高中物理竞赛方法集锦 等效法
- 格式:doc
- 大小:1.65 MB
- 文档页数:9
巧妙使用等效思维解答高中物理试题等效思维是高中物理解题中一种非常重要的思维方式,它允许我们将复杂的物理问题简化为更易于处理的形式,或者将未知的问题转化为已知的问题来求解。
以下是一些巧妙使用等效思维解答高中物理试题的方法和示例:1. 等效替代法原理:在某些情况下,一个复杂的物理系统或过程可以被另一个更简单但效果相同的系统或过程所替代。
示例:在力学中,当分析多个力的共同作用时,可以使用力的合成与分解来等效替代。
例如,一个物体同时受到两个大小相等、方向相反的力的作用,这两个力的合力为零,可以等效为物体不受外力作用。
2. 等效电路法原理:在电路分析中,复杂的电路可以通过变换和简化,等效为简单的电路模型,从而方便求解。
示例:在求解复杂电路中的电流、电压或功率时,可以通过串并联电路的等效变换,将电路简化为简单的串并联组合,然后利用欧姆定律、基尔霍夫定律等求解。
3. 等效重力场法原理:在解决非惯性系中的物理问题时,可以引入一个等效的重力场,使得问题在惯性系中求解。
示例:在加速上升的电梯中,物体受到的支持力大于其重力,可以等效为物体在一个重力加速度更大的重力场中静止不动。
这样,就可以利用牛顿第二定律等惯性系中的规律来求解。
4. 等效过程法原理:在某些情况下,一个复杂的物理过程可以等效为一系列简单过程的组合。
示例:在求解变加速直线运动的位移时,如果加速度随时间变化,可以将其等效为多个匀变速直线运动的组合,然后分别求解每个阶段的位移并累加。
5. 等效质量法原理:在解决涉及多个物体相互作用的问题时,可以将多个物体看作一个整体,引入等效质量来简化问题。
示例:在连接体问题中,如果两个物体通过轻绳或轻杆相连,且加速度相同,可以将它们看作一个整体,引入等效质量(等于两物体质量之和),然后利用牛顿第二定律求解整体的加速度和受力情况。
应用技巧识别等效条件:在解题过程中,首先要识别出哪些条件或过程可以等效替代。
建立等效模型:根据等效条件建立等效模型,将复杂问题简化为简单问题。
高中奥林匹克物理竞赛解题方法一、整体法整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。
整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。
因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。
灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。
例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。
板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。
二、隔离法隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。
隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。
例9 如图2—9所示,四个相等质量的质点由三根不可伸长的绳子依次连接,置于光滑水平面上,三根绳子形成半个正六边形保持静止。
今有一冲量作用在质点A ,并使这个质点速度变为u ,方向沿绳向外,试求此瞬间质点D 的速度.解析 要想求此瞬间质点D 的速度,由已知条件可知得用动量定理,由于A 、B 、C 、D 相关联,所以用隔离法,对B 、C 、D 分别应用动量定理,即可求解.以B 、C 、D 分别为研究对象,根据动量定理:对B 有:I A —I B cos60°=m B u …………①I A cos60°—I B =m B u 1…………②对C 有:I B —I D cos60°=m C u 1……③I B cos60°—I D =m c u 2…………④对D 有:I D =m D u 2……⑤由①~⑤式解得D 的速度u u 1312三、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
.高中物理比赛—办理曲线运动的科学方法一、微元法例 1:一质量为 M 、平均散布的圆环,其半径为 r ,几何轴与水平面垂直,若它能经受的最鼎力为 T ,求此圆环能够绕几何轴旋转的最大角速度。
