狭义相对论2(动力学)
- 格式:ppt
- 大小:542.01 KB
- 文档页数:18
狭义相对论中力学的基本方程全文共四篇示例,供读者参考第一篇示例:狭义相对论是物理学中的一个分支,描述了高速运动的物体和引力场中的物体之间的相互作用。
在狭义相对论中,力学是一个重要的研究领域,它涉及物体的运动和受力情况。
在狭义相对论中,力学的基本方程是描述物体受力和运动的数学公式。
本文将介绍狭义相对论中力学的基本方程。
我们需要了解狭义相对论的基本原理。
狭义相对论是由爱因斯坦在1905年提出的,它与经典力学和牛顿力学有着本质上的不同。
在狭义相对论中,时间和空间是相互联系的,物体的运动速度越快,时间的流逝速度就越慢。
质量也受速度影响,质量随着速度的增加而增加。
这些原理对力学方程的推导和理解具有重要意义。
在狭义相对论中,最基本的力学公式是质点的动力学方程,即狭义相对论的牛顿第二定律。
这个方程描述了物体的加速度与受力之间的关系。
在经典力学中,牛顿第二定律可以写成F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
在狭义相对论中,这个公式需要进行修正,考虑到了速度的影响。
质点的动力学方程可以写成:F = dp/dt其中F是物体所受的合力,p是物体的动量,t是时间。
这个方程描述了力对物体动量的影响。
在狭义相对论中,动量与速度有关,动量可以表示为p=mv,其中m是物体的质量,v是物体的速度。
动力学方程可以进一步展开为:F = d(mv)/dt = m(dv/dt) + v(dm/dt)这个方程描述了力对速度的影响,考虑了速度的变化对质量的影响。
当物体的速度接近光速时,质量变化会导致动量的变化,从而影响物体的受力情况。
除了动力学方程,狭义相对论中还有能量方程和动量守恒定律。
能量方程描述了物体的能量与受力之间的关系,可以写成:E = mc^2其中E是物体的能量,m是物体的质量,c是光速。
这个方程描述了质量和能量之间的等价关系,也是相对论力学中的基本方程之一。
动量守恒定律描述了物体在瞬时碰撞过程中动量守恒的原理。
狭义相对论探讨(二)作者:刘海军来源:《科技风》2020年第33期摘要:首次更加深入地对光速不变原理进行了全面的探讨,指出其根本问题是光速不和任何宏观物体的速度发生惯性牵连,更不会和刚性物体的速度发生惯性牵连。
首次对洛伦兹变换的推导过程进行了深入细致的探讨,指出多处疑惑不解的地方。
关键词:光速不变原理;洛伦兹变换;闵可夫斯基四维时空坐标一、绪论从静系S原点O出发,沿X轴向右,以v匀速运动的火车这个刚性物体,为动系S′原点O′的体系,是爱因斯坦创建狭义相对论最重要的工具。
人们通常把它称为“爱因斯坦火车”,在相对论中到处都有它的身影,特别是在光钟、同时性、洛伦兹变换的证明及其应用中出现的最多。
我们在学习相对论的过程中发现,各种版本的书籍对同一个问题的论述,经常出现前后矛盾、相互抵触的地方,现列举如下,与有兴趣的读者共同商榷。
二、惯性系关于惯性系的界定有种种说法,有的说是牛顿定律适用的参考系,有的说是相互作匀速直线运动的参考系。
这些说法都不太严谨。
东北大学王燕生教授是这样界定的,“一个远离其他一切物体,而且没有自转的物体是惯性参考系,一切相对于该物体作匀速直线运动的参考系也是惯性参考系。
牛顿定律就是在这样的参考系中成立的。
”远离其他一切物体,就是不受其他外力作用,没有加速度。
没有自转,就是没有法向加速度。
比较实用的惯性系是:地面参考系、地心参考系、日心参考系,不过,它们只是相对而言更接近于惯性参考系而已,仍然有自转或公转加速度。
最严格的惯性系是以选定的1535颗恒星的平均静止的位形作为基准的FK4参考系,但也不能说它就是一个绝对惯性系,只是相对于地面参考系、地心参考系和日心参考系要更好一些而已。
这就是说,地面参考系并不是严格的惯性参考系,只是一种近似。
可是,相对论不管是对同时性的界定、时间的界定,还是对光速不变的界定,都把地面参考系认为是绝对惯性系。
如果地面参考系不能作为绝对惯性系的话,爱因斯坦对“静系时间”和“同时性”的定义与论述就不能成立,他的“静系的钟”“同步的钟”“利用发生在火车车厢中点的同一个人身上的两件事的同时性这一已知概念来给发生在不同地点(车厢两端)的两件事的同时性下定义”就没有任何意义。
狭义相对论公式及证明单位符号单位符号坐标: m (x, y, z) 力: N F(f)时间: s t(T) 质量:kg m(M)位移: m r 动量:kg*m/s p(P)速度: m/s v(u) 能量: J E加速度: m/s^2 a 冲量:N*s I长度: m l(L) 动能:J E k路程: m s(S) 势能:J E p角速度: rad/s ω力矩:N*m M角加速度:rad/s^2α功率:W P一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt(2)a=dv/dt, v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。
