北师大版七年级下册数学竞赛讲座02整数的整除性.
- 格式:doc
- 大小:110.00 KB
- 文档页数:6
整数的整除性整数的整除性问题,是数论中的最基本问题,也是国内外数学竞赛中最常出现的内容之一.由于整数性质的论证是具体、严格、富有技巧,它既容易使学生接受,又是培养学生逻辑思维和推理能力的一个有效课题,因此,了解一些整数的性质和整除性问题的解法是很有必要的.1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b a.关于整数的整除,有如下一些基本性质:性质1 若b|a,c|b,则c|a.性质2 若c|a,c|b,则c|(a±b).性质3 若c|a,c b,则c(a±b).性质4 若b|a,d|c,则bd|ac.性质5 若a=b+c,且m|a,m|b,则m|c.性质6 若b|a,c|a,则[b,c]|a(此处[b,c]为b,c的最小公倍数).特别地,当(b,c)=1时,bc|a(此处(b,c)为b,c的最大公约数).性质7 若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8 若a≠b,n是自然数,则(a-b)|(a n-b n).性质9 若a≠-b,n是正偶数,则(a+b)|(a n-b n).性质10 若a≠-b,n是正奇数,则(a+b)|(a n+b n).2.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法.下面举例说明.例1. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以,12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 [(2n-1)2+(2n+1)2+(2n+3)2].例2. 若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以 17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例3.若2121,,,p qp qq p--都是整数,并且p>1,q>1.求pq的值.解若p=q,则不是整数,所以p≠q.不妨设p<q,于是是整数,所以p只能为3,从而q=5.所以pq=3×5=15.例4. 试求出两两互质的不同的三个自然数x,y,z,使得其中任意两个的和能被第三个数整除.分析题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.最小的一个:y|(y+2x),所以y|2x,于是数两两互质,所以x=1.所求的三个数为1,2,3.例5. 设n是奇数,求证: 60|6n-3n-2n-1.分析因为60=22×3×5,22,3,5是两两互质的,所以由性质6,只需证明22,3,5能被6n-3n-2n-1整除即可.对于幂的形式,我们常常利用性质8~性质10,其本质是因式分解.证 60=22×3×5.由于n是奇数,利用性质8和性质10,有22|6n-2n,22|3n+1,所以22|6n-2n-3n-1, 3|6n-3n, 3|2n+1,所以3|6n-3n-2n-1,5|6n-1,5|3n+2n,所以5|6n-1-3n-2n.由于22,3,5两两互质,所以60|6n-3n-2n-1.我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k表示,奇数常用2k+1表示,其实这就是按模2分类.又如,一个整数a被3除时,余数只能是0,1,2这三种可能,因此,全体整数可以分为3k,3k+1,3k+2这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.例6. 若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例7. 求证:3n+1(n为正整数)能被2或22整除,但不能被2的更高次幂整除.证按模2分类.若n=2k为偶数,k为正整数,则3n+1=32k+1=(3k)2+1.由3k是奇数,(3k)2是奇数的平方,奇数的平方除以8余1,故可设(3k)2=8x +1,于是3n+1=8x+2=2(4x+1).4x+1是奇数,不含有2的因数,所以3n+1能被2整除,但不能被2的更高次幂整除.若n=2k+1为奇数,k为非负整数,则3n+1=32k+1+1=3·(3k)2+1=3(8x+1)+1=4(6x+1).由于6x+1是奇数,所以此时3n+1能被22整除,但不能被2的更高次幂整除.在解决有些整除性问题时,直接证明较为困难,可以用反证法来证.例8. 已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例9. 设p是质数,证明:满足a2=pb2的正整数a,b不存在.证用反证法.假定存在正整数a,b,使得a2=pb2令(a,b)=d,a=a1d,b=b1d,则(a1,b1)=1.所以与(a1,b1)=1矛盾.练习三1.求证:对任意自然数n,2×7n+1能被3整除.2.证明:当a是奇数时,a(a2-1)能被24整除.3.已知整数x,y,使得7|(13x+8y),求证: 7|(9x+5y).4.设p是大于3的质数,求证:24|(p2-1).5.求证:对任意自然数n,n(n-1)(2n-1)能被6整除.6.求证:三个连续自然数的立方和能被9整除.7.已知a,b,c,d为整数,ab+cd能被a-c整除,求证:ad+bc也能被a-c整除.。