分析 :因为向心力 F = mr ω 2 ,当ω一准时, r 越大,向心力越大, 所以要想求最鼎力 T 所对应的角速度ω,r 应取最大值。
如图 3— 6 所示,在圆环上取一小段L ,对应的圆心角为Δθ ,其质量可表示为m =M ,受圆环对它的力为 T ,2则同上例剖析可得:2Tsin=mr ω 22因为Δθ很小,所以: sin≈,即: 2T2=M r ω 2222解得最大角速度:ω=2 TMr例 2:如图 3— 11 所示,小环 O 和 O ′分别套在不动的竖直杆AB 和 A ′B ′上,一根不可伸长的绳索穿过环O ′,绳的两头分别系在A ′点和 O 环上,设环 O ′以恒定速度v 向下运动,求当∠ AOO ′ = α时,环 O 的速度。
分析 :O 、 O ′之间的速度关系与O 、 O ′的地点相关,即与α角相关,所以要用微元法找它们之间的速度关系。
设经历一段极短时间t , O ′环移到 C ′, O 环移到 C ,自 C ′与 C 分别作为 O ′ O 的垂线 C ′ D ′和 CD ,从图中看出。
OC=OD,O ′C ′=OD,所以:coscosOC + O ′C ′=OD O D①cos因Δα极小,所以 EC ′≈ ED ′, EC ≈ ED ,进而:OD + O ′ D ′ ≈OO ′- CC ′②因为绳索总长度不变,故:OO ′- CC ′ = O ′ C ′ ③由以上三式可得: OC+O ′C ′=OC,cos即: OC = O ′ C ′(1 -1)cos等式两边同除以t 得环 O 的速度为: v 0 = v(1 - 1)cos等效法.在一些物理问题中,一个过程的发展、一个状态确实定, 常常是由多个要素决定的, 在这一决定中,若某些要素所起的作用和另一些要素所起的作用同样,则前一些要素与后一些要素是等效的,它们便能够相互取代,而对过程的发展或状态确实定,最后结果其实不影响,这类以等效为前提而使某些要素相互取代来研究问题的方法就是等效法。
社团讲义电阻等效方法一■对稗法这种方法适用于具有一定对称性的电路,通过对等势点 拆、台和对称电路的“折叠”,使电路简化为基本的串、并联形 式.例1如图19-1所示J2个阻值都是R 的电阻,组成一立 方体框架,试求A£间的电阻Rw 和A 、B 间的电阻与 G 间的电阻R 的.图 19-2例2如图19-6所示的正方形网格由24个电阻力 =8 0 的电阻丝构成,电池电动势E-fi. 0 U,内电阻不计*求通过电 池的电流.图 19-6S 19-1 图 19-5甲乙例3波兰数学家谢尔宾斯基在1916年研究了一个有触的几何图形.他格如图19飞甲所示的一块黑色的等边r角形ABC的每一个边长平分为二,再把平分点联起来,此三角形被分成四个相等的等边三角形,然后将中间的等边三角形挖掉*得到如图19*乙的图形「接着再将剩下的黑色的三个等边三角形按相同的方法处理,经过第二次分割就得到图19-8丙的图形,经三次分割后,又蹲到图19-3 T 的图形.这是带有自相似特征的图形.这样的图形又称为谢尔宾斯基楼垫.它的自相似性就是将其中一个小单元(例如图19 8 丁中的△8JK)适当放大后,就得到图19 8乙的图形.如果这个分割过程继续下去,直至无穷,谢尔宾斯基楼垫中的民色部分将被不断地镂空,a 19-8数学家对这类几何图形的自相似性进行了研究,创造和发展出了一门称为“分形几何学”的新学科,近三十多年来,物理学家将分形几何学的研究成果和方法用于有关的物理领域,取得了有意义的进展.我们现在就在这个背景下研究按谢尔宾斯基镂壁图形的各边构成的电阳网结的等效电阻问题工设如图19-8中所示的三角形ABC边长八的电阻均为门经一次分割得到如图19-8 乙所示的图形,其中每个小三角形边长的电阻是原三角形ABC的边长的电阻厂的二分之一।经二次分割得到如图19-8 丙所示的图形,其中每个小二角形边长的电阻是原三角形月BC的边长的电阻r的四分之一.三次分割得到如图19-8 T 所示的图形,其中每个小三角形边长的电阻是原三角形ABC 的边长的电阻r的八分之一.(1)试求睡三次分割后,三角形ABC任意两个顶点间的等效电阻.(2)试求按此期律作了n次分割后•三角形ABC任意两个顶点间的等效电阻二.电流鬓加法对于一些并不具备直观的对称性的电路,可根据电流的可叠加性,重新设W电流的分布方式,将原本不对称问题转化成具有对林性的问题加以解决.