电动机点动
- 格式:ppt
- 大小:4.06 MB
- 文档页数:3
电动机的点动与连续控制电路图解
方法一:用复合按钮
点动控制控制过程相同
连续运行控制过程相同
此种控制缺点:动作不够可靠,有可能点动启动按钮SB3的常闭接点和常开接点不能同时返回而造成所带动的机械不能到达预定位置(具体情况是:点动停止时,常开已经返回,而常闭不能或未及时返回,导致电动机多运行一段时间或停不下来)。
方法二:加中间继电器
连续运行控制过程相同
SB:点动启动
SB2:连续运行启动
SB1:停止
此种控制方式,用合闸中间继电器常开接点与点动启动按钮SB并联,较好地避免了方法一的缺陷,点动控制和连续运行相对独立。
电动机点动工作原理
电动机点动是指在交流电源的作用下,电动机的转子转动,其转矩通过机械装置使定子旋转运动的一种控制方法。
电动机点动在机械方面主要有以下几种应用。
(1)电动机起动,由于交流电源是不稳定的电源,而在起
动时的瞬间电流又很大,所以在起动过程中必须要有一定的时间才能使转子旋转。
当把这种时间适当延长,使其接近于零的瞬间电流再接通电源时,转子就会立即旋转。
这种起动方式称为“起动时间短的点动”。
(2)在电动机传动装置中,为了减小电动机转速与机械装
置之间的摩擦力矩,需要对电动机进行调速控制。
它有两种方法:一种是控制电动机转速,另一种是控制机械装置的转速。
前者称为“调速”。
在这种情况下,需要经常改变电动机转速来使其适
应机械装置的要求。
常用的调速方法有:变速、变极、变速并联等。
(3)在要求起动迅速、停车平稳、操作方便的场合,例如
在电梯中控制电梯运行速度和起升高度等时,需要采用起动迅速、操作方便的点动方式。
—— 1 —1 —。
点动电动机实验报告点动电动机实验报告引言电动机是现代工业中广泛应用的一种电力转换装置,其作用是将电能转化为机械能,驱动各类机械设备。
点动电动机是一种特殊类型的电动机,其特点是可以通过短暂的电流冲击来实现快速启动和停止。
本实验旨在探究点动电动机的工作原理和特性,并通过实验验证其性能。
实验装置与方法本实验使用的点动电动机实验装置包括点动电动机、电源、控制电路和测量仪器。
实验步骤如下:1. 将点动电动机与电源连接,确保电源电压符合电动机额定电压要求。
2. 通过控制电路控制电动机的启动和停止,记录电动机启动和停止所需的时间。
3. 使用测量仪器测量电动机在不同负载下的转速和电流。
实验结果与分析1. 启动与停止时间通过实验记录,我们得到了点动电动机的启动和停止时间。
根据实验结果,我们可以看到点动电动机的启动时间较短,通常在几毫秒到几十毫秒之间。
而停止时间同样较短,也在几毫秒的范围内。
这表明点动电动机具有快速启动和停止的特点,适用于需要频繁启停的应用场景。
2. 负载对转速和电流的影响我们在实验中改变了点动电动机的负载,并测量了不同负载下的转速和电流。
实验结果显示,负载的增加会导致电动机的转速下降,同时电流也会相应增加。
这是因为负载增加会增加电动机的机械负荷,使得电动机需要更多的电能来维持转速。
这一结果与我们的预期相符,也说明了点动电动机的性能。
3. 点动电动机的应用点动电动机由于其快速启动和停止的特点,在许多应用领域都有广泛的应用。
例如,点动电动机常用于机床、印刷机械、纺织机械等需要频繁启停的设备中。
其快速启动和停止可以提高设备的生产效率,并减少能源的浪费。
此外,点动电动机还可以应用于自动门、自动售货机等需要精确控制的场合。
结论通过本实验,我们深入了解了点动电动机的工作原理和特性。
实验结果表明,点动电动机具有快速启动和停止的特点,并且其转速和电流受负载影响。
点动电动机在许多领域有着广泛的应用,可以提高设备的效率和节约能源。
三相异步电动机点动工作原理
三相异步电动机是一种常见的电动机类型,它的点动工作原理如下:
1. 三相异步电动机的结构
三相异步电动机由定子和转子两部分组成。
定子是由三个相互平衡的线圈组成的,分别称为A相、B相和C相。
转子则是由导体条或铜棒组成的,它们被安装在转轴上,并可以自由旋转。
2. 三相异步电动机的工作原理
当三相交流电源的电压施加在定子上时,电流会在三个线圈之间流动,产生旋转磁场。
这个旋转磁场会引起转子中的导体条或铜棒感应电流,并产生一个与旋转磁场相互作用的磁场。
这个相互作用的磁场会使转子开始旋转,并跟随旋转磁场的变化而改变方向和速度。
3. 点动工作原理
点动是一种控制三相异步电动机启动和停止的方法。
