c)分析:(1)中某个数减去若干数的和等于逐一减去各个加数(2)中某个数加上若干数的和等于逐一加上各个加数,因此可得结果。
解:(1)原式=m-(+a)-(+b)-(-c)=m-a-b+c(2)原式=m+(a+b-c)=m+(+a)+(+b)+(-c)=m+a+b-c这样就完成了去括号的目的,(1)与(2)即去括号法则,以后可以直接用结果。
.例2:计算:(1))]25.25187(4323[49--- (2))]32()243211(43[32+--+---分析:解题时先将括号去掉,转成代数和的形成,再用添括将易计算的项放在一起,可使计算过程简化,减少出错率解:(1)原式]41251874323[49+--= 4125187432349-+-= =49-49+187=187(2)原式]3224321143[32-+----= )322211(32-+---=32221132+-+-=21-=例3:按下列要求,把3a-2b+c 添上括号(1)把它放在前面带“+”号的括号里(2)把它放在前面带“-”号的括号里。
分析:这是一个简单的练习,通过它来掌握法则的应用,注意法则(2)中变号的问题。
解:(1)3a-2b+c=+(3a-2b+c)(2)3a-2b+c=-(-3a+2b-c)例4:已知:a=13,b=54,c= -83,d= -68。
5.3 解一元一次方程第2课时用去括号、去分母解一元一次方程课时目标1.掌握去括号、去分母解一元一次方程的方法,并能灵活运用解方程的一般步骤,提高学生的运算能力.2.通过解方程时去括号、去分母的过程,体会转化思想.3.通过归纳解一元一次方程的一般步骤,体会解方程的程序化思想方法.学习重点掌握用去括号、去分母的方法解一元一次方程.学习难点解方程时如何去括号、去分母.课时活动设计复习引入上节课我们学习了用移项解一元一次方程,请同学们回顾用移项解一元一次方程的步骤,并举手回答.设计意图:温故而知新,回忆上节课所学知识,为本节课的学习作铺垫.探究新知探究1去括号请学生尝试解方程6(2x-5)+20=4(1-2x).思考:与前面所解方程相比,这个方程多了什么?根据有理数混合运算法则,我们应该做什么?试着解一下.学生回答:多了括号,应先去括号.解:去括号,得12x-30+20=4-8x.移项,得12x+8x=4+30-20.合并同类项,得20x=14.将x 的系数化为1,得x =710.教师归纳:①去括号的实质是乘法对加法的分配律,去括号要先去小括号,再去中括号,最后去大括号,也可以由外向内;②当括号前是“-”时,去括号后,括号内的每一项都要改变符号.探究2 去分母请学生尝试解方程13(x -1)-16(x -2)=12(4-x ).让学生用自己的方法解这道题,再小组交流,明确方法.教师选取两名具有代表性的学生板演展示.学生1:去括号,得13x -13-16x +13=2-12x. 移项,得13x -16x +12x =2-13+13.合并同类项,得23x =2. 将x 的系数化为1,得x =3. 学生2:可将方程化为x -13-x -26=4−x 2.去分母,得2(x -1)-(x -2)=3(4-x ). 去括号,得2x -2-x +2=12-3x. 移项,得2x -x +3x =12+2-2. 合并同类项,得4x =12. 将x 的系数化为1,得x =3. 对于这种方程,用哪种方法较简单? 思考:如何去分母?去分母时应注意什么?每一项乘分母的最小公倍数,且当分子是多项式时需要加括号.教师引导学生总结归纳出解一元一次方程的步骤及每一步的依据和注意事项:设计意图:巩固所学解一元一次方程的一般步骤以及每一步经常出现的问题,让学生在解方程中避免出现类似错误,正确的解方程.培养学生合作交流的能力,体现学生的主体作用;培养学生语言表达能力,学会用数学的语言表达现实世界.典例精讲例1解方程:(1)x-12-2x-33=1;(2)1-2y-56=3−y4.解:(1)去分母,得3(x-1)-2(2x-3)=6.去括号,得3x-3-4x+6=6.移项,得3x-4x=6+3-6.合并同类项,得-x=3.将x的系数化为1,得x=-3.(2)去分母,得12-2(2y-5)=3(3-y).去括号,得12-4y+10=9-3y.移项,得-4y+3y=9-12-10.合并同类项,得-y=-13.将y的系数化为1,得y=13.例2 如图,在长方形ABCD 中,AB =12 cm,BC =9 cm,动点P 沿AB 边从点A 开始,向点B 以2 cm/s 的速度运动,动点Q 沿DA 边从点D 开始,向点A 以1 cm/s 的速度运动,P ,Q 同时开始运动,用t (s)表示移动的时间.(1)用含t 的代数式表示DQ = t cm;AQ = (9-t ) cm;AP = 2t cm;PB = (12-2t ) cm .(2)求当t 为何值时,AQ 长度的一半比PB 长度的13多1 cm . 解:(2)由题意,得9−t 2=12−2t 3+1,解得t =3.所以当t =3时,AQ 长度的一半比PB 长度的13多1 cm .设计意图:通过例题讲解,学生进一步理解去括号法则和去分母的方法,培养学生的知识应用能力,初步体会方程思想和数形结合的思想.巩固训练 1.把方程x 2-x -13=1去分母后,正确的是( C ) A .3x -2x -1=1 B .3x -2x -1=6 C .3x -2x +2=6D .3x -2x -2=62.下列变形正确的是(D) A .6x -5=3x +7变形,得6x -3x =-7+5 B .3x =2变形,得x =-23C .3(x -1)=2(x +3)变形,得3x -1=2x +6D .23x -2=12x +4变形,得4x -12=3x +24 3.解方程:(1)3(2x +1)-(3x -1)=7; (2)2−x 2=x -26.解:(1)去括号,得6x +3-3x +1=7. 移项,得6x -3x =7-3-1. 合并同类项,得3x =3. 将x 的系数化为1,得x =1.(2)去分母,得3(2-x)=x-2.去括号,得6-3x=x-2.移项,得-3x-x=-2-6.合并同类项,得-4x=-8.将x的系数化为1,得x=2.设计意图:通过练习,进一步巩固本节课所学知识,查漏补缺,培养学生自我纠错能力.课堂小结解一元一次方程的步骤及每一步的依据和注意事项:设计意图:通过表格的形式让学生归纳解一元一次方程的步骤,并明确每一步的依据和注意事项,既可以使学生牢固地掌握本节内容又能培养学生的归纳总结能力和缜密的计算能力.1.教材第167,168页习题A组第1,2题,B组第3,4题.第2课时用去括号、去分母解一元一次方程1.解带括号的一元一次方程.2.解含有分母的一元一次方程.3.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项(化为ax=b的形式,其中a,b是已知数);(5)将未知数的系数化为1(化为x=a的形式).教学反思。