电场具有可♦加性是众所周知的I几个点电荷引起的电场叠加,其场强施可蚪结为某一个点电荷引起的电场场强I同样. 直流电路中也存在这样的叠加关系:各电源单独存在时的电路电流代数更加后与所有电源同时存在的电路电流分布是一样的,任一直流电路电流分布,总可归纳为只含某一个宜流电源的电路电流分布.这就是电流的可叠加性.下面的例子展示通过电流叠加法寻求等效电阻.例4 "阳”宇形电阻理网络如图19 11所示•每小段电阻丝的电阻均为凡试求网络中A W阚点间的等效电阻尺用1911 图19-12例5如图19T4所示的一个无限的平面方格导线网,豆接两个结点的导战的电阻为物,如果将A和B接入电路,求此导线网的等效电二二二二二二二限克AH, ---- ——।力一物例6有一无限大平面导悻网络,它由大小相同的正六边形网眼组成,如图19 i5所示,所有六边形每边的电阻均为R D求间位结点4、白间的等效电阻.图1915三.Y—△变换法这是利用Y型连接电阻与△型连接电阻间等价关系的结论,通过电阻Y型连接与△型连接方式的互换,达到蔺化电路成单饨串联或并联的目的.我们先推导电阻Y一△连接的等价关系.如图19T7甲、乙所示的两个三端电路ABC与刈一用电路叫做△型连接电路,乙电路叫做¥型连接阻路,每端流入电流及答电阻阻值已标示在图上,两个电路完全等效.即对底端电流相等11勇=11(1丹=1*.1(:=[「),对应两端电压相等 1 口栖=Ug 《U M=U W.Uw=UG,因而区分不出虚线框内电阻的连接方式.fl 19 17当△一Y变换时,Y型连接每两端间等效电阻为r> _R A^R A C T>_R A J]R B C n _ RjI?R HCR尸F—四--------- 「国---------其中A=R AB + Rae + R E.倒了用变换法求例1网络中A、G间的电阻氏腐.例8如图19-19所示,个立方体原来用12根相同的电阻丝构成的立方体椎架,每根电阻丝的电阻均为「,现将其中一根拆去. 求A,B两点间的电阻.分析与解先将框架“压扁”成图19-C 20所示的平面图形,每边电阻不变.而后对明心、「三点间作Y变换,替换电阻依次为F全?电路连图"191、如图可二'K叶米,图甲中二端也容网络为△型网稿儿.图乙中三端电容网络为Y型网络元,试导出其间的等效变换公式.图.19 262、如图19-36所示是由电阻丝连接成的无限电阻网络, 已知每一段电阻丝的电阻均为n成求A,B两点之间的总电阻.3、三个相同的均匀金属圆圈网两相交地连接成如图19-37所示的网络.已知短一个金属圆圜的电阻都是R,显求图中A、E两点间的等效电阻R..图19-36图19-37。
高考物理解题方法:等效法1500字高考物理解题方法:等效法物理是高考中的重要科目之一,也是许多考生难以攻克的一门科目。
在高考中,物理题目的解答方式多种多样,但其中一种常用且有效的方法是等效法。
等效法是将一个物理问题转化为一个相对简单且容易解答的等效问题,通过解答等效问题来得出原问题的答案。
本文将从原理、基本步骤以及实例解析三个方面对等效法进行详细介绍。
一、原理物理问题的等效法的原理基于以下两个假设:1. 物理定律和规律是普适的,不受具体条件的影响。
这意味着,相同的物理定律可以适用于不同的物理情境。
2. 物理现象可以用数学模型来描述和解析。
等效法通过建立适当的数学模型,将实际问题抽象成数学问题,从而简化问题的求解过程。
基于以上原理,等效法的核心思想是,通过将复杂的问题转化为简化的等效问题,利用数学方法解答等效问题,从而得出原问题的答案。
二、基本步骤等效法的解题过程可以分为以下几个基本步骤:1. 抽象:将实际问题抽象成数学模型,即将问题中的实际物理量用符号表示,并确定问题中所牵涉到的物理定律和规律。
2. 变换:通过适当的等效变换,将原始问题转化为一个等效问题。
在变换过程中,可以利用一些已知条件或者性质来简化问题。
3. 求解:通过求解等效问题,得出等效问题的答案。
4. 反变换:将等效问题的答案通过逆变换转化为原问题的答案。
三、实例解析下面通过一个具体的例子来说明等效法的解题过程。
例题:一个边长为L的正方形绕其对角线转动,求转动过程中动能的最大值。
解析:1. 抽象:设正方形的质量为m,角速度为ω,根据角动量守恒定律,可以得到Lω=const。
2. 变换:将问题转化为一个等效问题,即将正方形的转动转化为质点的移动。
考虑到正方形绕对角线转动时,质心沿着对角线方向运动。
因此,可以将问题等效为质点在对角线方向上的匀速直线运动。