在点动工作中,通过在起动器上按下一个按钮,电源会在短时间内施加一次电压,使电动机启动。
这个过程中,电动机会产生一个短暂的高转矩,以克服转子的惯性和摩擦力,从而使电动
机快速启动。
在点动工作中,起动器上的按钮通常称为点动按钮。
当按下点动按钮时,起动器会将电源施加在电动机上,使电动机启动。
当松开点动按钮时,电动机会继续运行,直到停止按钮按下或电源被切断。
总之,三相异步电动机的点动工作原理是通过施加一次电压来启动电动机,并产生一个短暂的高转矩,以克服转子的惯性和摩擦力,从而使电动机快速启动。
电动机点动控制实训报告《电动机点动控制》一、实训目的经过本次的实训以提高同学们对具有过载保护的点动线路的理解和认识。
经过实训以达到知识和技能相结合的目的;更好的完成学习任务。
同时锻炼同学们的认知能力、技能水平;学会三相异步电动机具有过载保护的点动控制电路的操作和接线方法。
经过实习理解电力拖动以及点动的概念。
二、实训内容1、电动机的点动控制线路,具有过载保护的单相点动控制线路。
详图如下:2、线路分析(1)SB为线路的控制按钮。
(2)工作原理:合上开关QS起动:按下SB→KM线圈获电—停止:放开SB→KM线圈断电释放—按下控制按钮SB,由于接在按钮SB下端的KM线圈通电,KM主触头闭合,电机开始运转;当放开控制按钮SB后,电机停转。
这种线路叫做点动控制线路,由于线路中加装了热继电器,因此线路依然具有过载保护。
同时还兼有欠电压、失电压、短路等保护特点。
三、实训准备1、思想准备这个线路由于是刚开始接触到实习,对电工接线知识还是很欠缺,可能在接线的过程中将某根导线接错,导致整个实习失败。
对此我一定要在实习前细心的钻研图纸,认真的理解原理,虚心的向老师、同学请教,以确保此次实习圆满成功,达到规定的水平。
2、元器件准备序号元件名称元件型号元件数量单位备注1 闸刀开关HK1-30/3 1 只2 熔断器RC1A-153 只3 熔断器RC1A-5 2 只4 交流接触器CJ0-20 1 只5 热继电器JR0-20/3D 1 只6 按钮开关 1 只7 电动机75W 1 台3、工具准备序号工具名称工具型号工具数量单位备注4、材料准备四、实训要求1、正确度要求。
线路只能一次性完成,且100%正确,为总分的40%。
一次上交检查不正确扣去40%总分的1/10,三次上交检查不正确,该项目记为0分,只要线路不正确,该模块总成绩记为0分,需要参与下次的有偿补考。
2、工艺要求主线路用吕芯线,控制回路用铜芯线。
导线的弯折度为90度,但不能借助其它工具进行加工,否则扣分。
电机点动控制与连续控制的实训报告作为机电一体化专业学生,我们在学习电机控制理论的同时,也需要通过实践来掌握实际操作技能。
电机点动控制和连续控制是电机控制中的两种基本方式,本文将结合实践经验,对这两种控制方式进行讲解和分析。
一、实验目的1.了解电机点动控制和连续控制的原理和方法。
3.分析不同控制方式的优缺点和应用范围。
二、实验设备和工具2.交流电机。
3.电阻箱。
4.多用表。
5.电源。
6.电缆等。
三、实验原理1.电机点动控制电机点动控制是一种简单的控制方式,通过点动按钮分别控制电机的启动、停止、正转或反转。
电机点动控制适用于对电机进行频繁的启停或正反转变换的应用场合,比如新设备的调试或部分设备的单一操作。
它的原理是控制电路通过电压和电阻的配合,通过控制电机正、反转和启停的间歇间歇性控制信号输出到电磁继电器,使其通过触点控制电机的启停和正反转。
2.连续控制连续控制是一种连续调节电机转速的方式。
常用的是PID控制,其原理是根据控制器读取的被控对象(电机)的实际转速与设定值之间的误差,输出不同的控制信号控制电机转速。
连续控制适用于需要对物体进行精确控制的场合。
例如电子工业中的温度、湿度、速度、压力等参数控制。
四、实验步骤(1)搭建电路将电机与电源通过电缆连接起来,使用电气直板和电气开关来搭建点动控制电路。
(2)点动控制通过控制开始、停止、正转和反转按钮来控制电机的方向和速度。
(3)记录数据记录每个按钮操作时电机的转速和运行时间。
连接控制器和电源,将电机连接到控制器的输出端口。
(2)控制器参数设定通过控制器调节参数,如设置目标速度值和间隔时间等。
记录控制器输出的每一步输入电压电流信息和对应的电机转速。
五、实验结果及分析通过实验测量,点动控制方式在启动、停止时的响应速度较快,但是在不同的启动和停止过程中,电机的转速波动较大,不够稳定。
这种控制方式适合对周期性运行的设备进行调试和维护。