整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.【例1】一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.思路点拨略(重庆市竞赛题)注:确定已知条件来确定自然数,是数学活动中常见的一类问题,解这类问题时往往用到下列知识方法:(1)运用整除性质;(2)确定首位数字;(3)利用末位数字;(4)代数化;(5)不等式估算;(6)分类讨论求解等.【例2】有三个正整数a、b、c其中a与b互质且b与c也互质,给出下面四个判断:①(a+c)2不能被b整除,②a2+c2不能被b整除:③(a+b)2不能被c整除;④a2+b2不能被c整除,其中,不正确的判断有( ).A.4个B.3个 C 2个D.1个思路点拨举例验证.(“希望杯”邀请赛试题)【例3】已知7位数61287xy是72的倍数,求出所有的符合条件的7位数.(江苏省竞赛题)思路点拨7位数61287xy能被8,9整除,运用整数能被8、9整除的性质求出x,y的值.【例4】(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x一a)(x一b)(x一c)(x一d)一9=0,求证;4︳(a+b+c+d).(2)已知两个三位数abc与def的和abc+def能被37整除,证明:六位数abcdef也能被37整除.思路点拨 (1)x 一a ,x 一b ,x 一c ,x 一d 是互不相等的整数,且它们的乘积等于9,于是必须把9分解为4个互不相等的因数的积;(2)因已知条件的数是三位数,故应设法把六位数abcdef 用三位数的形式表示,以沟通已知与求证结论的联系.注:运用整除的概念与性质,建立关于数字谜中字母的方程、方程组,是解数学谜问题的重要技巧.华罗庚曾说:“善于‘退’,足够地,‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍.”从一般退到特殊,从多维退到低维,从空间退到平面,从抽象退到具体……只要不影响问题的求解,对于许多复杂的问题,以退求进是一种重要的解题思想.【例5】 (1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是 .(北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x —y 的值等于( ).A .15B .1C .164D .174(“五羊杯”竞赛题)(3)设N=个1990111,试问N 被7除余几?并证明你的结论. (安徽省竞赛题) 思路点拨 运用余数公式,余数性质,化不整除问题为整除问题.(1)N+1能分别被2,3,4,5,6,7,8,9,10整除,(2)建立关于x ,y 的方程组,通过解方程组求解,(3)从考察11,111,…111111被7除的余数人手.【例6】盒中原有7个球,一位魔术师从中任取几个球,把每一个小球都变成了7个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了7个小球后放回盒中,如此进行,到某一时刻魔术师停止取球变魔术时,盒中球的总数可能是( )A .1990个B .1991个C 1992个D .1993个思路点拨 无论魔术师如何变,盒中球的总数为6k+7个,其中k 为自然数,经验证,1993=331×6+7符合要求.故选D .【例7】在100以内同时被2、3、5整除的正整数有多少个?思路点拨 由于2与3互质,3与5互质,5与2互质(这种特性我们也称为2、3、5两两互质),所以同时被2、3、5整除的整数必然被2×3×5=30整除;另—方面,被30整除的正整数必然可同时被2、3、5整除,因此,在100以内同时被2、3、5整除的正整数就是在100以内被30整除的正整数,显然只有30、60、90三个.【例8】某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除. 思路点拨 显然,号码为9999是幸运券,除这张外,如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券,由于9是奇数,所以m ≠n .由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101│9999,故知所有幸运券号码之和也能被101整除思考:“如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券”,这是解决问题的关键,请你考虑这句话合理性. 若六位数9381ab 是99的倍数,求整数a 、b 的值.∵9381ab能被9整除,∴8+1+a+b+9+3=21+a+b能被9整除,得3+a+b=9k l(k1为整数).①又9381ab能被11整除,∴8—1+a—b+9—3=13+a—b能被11整除,得2+a—b=11k2(k2为整数).②∵0≤a,b≤9 ∴0≤a+b≤18,-9≤a-b≤9.由①、②两式,得3≤<9k1≤21,-7≤11k2≤1l,知k1=1,或k1=2;k2=0,或,而3+a+b与2+a—b的奇偶性相异,而k1=2,k2=1不符合题意.故把k1=1,k2=0代人①、②两式,解方程组可求得a=2,b=4.【例9】写出都是合数的13个连续自然数.思路点拨方法一:直接寻找从2开始,在自然数2,3,4,5,6,…中把质数全部划去,若划去的两个质数之间的自然数个数不小于13个,则从中取13个连续的自然数,就是符合要求的一组解,例如:自然数114,115,116,…,126就是符合题意的一组解.方法二:构造法我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也母14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.