3. 求解:根据匀速直线运动的动能公式,动能K=1/2mv²,其中v是质点的速度。
《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法高中物理解题常用的几种思维方法中学物理解题中涉及到许多科学思维方法,由此而产生的解题方法和解题技巧很多,这里将高中物理解题中经常要用到的几种科学思维方法作一些介绍。
1.等效法等效法是从效果的等同的角度出发把复杂的物理现象、物理过程转化为理想的、简单的、等效的物理现象和过程来研究和处理问题的一种科学思维方法。
中学物理中,等效的思想应用很广泛,如力的合成与分解、运动的合成与分解、单摆的等效摆长和等效重力加速度等都是等效法的具体应用。
在学习物理的过程中,若能将等效法渗透到对物理过程的分析中去,不仅可以使我们对物理问题的分析和解答变得简捷,而且对灵活运用知识,促进知识、技能和能力的迁移,都会有很大的帮助。
①力的等效。
合力与分力具有等效性,利用这种等效性,可将物体所受的多个恒力等效为一个力,也可将一个力按力的效果等效分解为多个力,从而降低解题的复杂性和难度,使问题得到快速、简捷的解答。
②运动的等效。
建立等效运动的方法是多样的。
利用合运动与分运动的等效性,可将一个复杂的运动分解为几个简单的、熟知的运动。
通过发散思维将间断的匀加速运动等效为一个完整的、连续的匀加速运动。
通过逆向思维将匀减速运动等效为一个相反方向的匀加速运动等。
③电路的等效。
有关电路分析和计算的题目,虽然涉及到的物理过程和能量的转化情况较为单一,但是在元器件确定的情况下,线路的连接方式却是千变万化的。
多数电路中电子元件的串并联关系一目了然,不需要对电路进行等效转换,但有些电路图中的元件的连接方式并非一下就能看明白,这就需要在计算之前对电路的连接方式进行分析,并进一步画出其等效电路图。
学会画等效电路图是中学阶段必须具备的能力之一。
④物理模型的等效。
物理模型的等效就是对不熟悉的物理模型与熟悉的物理模型作分析比较,找出二者在某方面的等效性,从而将熟悉模型的已知结论应用到不熟悉的物理模型上去的过程。
四、等效法方法简介在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法.等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解.赛题精讲例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解.由题意得:gv v t v d θθθsin 2cos cos 2000⋅=⋅= 可解得抛射角 202arcsin 21v gd =θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度.解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解.因加速度随通过的距离均匀增加,则此运动中的平均加速度为na n n a an n an a a a a a 2)13(232)1(2-=-=-++=+=末初平 由匀变速运动的导出公式得2022v v L a B -=平解得 naLn v v B )13(20-+=例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s 1=1m 的A 点时,速度大小为s cm v /201=,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小?2=v 老鼠从A 点到达B 点所用的时间t=?解析 我们知道当汽车以恒定功率行驶时,其速度v 与牵引力F 成反比,即,v =P/F ,由此可把老鼠的运动等效为在外力以恒定的功率牵引下的弹簧的运动.由此分析,可写出kxPF P v == 当11,v v s x ==时 将其代入上式求解,得2211s v P s v P k ==所以老鼠到达B 点时的速度s cm v s s v /1020211212=⨯==再根据外力做的功等于此等效弹簧弹性势能的增加,21222121ks ks Pt -= 代入有关量可得)(21212211s s s v P Pt -⋅=由此可解得s v s s s t 5.72.012122)(22112122=⨯⨯-=-=此题也可以用图像法、类比法求解.