(2)牛二:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上。
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r2,G=6.67259*10-11m3/(kg*s2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。
同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。
)二:狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。
狭义相对论牛顿
狭义相对论是阿尔伯特爱因斯坦在1905年发表的题为《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。
“狭义”表示它只适用于惯性参考系。
这个理论的出发点是两条基本假设:狭义相对性原理和光速不变原理。
理论的核心方程式是洛伦兹变换(群)(见惯性系坐标变换)。
狭义相对论预言了牛顿经典物理学所没有的一些新效应(相对论效应),如时间膨胀、长度收缩、横向多普勒效应、质速关系、质能关系等。
狭义相对论已经成为现代物理理论的基础之一:一切微观物理理论(如基本粒子理论)和宏观引力理论(如广义相对论)都满足狭义相对论的要求。
这些相对论性的动力学理论已经被许多高精度实验所证实。
狭义相对论不仅包括如时间膨胀等一系列推论,而且还包括麦克斯韦-赫兹方程变换等。
狭义相对论需要使用引入张量的数学工具。
狭义相对论是对牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。
现在对于物理理论新的分类标准,是以其理论是否是决定论来划分经典与非经典的物理学,非量子理论都可以叫经典或古典理论。
在此意义上,狭义相对论仍然是一种经典的理论。
狭义相对论两个基本原理第一个基本原理是相对性原理。
相对性原理包含两部分:相对性原理的运动学形式和相对性原理的动力学形式。
相对性原理的运动学形式指出,物理定律在所有等速运动的参考系中都成立,而不论这些参考系之间的相对运动如何。
也就是说,在相对于以一些速度作匀速直线运动的参考系而言,物理现象的规律也同样适用于以其他任意速度作匀速直线运动的参考系中。
这个原理的实质是:物体的运动状态有多种可能,而它们都以相对其他物体的速度来描述。
相对性原理的动力学形式表明,在不受力的惯性系中,物体的运动状态是匀速直线运动或静止。
这意味着,不受力的物体会保持它们的运动状态不变。
从更广义的角度来看,这个原理还暗示了所有非重力的力都必须等效于参考系的运动。
第二个基本原理是光速不变原理。
光速不变原理指出,光在真空中的传播速度对于所有的惯性观察者来说都是相同的,无论观察者的速度如何。
换句话说,不论观察者是静止的还是以任何速度相对于光源运动,他们都会测得光速相同。
这与我们通常对速度相加的直觉不同,但实验证据已经证明了这一点。
这两个基本原理构成了狭义相对论的基础,对于我们理解时空的结构有重要的意义。
首先,相对性原理的运动学形式告诉我们,物体的运动状态是相对性的,即与观察者的运动状态有关。
这进一步推动了我们对时空结构的重新认识,引出了后来对时空几何的研究。
其次,相对性原理的动力学形式告诉我们,仅仅通过观察物体的运动状态,我们无法区分出它们所处的参考系。
这导致了狭义相对论中的质能关系,即质量和能量之间的等效性。
质能关系的著名公式E=mc²描述了质量和能量之间的转换关系,它在核物理和粒子物理研究中具有重要的应用。
综上所述,狭义相对论建立在两个基本原理之上:相对性原理和光速不变原理。
这两个原理引导了我们对物体运动方式和时空结构的新认识,对当代物理学的发展产生了深远的影响。
单元20 相对论动力学一. 选择、填空题1. 观测者甲以c 54的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L 、截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则1) 甲测得此棒的密度为LSm =0ρ; 2)乙测得此棒的密度为LSm 925=ρ。
2. 匀质细棒静止时质量为m 0,长度l 0,当它沿棒长方向作高速匀速直线运动时,测得长为l ,那么棒的运动速度2)(1l l c v -=;该棒具有的动能200)1(c m l l E k -=。
