狭义相对论(2)
- 格式:ppt
- 大小:1.52 MB
- 文档页数:38
狭义相对论的公式:S(R⁴,η_αβ)。
狭义相对论是阿尔伯特·爱因斯坦在1905年发表的题为《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。
狭义相对论是对艾萨克·牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。
广义相对论包括如下几条基本假设:1、广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。
用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。
2、爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。
相对论公式是什么呢?相对论公式:1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv。
2、狭义相对论:S(R4,η_αβ)。
3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)。
4、相对长度公式L=Lo*√(1-v^2/c^2)Lo。
5、相对质量公式M=Mo/√(1-v^2/c^2)Mo。
6、相对时间公式t=to*√(1-v^2/c^2)to。
相对解释:相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。
相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。
相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。
相对论的所有公式狭义相对论力学(注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。
)1.基本原理:(1)相对性原理:所有惯性系都是等价的。
(2)光速不变原理:真空中的光速是与惯性系无关的常数。
三言两语让你理解相对论理解相对论的途径:光速不变——狭义相对论——等效原理——广义相对论——时空弯曲。
一、光速不变狭义相对论很短,只有几页。
它要表达的意思更短,只有一句话:不管观察者如何运动,被观察的光速不变。
从这句看似简单的话可以得出一些非常奇妙的结论,这些结论严重违背了我们的日常经验,但现在都被证明是正确的。
假设一列火车以时速300公里往北跑,一辆汽车以时速150公里也往北跑,汽车里的人会发现,火车的速度是每小时150公里。
结论就是:物体运动的速度不仅取决于他自身的速度,也取决于观察者的运动速度。
这个结论只适用于低速运动的物体(比如火车、比如地球的运动等),一旦速度加快到光速(每秒三十万公里)或者接近光速,这个日常经验就失效了,因为大量精确的实验验证了:光速是不变的。
也就是说,光速是个固定值,是个常数,它不随着观察者的运动而改变。
再举例:假设一束光以每秒30万公里往北运动,一艘宇宙飞船以每秒15万公里也往北运动,宇宙飞船里面的人会发现这束光多快呢?照我们的日常经验来看,这束光的速度应该是每秒钟15万公里。
— 1 —错!宇宙飞船里面的人会发现,这束光的速度仍然是每秒钟30万公里。
二、狭义相对论举例:假设一束光以每秒30万公里往北运动,一艘宇宙飞船以每秒15万公里也往北运动,在地球上静止不动的人看来,一秒钟后,宇宙飞船距离那束光15万公里。
记住:是1秒钟后!但是,宇宙飞船里面的人会感觉这段时间是多长呢?现在的已知条件是:宇宙飞船距离那束光15万公里,光速是每秒钟30万公里。
则:15万公里/(除以)时间=30万公里/(除以)1秒钟则:时间等于0.5秒也就是说,地球上的人过去了一秒钟,以时速15万公里运动的人会感觉时间只过去了半秒钟。
结论:速度可以改变时间。
你运动的越快,时间会过得越慢。
当你以光速运动时,时间就会静止。
再举例:博尔特以每秒10米参加百米赛跑,旁边为他加油的人过去1秒钟后,博尔特只感觉过去了三十万分之299990秒,也就是0.99996667秒。
什么是相对论和狭义相对论?相对论是一种物理学理论,用于描述物体在高速和强引力场下的运动和相互作用。
相对论分为狭义相对论和广义相对论两个部分。
狭义相对论是由爱因斯坦于1905年提出的,它是一种描述高速运动物体行为的理论。
狭义相对论基于两个基本假设:光速不变和等效原则。
光速不变指的是在任何惯性参考系中,光速在真空中的数值都是恒定不变的,约为每秒299,792,458米。