例4 如图4—2所示,半径为r 的铅球内有一半径为2r的 球形空腔,其表面与球面相切,铅球的质量为M.在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球(可以看成质点),求铅球对小球的引力.解析 因为铅球内部有一空腔,不能把它等效成位于球心的质点. 我们设想在铅球的空腔内填充一个密度与铅球相同的小铅球△M ,然后在对于小球m 对称的另一侧位置放另一个相同的小铅球△M ,这样加入的两个小铅球对小球m 的引力可以抵消,就这样将空腔铅球变成实心铅球,而结果是等效的.带空腔的铅球对m 的引力等效于实心铅球与另一侧△M 对m 的引力之和. 设空腔铅球对m 的引力为F ,实心铅球与△M 对m 的引力分别为F 1、F 2. 则F=F 1-F 2 ①经计算可知:M M 71=∆,所以 22178)(L GmM L M M m G F =∆+= ②图4—2222)2(7)2(r L GmMr L M m GF -=-∆= ③ 将②、③代入①式,解得空腔铅球对小球的引力为])2(7178[2221r L LGmM F F F --=-=例5 如图4-3所示,小球长为L 的光滑斜面顶端自由下滑,滑到底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大小为碰撞前速度大小的54,求小球从开始下滑到最终停止于斜面下端时,小球总共通过的路程. 解析 小球与挡板碰撞后的速度小于碰撞前的速度,说明碰撞过程中损失能量,每次反弹距离都不及上次大,小球一步一步接近挡板,最终停在挡板处. 我们可以分别计算每次碰撞垢上升的距离L 1、L 2、……、L n ,则小球总共通过的路程为L L L L s n ++++=)(221 ,然后用等比数列求和公式求出结果,但是这种解法很麻烦.我们假设小球与挡板碰撞不损失能量,其原来损失的能量看做小球运动过程中克服阻力做功而消耗掉,最终结果是相同的,而阻力在整个运动过程中都有,就可以利用摩擦力做功求出路程.设第一次碰撞前后小球的速度分别为v 、1v ,碰撞后反弹的距离为L 1,则θθsin 21sin 211212mgL mv mgL mv == 其中222111)54(,54===v v L L v v 所以碰撞中损失的动能为)25161(2121212212-=-=∆mv mv mv E k 根据等效性有k E L L f ∆=+)(1 解得等效摩擦力θsin 419mg f =通过这个结果可以看出等效摩擦力与下滑的长度无关,所以在以后的运动过程中,等效摩擦力都相同. 以整个运动为研究过程,有θsin ⋅=⋅mgL s f解出小球总共通过的总路程为.941L s =此题也可以通过递推法求解,读者可试试.例6 如图4—4所示,用两根等长的轻质细线悬挂一个小球,设L 和α已知,当小球垂直于纸面做简谐运动时,其周期为 . 解析 此题是一个双线摆,而我们知道单摆的周期,若将又线摆摆长等效为单摆摆长,则双线摆的周期就可以求出来了.将双线摆摆长等效为单摆摆长αsin L L =',则此双线摆的周期为g l g L T /sin 2/2αππ='='例8 如图4—5所示,由一根长为L 的刚性轻杆和杆端的小球组成的单摆做振幅很小图4—3图4—4的自由振动. 如果杆上的中点固定另一个相同的小球,使单摆变成一个异形复摆,求该复摆的振动周期.解析 复摆这一物理模型属于大学普通物理学的内容,中学阶段限于知识的局限,不能直接求解. 如能进行等效操作,将其转化成中学生熟悉的单摆模型,则求解周期将变得简捷易行.设想有一摆长为L 0的辅助单摆,与原复摆等周期,两摆分别从摆角α处从静止开始摆动,摆动到与竖直方向夹角为β时,具有相同的角速度ω,对两摆分别应用机械能守恒定律,于是得22)2(21)(21)cos (cos 21)cos (cos l m l m mg mgl ωωαβαβ+=-+- 对单摆,得 200)(21)cos (cos l m mgl ωαβ=-联立两式求解,得l l 650=故原复摆的周期为.65220gl g l T ππ== 例9 粗细均匀的U 形管内装有某种液体,开始静止在水平面上,如图4—6所示,已知:L=10cm ,当此U 形管以4m/s 2的 加速度水平向右运动时,求两竖直管内液面的高度差.