3. 设电子静止质量为M e ,若将一个电子从静止加速到速率0.6c ( c 为真空中光速),需做功241c M A e =。
4. 一静止质量为m 0,带电量为q 的粒子,其初速为零,在均匀电场E 中加速,在时刻t 时它所获得的速度是2202)(cm qEt qEct +。
如果不考虑相对论效应,它的速度是qEt m 。
经过时间t 加速后粒子的速度v 、质量220/1c v m m -=根据相对论动量定理:mv qEt =,220/1cv v m qEt -=求得速度大小:2202)(cm qEt qEct v +=如果不考虑相对论效应,v m qEt 0=,0m qEt v =二. 计算题1. 已知电子的静能为0.511 Mev ,若电子动能为0.25 Mev ,则它所增加的质量∆m 与静止质量m 0的比值近似等于多少电子的相对论能量:0E E E k +=,k E E E E =-=∆0k 2E mcE ==∆∆,2k cE m =∆,200E E cm E m m k k ==∆∆m 与静止质量m 0的比值:49.00=∆m m2. 某一宇宙射线中的介子的动能207c M E k =,其中M 0是介子的静止质量,试求在实验室中观察到它的寿命是它的固有寿命的多少倍。
因为k E mcE ==2∆∆,20207)(c m cm m =-,08m m =,代入m m =得到:22/11m m cv =-,8/1122=-cv ,代入22/1cv -=ττ, 得到:08ττ=3. 设快速运动的介子的能量约为MeV E 3000=,而这种介子在静止时的能量为MeV E 1000=,若这种介子的固有寿命是s 60102-⨯=τ,求它运动的距离(真空中光速s m c /109979.28⨯=)。
狭义相对论公式及证明单位符号单位符号坐标: m (x, y, z) 力: N F(f)时间: s t(T) 质量:kg m(M)位移: m r 动量:kg*m/s p(P)速度: m/s v(u) 能量: J E加速度: m/s^2 a 冲量:N*s I长度: m l(L) 动能:J E k路程: m s(S) 势能:J E p角速度: rad/s ω力矩:N*m M角加速度:rad/s^2α功率:W P一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt(2)a=dv/dt, v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。
(2)牛二:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上。
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r2,G=6.67259*10-11m3/(kg*s2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。
同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。
)二:狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。
狭义相对论狭义相对论根本原理:1. 根本物理定律在所有惯性系中都保持一样形式的数学表达式,因此一切惯性系都是等价的。
2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。
假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。
Ⅰ洛伦兹变换现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。
将①代入②:x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②:ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/cct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2k=22/11cv -将k 代入各式即为洛伦兹变换: x ’=22/1cv vt x --y ’=y z ’=z t ’=222/1/cv c vx t --或有x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立,x’=k(1-v/c)k(1+v/c)x ’ k=22/11cv -Ⅱ同时的相对性S 中取A 〔x 1,y,z,t 1〕和B 〔x 2,y,z,t 2〕,同时发出一光脉冲信号,即t 1=t 2,且x 1≠x 2。