【例10】已知定由“若大于3的三个质数a、b、c满足关系式20+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.思路点拨先将a+b+c化为3(a+2b)的形式,说明a+b+c是3的倍数,然后利用整除的性质对a、b被3整除后的余数加以讨论得出a+2b也为3的倍数.∵=a+b+2a+5b=3(a+2b),显然,3│a+b+c若设a、b被3整除后的余数分别为r a、r b,则r a≠0,r b≠0.若r a≠r b,则r a=2,r b=1或r a=1,r b=2,则2a+5b =2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2);3(2P+59+4),即2a+5b为合数与已知c为质数矛盾.∴只有r a=r b,则r a=r b=1或r a=r b=2.于是a+2b必是3的倍数,从而a+b+c是9的倍数.又2a+5b=2×11十5×5=47时,=a+b+c=11+5+47=63,2a+5b =2×13十5×7=61时,a+b+c =13+7+61=81,而(63,81)=9,故9为最大可能值.注:由余数切入进行讨论,是解决整除问题的重要方法.【例11】一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.思路点拨将所有的三位“新生数”写出来,然后设出最大数、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定.【例12】设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba .由“新生数”的定义,得N=abc —cba =(100a+l0b+c)一(100c+l0b+d)=99(a —c).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”. 注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。
第四讲整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.例 1 、一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.例2、证明:形如abcabc的六位数一定能被7、11、13整除.练习:1、已知7位数61287xy是72的倍数,求出所有的符合条件的7位数.2、已知两个三位数abc 与def 的和abc +def 能被37整除,证明:六位数abcdef 也能被37整除.3、若六位数9381ab 是99的倍数,求整数a 、b 的值.例3、若a 、b 、c 、d 是互不相等的整数,且整数x 满足等式(x 一a)(x 一b)(x 一c)(x 一d)一9=0,求证;4︳(a+b+c+d).练习:证明:三个连续的奇数的平方和加1,能被12整除,但不能被24整除例4、已知a 是整数,a 不能被2和3整除,求162a 被24整除的余数练习:n为正整数,求证:30|)n(5n例6、一个三位自然数,当它分别被2,3,4,5,7除时,余数都是1,那么具有这个性质的最小三位数是;最大三位数是.( “希望杯”邀请赛试题)练习:1、一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N的最小值是.2、有棋子若干,三个三个地数余1,五个五个地数余3,七个七个地数余5,则棋子至少有( ).A.208个B.110个C.103个D.100个例7、某公园门票价格对达到一定人数的团队按团队票优惠.现有A、B、C三个旅游团共72人,如果各团单独购票,门票费依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元.(1)这三个旅游团各有多少人?(2)在下面填写一种票价方案,使其与上述购票情况相符.例8、在射箭运动中,每一箭得到的环数或者是“0”,或者是不超过10的自然数。
竞赛讲座02-整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
2013年暑期初一数学竞赛第二十二讲:整数的整除性和奇偶性【例题精选】例1、如果,,a b c 是正整数,a 和b 是奇数,那么23()a b c c +-⋅( )A 、对于c 的所有选择都是奇数;B 、对于c 的所有选择都是偶数;C 、当c 是偶数时为奇数,c 为奇数时为偶数;D 、当c 是奇数时为奇数,c 为偶数时为偶数;1、设a 、b 、c 都是整数,且a b c ++是偶数,试说明a b c +-、b c a +-、c a b +-都 是偶数。
2、若,,a b c 中有两个是奇数,一个是偶数,判断222(2001)(2002)(2003)a b c +⨯+⨯+是 奇数还是偶数?3、设1a ,2a ,…,2011a 是1到2011的整数打乱顺序后,任意一种顺序的排列,请判断 122011(1)(2)...(2011)a a a +⋅+⋅⋅+是奇数还是偶数,并说明理由。
4、甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J 、Q 、K 分别作11、12、13),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?例2、黑板上写上1,2,3,…,1998,按下列规定进行操作:每次擦去其中的任意两个数a和b ,然后写上它们的差(大减小),直到黑板上剩下一个数为止。