(g=10m/s 2)解析 当U 形管向右加速运动时,可把液体当做放在等效重力场中,g '的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与g '方向垂直.设g '的方向与g 的方向之间夹角为α,则4.0tan ==gaα 由图4—6可知液面与水平方向的夹角为α, 所以,.04.044.010tan m cm L h ==⨯=⋅=∆α例10 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v .解析 小球同时受到重力和电场力作用,这时也可以认为小球处在等效重力场中. 小球受到的等效重力为mg mg mg G 332)33()(22=+=' 等效重力加速度g m G g 332='='图4—6图4—7与竖直方向的夹角︒=30θ,如图4—7甲所示.所以B 点为等效重力场中轨道的最高点,如图4—7,由题意,小球刚好能做完整的圆周运动,小球运动到B 点时的速度R g v B '=在等效重力场中应用机械能守恒定律22021)cos (21Bmv R R g m mv ++'=θ 将g '、B v 分别代入上式,解得给小球的初速度为gR v )13(20+=例11 空间某一体积为V 的区域内的平均电场强度(E )的定义为∑∑==∆=∆++∆+∆∆++∆+∆=ni ini ii nn n VVE V V V V E V E V E E 11212211如图4—8所示,今有一半径为a 原来不带电的金属球,现 使它处于电量为q 的点电荷的电场中,点电荷位于金属球外, 与球心的距离为R ,试计算金属球表面的感应电荷所产生的电 场在此球内的平均电场强度.解析 金属球表面的感应电荷产生的球内电场,由静电平衡知识可知等于电量为q 的点电荷在金属球内产生的电场,其大小相等,方向相反,因此求金属球表面的感应电荷产生的电场,相当于求点电荷q 在金属球内产生的电场.由平均电场强度公式得∑∑∑∑∑=====∆=∆=∆=∆∆=ni ni ii i ni i i i ni ini ii V V r kq V V E V E VVVE E 1121111 设金属球均匀带电,带电量为q ,其密度为Vq=ρ,则有 ∑∑==∆=∆=ni ni iii i r q k r V k E 11221ρ ∑=∆ni ii r q k 12为带电球体在q 所在点产生的场强,因而有2R kqE =,方向从O 指向q. 例11 质量为m 的小球带电量为Q ,在场强为E 的水平匀强电场中获得竖直向上的初速度为0v . 若忽略空气阻力和重力加速度g 随高度的变化,求小球在运动过程中的最小速度.图4—7甲图4—8解析 若把电场力E q 和重力mg 合成一个力,则小球相当于只受一个力的作用,由于小球运动的初速度与其所受的合外力之间成一钝角,因此可以把小球的运动看成在等效重力G '(即为合外力)作用下的斜抛运动,而做斜抛运动的物体在其速度方向与G '垂直时的速度为最小,也就是斜抛运动的最高点,由此可见用这种等效法可以较快求得结果.电场力和重力的合力方向如图4—9所示, 由图所示的几何关系可知Eqmg=θtan 小球从O 点抛出时,在y 方向上做匀减速直线运动,在x 轴方向上做匀速直线运动. 当在y 轴方向上的速度为零时,小球只具有x 轴方向上的速度,此时小球的速度为最小值,所以2200min )()(cos Eq mg Eqv v v +==θ此题也可以用矢量三角形求极值的方法求解,读者可自行解决. 例12 如图4—10所示,R 1、R 2、R 3为定值电阻,但阻值未 知,R x 为电阻箱.当R x 为Ω=101x R 时,通过它的电流Ω==18;121x x x R R A I 为当时,通过它的电流.6.02A I x =则当A I x 1.03=时,求电阻.3x R解析 电源电动势ε、内电阻r 、电阻R 1、R 2、R 3均未知, 按题目给的电路模型列式求解,显然方程数少于未知量数,于 是可采取变换电路结构的方法.将图4—10所示的虚线框内电路看成新的电源,则等效电 路如图4—10甲所示,电源的电动势为ε',内电阻为r '. 根据 电学知识,新电路不改变R x 和I x 的对应关系,有),(11r R I x x '+='ε ① ),(22r R I x x '+=='ε ② )(33r R I x x '+='ε ③由①、②两式,得Ω='='2,12r V ε, 代入③式,可得Ω=1183x R例13 如图4—11所示的甲、乙两个电阻电路具有这样的特性:对于任意阻值的R AB 、图4—9图4—10图4—10甲R BC 和R CA ,相应的电阻R a 、R b 和R c 可确定. 