等效原则指的是在任何惯性参考系中,物理定律的形式都是相同的。
根据狭义相对论,物体的运动和观测结果会受到时间和空间的扭曲。
时间扭曲指的是在高速运动物体的参考系中,时间会变慢,这被称为时间膨胀效应。
空间扭曲指的是物体的长度会在高速运动方向上收缩,这被称为长度收缩效应。
此外,狭义相对论还引入了质能等效原理,即质量和能量之间存在着等效关系(E=mc^2)。
狭义相对论还提出了相对论动力学,即描述物体在高速运动下的运动规律。
根据相对论动力学,物体的质量会随着速度的增加而增加,这被称为质量增加效应。
此外,狭义相对论还引入了四维时空的概念,即将时间和空间统一为时空的一个整体。
广义相对论是由爱因斯坦于1915年提出的,它是一种描述引力的理论。
广义相对论基于等效原则,并提出了新的引力观念。
根据广义相对论,物体的运动和相互作用是由于时空的弯曲造成的,而不是传统的牛顿引力。
这种时空弯曲是由物体的质量和能量分布所引起的。
广义相对论还预言了黑洞的存在,黑洞是一种密度极高的天体,它的引力非常强大,甚至连光也无法逃逸。
此外,广义相对论还解释了宇宙的膨胀和结构的形成,为宇宙学提供了理论基础。
相对论在物理学和天文学中有着广泛的应用。
它为我们提供了理解高速运动、引力和宇宙结构的框架,并为各种实验和观测结果提供了解释。
通过相对论,人们能够更好地理解和探索宇宙的奥秘,推动科学和技术的发展。
狭义相对论的概念马赫和休谟的哲学对爱因斯坦影响很大。
马赫认为时间和空间的量度与物质运动有关。
时空的观念是通过经验形成的,绝对时空无论依据什么经验也不能把握。
休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。
而时间总是由能够变化的对象的可觉察的变化而发现的。
1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。
而牛顿的绝对时空观念是错误的。
不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。
他用光速不变和相对性原理推出了洛仑兹变换。
创立了狭义相对论。
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。
在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。
现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。
有一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。
四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大,即在我们的自然世界中没有绝对静止的物体。
在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。
在四维时空里,动量和能量实现了统一,称为能量动量四矢。
另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。
值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。
狭义相对论狭义相对论(Special Relativity)是主要由爱因斯坦创立的时空理论,是对牛顿时空观的改造。
伽利略变换与电磁学理论的不自洽到 19 世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组 在经典力学的伽利略变换下不具有协变性。
而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。
迈克尔孙寻找以太的实验 为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参 考系(以太)成立。
根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太) 的速度;在相对于“以太”运动的参考系中,光速具有不同的数值。
实验的结果——零结果 但斐索实验和迈克耳逊-莫雷实验表明光速与参考系的运动无关。
洛仑兹坐标变换 洛仑兹变换是描述狭义相对论空间中各参考系间关系的变换。
它最早由洛仑兹从以太说推出,用以解决经典力学与经典电磁学间的矛盾(即迈克尔孙-莫雷实验的零结果)。
后被爱因斯坦用于狭义相对论。
1632 年,伽利略出版了他的名著《关于托勒密和哥白尼两大世界体系的对话》。
书中那位地动派的“萨尔维阿蒂”对上述问题给了一个彻底的回答。