问:黑板上剩下的数是奇数还是偶数?为什么?1、黑板上写有1,2,3,…,1997,1998这1998个数,对它们进行如下操作:擦去其中 三个数,再将这三个数和的个位数字补写在黑板上,例如擦去5,13,1998后添6,再如擦去6,6,38后添0,等等。
如果经过998次操作后,黑板上只剩下两个数,一个是25,则另一个数是什么?2、在1,2,3,…,1989之间填上“+”或“—”,求和时可以得到最小的非负数是多少?例3、设有m 只茶杯,开始时杯口都朝上,把茶杯随意翻转,规定每翻转n 只,称为一次翻动,翻动过的茶杯允许再翻。
北师大版七下数学1.7.1整式的除法说课稿2一. 教材分析北师大版七下数学1.7.1整式的除法是本节课的主要内容。
在这一节中,学生将学习如何进行整式的除法运算。
整式除法是代数中的一个重要概念,它不仅是解决实际问题的需要,也是学习高级数学的基础。
在本节课中,学生将通过具体的例子,掌握整式除法的基本步骤和方法。
二. 学情分析在进入本节课的学习之前,学生已经掌握了整式的加减法和乘法,对代数的基本概念有一定的了解。
但学生在进行整式除法运算时,可能会遇到困难,如不能正确地将被除式和除式对齐,或者在每一步的运算中出现错误。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和帮助。
三. 说教学目标本节课的教学目标有三:1.让学生掌握整式除法的基本概念和步骤。
2.培养学生运用整式除法解决实际问题的能力。
3.提高学生的数学思维能力和逻辑推理能力。
四. 说教学重难点本节课的重难点是整式除法的步骤和运算规则。
学生需要理解并掌握如何将被除式和除式对齐,如何进行每一步的运算,以及如何判断除法运算的结果是否正确。
五. 说教学方法与手段在本节课的教学中,我将采用讲解法、示范法、练习法和讨论法相结合的教学方法。
首先,我会通过讲解和示范,向学生介绍整式除法的基本概念和步骤。
然后,我会让学生进行练习,巩固所学的知识。
在练习过程中,我会学生进行讨论,分享彼此的心得和经验。
最后,我会对学生的学习情况进行总结和评价。
六. 说教学过程1.导入:通过一个实际问题,引出整式除法的概念。
2.讲解:讲解整式除法的基本概念和步骤。
3.示范:用具体的例子进行示范,让学生理解和掌握整式除法的运算规则。
4.练习:让学生进行练习,巩固所学的知识。
5.讨论:学生进行讨论,分享彼此的心得和经验。
6.总结:对学生的学习情况进行总结和评价。
七. 说板书设计板书设计如下:步骤一:将被除式和除式对齐步骤二:将除式的第一项写在商的第一个位置步骤三:用除式的第一项去除被除式的第一项,将结果写在第一步的下方步骤四:将得到的商写在商的第二个位置步骤五:用除式的第一项去除被除式的第一项,将结果写在第一步的下方……步骤六:判断除法运算的结果是否正确八. 说教学评价教学评价将从学生的学习情况、学生的解题能力和学生的课堂表现三个方面进行。
北师大版七年级下册数学说课稿:1.7.1《整式的除法》一. 教材分析《整式的除法》是北师大版七年级下册数学的一节重要内容。
本节课主要介绍了整式除法的基本概念和运算方法。
通过本节课的学习,学生能够理解整式除法的意义,掌握整式除法的运算规则,并能够运用整式除法解决实际问题。
在教材中,整式除法被安排在代数运算的章节中,与整式的加减乘法相互联系。
在学习本节课之前,学生已经掌握了整式的加减法和乘法运算,这为学习整式除法提供了基础。
整式除法不仅是代数运算的重要组成部分,也是后续学习更复杂代数运算的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整式的加减法和乘法运算有一定的了解。
然而,学生在学习整式除法时可能会面临一些困难。
首先,整式除法与整式加减乘法的运算规则有所不同,学生需要理解和适应新的运算规则。
其次,整式除法涉及到了除数和商的运算,学生需要理解除数和商之间的关系。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,并给予学生足够的练习机会。
三. 说教学目标1.知识与技能目标:学生能够理解整式除法的意义,掌握整式除法的运算规则,并能够运用整式除法解决实际问题。
2.过程与方法目标:通过小组合作和探究活动,学生能够培养运算能力,提高解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣,培养坚持不懈的学习精神。
四. 说教学重难点1.教学重点:学生能够掌握整式除法的运算规则,并能够运用整式除法解决实际问题。
2.教学难点:学生能够理解除数和商之间的关系,并能够正确进行整式除法的运算。
五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法和小组合作法进行教学。
首先,我会通过提问的方式引导学生思考整式除法的意义和运算规则。
然后,我会学生进行小组合作和探究活动,让学生通过讨论和实践来解决问题。
此外,我还会利用多媒体教学手段,如PPT和数学软件,来进行教学展示和解释。
竞赛讲座02 -整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又(11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c= ③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a(bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少? 解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z 等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。