因此在对应点A 和a ,B 和b 、C 和c 的电位是相同的,并且,流入对应点(例如A 和a )的电流也相同,利用这些条件 证明:CABC ABCAAB a R R R R R R ++=,并证明对R b 和R c 也有类似的结果,利用上面的结果求图4—11甲中P 和Q 两点之间的电阻.解析 图4—11中甲、乙两种电路的接法分别叫三角形接法和星形接法,只有这两种电路任意两对应点之间的总电阻部分都相等,两个电路可以互相等效,对应点A 、a 、B 、b 和C 、c 将具有相同的电势.由R a b =R AB ,R ac =R AC ,R bc =R BC ,对a b 间,有CABC AB BC AB CA AB BC AC AB b a R R R R R R R R R R R R +++=++=+-1)11(① 同样,a c 间和bc 间,也有CA BC AB CA BC CA AB BC AB CA c a R R R R R R R R R R R R +++=++=+-1)11(② CABC AB CA BC BC AB CA AB BC c b R R R R R R R R R R R R +++=++=+-1)11(③ 将①+②-③得:CABC ABCAAB a R R R R R R ++=再通过①-②+③和③+②-①,并整理,就得到R b 和R C 的表达式.CABC ABACBC c CABC ABBCAB b R R R R R R R R R R R R ++=++=下面利用以上结果求图4—12乙中P 和Q 两点之间的电阻. 用星形接法代替三角形接法,可得图4—12乙所示电路,PRQS 回路是一个平衡的惠斯登电桥,所以在RS 之间无电流,因此它与图4—12丙所示电路是等效的. 因此PQ 之间的总电阻R PQ 可通过这三个并联电阻求和得到.图4—114—12甲4—12乙4—12丙Ω=++=-4)61181361(1PQ R 例14 如图4—13所示,放在磁感应强度B=0.6T 的匀强磁场中的长方形金属线框a bcd ,框平面与磁感应强度方向垂直,其中a b 和bc 各是一段粗细均匀的电阻丝R ab =5Ω,R bc =3Ω,线框其余部分电阻忽略不计.现让导体EF 搁置在a b 、cd 边上,其有效长度L=0.5m ,且与a b 垂直,阻值R EF =1Ω,并使其从金属框ad 端以恒定的速度V=10m/s 向右滑动,当EF 滑过ab 长的4/5距离时,问流过a E 端的电流多大?解析 EF 向右运动时,产生感应电动势ε,当EF 滑过a b 长的54时,电路图可等效为如图4—13甲所示的电路.根据题设可以求出EF 产生的感应电动势ε,V BLV 3)105.06.0(=⨯⨯==εΩ=Ω=Ω=3,1,4bc Eb aE R R R此时电源内阻为导体EF 的电阻,Ω==1EF R r ,则电路中的总电阻为Ω=+++⋅+=3)()(bc Eb aE bc Eb aE R R R R R R r R电路中的总电流为.1A RI ==ε∴通过a E 的电流为A I aE 5.0=例15 有一薄平凹透镜,凹面半径为0.5m ,玻璃的折射 率为1.5,且在平面上镀一层反射层,如图4—14所示,在此 系统的左侧主轴上放一物S ,S 距系统1.5m ,问S 成像于何处?解析 本题可等效为物点S 先经薄平凹透镜成像,其像为 平面镜的物,平面镜对物成像又为薄平凹透镜成像的物,根据 成像规律,逐次求出最终像的位置.根据以上分析,首先考虑物S 经平凹透镜的成像S ', 根据公式11111f P P =+' 其中)(1)15.01)(15.1()11)(1(1121--=∞---=--=m R R n f 图4—13图4—13甲图4—14故有m P P 6.015.11111-='-=+'成像在左侧,为虚像,该虚像再经平凹透镜成像S ''后,其像距为m P P P 6.0122='-=-='成像在右侧,为虚像,该虚像再经平凹透镜成像S ''',有)(11,6.0,11112333--=='=='+m fm P P f P P 其中 故m P P 375.016.01133-='-=+'成虚像于系统右侧0.375m 处此题还可用假设法求解.。