他说:“把你和一些朋友关在一条大船甲板下的主舱里,让你们 带着几只苍蝇、蝴蝶和其他小飞虫,舱内放一只大水碗,其中有几条鱼。
然后,挂上一个水瓶,让水一滴 一滴地滴到下面的一个宽口罐里。
船鱼向各个方向随便游动,水滴滴进下面的罐口,你把任何东西扔给你 的朋友时,只要距离相等,向这一方向不必比另一方向用更多的力。
你双脚齐跳,无论向哪个方向跳 过的 距离都相等。
当你仔细地观察这些事情之后,再使船以任何速度前进,只要运动是匀速,也不忽左忽右地 摆动,你将发现,所有上述现象丝毫没有变化。
你也无法从其中任何一个现象来确定,船是在运动还是停 着不动。
即使船运动得相当快,你跳向船尾也不会比跳向船头来得远。
狭义相对论和广义相对论的基本原理狭义相对论和广义相对论是现代物理学的基本理论之一,它们解释了时间、空间、质量和能量之间的关系。
以下是对这两种相对论的基本原理的讲解。
一、狭义相对论的基本原理狭义相对论是爱因斯坦在1905年提出的理论,它提出了一个与牛顿力学不同的观点,即光速在所有惯性参考系中都是常数。
这一原则被称为“光速不变原理”,它是狭义相对论的核心。
基于“光速不变原理”,狭义相对论提出了以下原则:1. 所有物理定律在所有惯性参考系中都是相同的。
2. 物体的质量随着速度的增加而增加,速度越快,增加的质量越大。
3. 时间和空间是相对的,没有绝对的标准。
4. 能量和质量是等价的,它们之间可以相互转化。
这些原则反映了狭义相对论的基本特征,它推翻了牛顿力学中的一些假设,如时间和空间的绝对性、万有引力的绝对性等。
狭义相对论为我们提供了更加准确和完整的描述物理规律的框架,同时也为后来的广义相对论的发展提供了基础。
二、广义相对论的基本原理广义相对论是爱因斯坦在1916年提出的理论,它是在狭义相对论的基础上进一步发展而来的。
广义相对论初衷是想解释引力的本质,它基于“等效原理”提出了新的物理规律。
广义相对论的基本原理包括:1. 等效原理:自由下落的物体在惯性参考系中运动是匀速直线运动。
2. 引力不是一种真正的力,而是由物体所在空间弯曲而产生的一种现象。
3. 时间和空间的弯曲程度受到物质分布的影响。
4. 光线会沿着最短路径传播。
这些原理反映了广义相对论的基本特征,它描述了物质的引力性质和空间的几何形态之间的关系。
广义相对论证明了狭义相对论中的“光速不变原理”是任何物质和能量影响的最高速度,同时也为黑洞、宇宙学等领域的研究提供了新的工具和思路。
狭义相对论和广义相对论是现代物理学中最基本的理论之一,它们提供了理解时空的新视角和解释物理规律的新方法。
【狭义相对论】狭义相对论建立在“光速不变原理”之上,它意味着在不同的参考系中,光的速度是恒定不变的。
相对论狭义与广义狭义相对论与广义相对论是爱因斯坦相对论理论的两个重要分支。
相对论是现代物理学的基石之一,彻底颠覆了牛顿力学的观念,对于人类对于时空本质的理解产生了深远影响。
本文将分别对狭义相对论和广义相对论进行探讨,并阐述它们对现代物理学的重要性。
狭义相对论,是由爱因斯坦于1905年提出的,是指在惯性系内的物体运动情况的相对性。
它以光速不变原理和等效原理为基础,提出物理规律在所有惯性系中均具有相同的形式。
相对论中最重要的概念是时空的统一,即将三维的空间和一维的时间合并为四维时空。
通过引入时空坐标和四维矢量,狭义相对论描述了物体在不同的惯性系中的时间变化、空间长度变化以及同时事件的相对性。
狭义相对论的最重要结论之一是相对性原理,即物理规律在所有惯性系中都是相同的。
这意味着物理定律的形式在不同的坐标系中都是不变的,特别是在相对速度接近光速的情况下。
另一个重要结论是因果关系的不变性,即事件的因果关系在不同的惯性系中是相同的。
狭义相对论还揭示了时间的相对性和质量能量的等效性,即时间的流逝是相对的,而质量能量和动量之间遵循著名的E=mc^2公式。
广义相对论是狭义相对论的进一步发展,由爱因斯坦于1915年提出。
广义相对论考虑了引力的影响,提出了时空的曲率概念。
相对论中的质量和能量并不是引力的根源,引力是由时空的几何性质决定的。
广义相对论描述了质量能量对时空的弯曲效应,并通过爱因斯坦场方程式将引力与物质和能量的分布联系起来。
广义相对论的一个重要预言是引力波的存在,这是由于时空弯曲所导致的物质和能量的振动传播。
这一预言在2015年由利果夫探测器首次实验观测到,并为爱因斯坦理论的验证提供了重要证据。
广义相对论还解释了宇宙膨胀的原因,即大爆炸理论,描述了宇宙的起源和演化。
狭义相对论和广义相对论对于现代物理学的重要性不可忽视。
相对论颠覆了牛顿力学的观念,提出了新的时空观念和物理定律,对于粒子物理学、天体物理学和宇宙学等领域产生了重大影响。