通过实验测量,连续控制方式在控制电机转速时,响应速度较慢,但是可以通过控制器不断输出调节信号,使电机的运行更加稳定,可靠性更高,适合于对精度要求较高的工业生产。
案例1电动机的点动及连续运行一、问题的提出在生产实践过程中,某些生产机械常要求既能正常起动,又能实现调整位置的点动工作。
试用可编程控制器的基本逻辑指令来控制电动机的点动及连续运行。
图(a )为主电路。
工作时,合上刀开关QS ,三相交流电经过QS ,熔断起FU ,接触器KM 主触点,热继电器FR 至三相交流电动机。
图(b )为最简单的点动控制线路。
起动按钮SB 没有并联接触器KM 的自锁触点,按下SB ,KM 线圈通电,松开按钮SB 时,接触器KM 线圈又失电,其主触点断开,电动机停止运转。
图(c )是带手动开关SA 的点动控制线路。
当需要点动控制时,只要把开关SA 断开,由按钮SB 2 来进行点动控制。
当需要正常运行时,只要把开关SA 合上,将KM 的自锁触点接入,即可实现连续控制。
图(d )中增加了一个复合按钮SB 3 来实现点动控制。
需要点动运行时,按下SB 3 点动按钮,其常闭触点先断开自锁电路,常开触发后闭合接通起动控制电路,KM 接触器线圈得电,主触点闭合,接通三相电源,电动机起动运转。
当松开点动按钮SB 3 时,KM 线圈失电,KM 主触点断开,电动机停止运转。
若需要电动机连续运转,由停止按钮SB 1 及起动按钮SB 2 控制,接触器KM 的辅助触点起自锁作用。
二、硬件配置实现电动机的点动及连续运行所需的器件有:起点按钮SB1 ,停止按钮SB2 ,交流接触器KM ,热继电器JR 及刀开关QS 等。
主电路的连接如图所示。
三、梯形图设计根据输入输出接线圈可设计出异步电动机点动运行的梯形图如图(a )所示。
工作过程分析如下:当按下SB1时,输入继电器X0得电,其常开触点闭合,因为异步电动机未过热,热继电器常开触点不闭合,输入继电器X2 不接通,其常闭触点保持闭合,则此时输出继电器Y0 接通,进而接触器KM 得电,其主触点接通电动机的电源,则电动机起动运行。
当松开按钮SB1 时,X0 失电,其触点断开,Y0 失电,接触点KM 断电,电动机停止转动,即本梯形图可实现点动控制功能。
实验一三相异步电动机点动和自锁控制实验一:三相异步电动机点动和自锁控制一、实验目的1.掌握三相异步电动机点动控制原理和实现方法。
2.掌握三相异步电动机自锁控制原理和实现方法。
3.理解点动与自锁控制在实际应用中的差异及其适用场合。
二、实验原理1.点动控制:通过手动开关或按钮控制电动机的启动和停止,适用于短时间、临时性的控制。
其特点是操作简单,但容易误操作,不安全。
2.自锁控制:利用接触器的辅助触点与启动按钮串联,实现电动机的连续运转。
当按下启动按钮时,接触器吸合,电动机开始运转;当松开启动按钮时,接触器仍然保持吸合状态,电动机继续运转。
自锁控制在长时间连续运转的场合应用广泛,具有安全可靠的特点。
三、实验步骤1.准备实验器材:三相异步电动机、交流接触器、热继电器、按钮开关、导线等。
2.搭建实验电路:根据点动和自锁控制的原理,设计并搭建实验电路。
电路应包括电源部分、控制部分和负载部分。
3.通电前检查:在通电前,检查电路连接是否正确,是否符合电气安全规范。
特别注意电源与负载的连接是否正确,以及导线是否接触良好。
4.点动控制实验:(1)按照电路图连接好电源、控制和负载部分。
(2)按下按钮开关,观察电动机是否启动。
(3)松开按钮开关,观察电动机是否停止。
5.自锁控制实验:(1)在点动控制电路的基础上,添加接触器的辅助触点与启动按钮串联。
(2)按照电路图连接好电源、控制和负载部分。
(3)按下按钮开关,观察电动机是否启动并持续运转。
(4)松开按钮开关,观察电动机是否继续运转。
6.观察与记录:在实验过程中,观察并记录各种操作下的电动机状态,以及接触器的吸合与释放情况。
7.整理实验数据:根据实验观察和记录的数据,分析点动控制和自锁控制在不同场合的适用性。
8.清理实验现场:在实验结束后,断开电源,拆除电路连接,并整理好实验器材。
四、实验结果与分析1.点动控制实验结果表明,当按下按钮时,电动机启动;松开按钮时,电动机停止。
三相异步电动机点动控制工作原理-回复三相异步电动机点动控制工作原理是一种常见的电动机控制方式,它通过改变电动机的供电方式实现电机的启动、停止、加速和减速等控制操作。
本文将逐步阐述三相异步电动机点动控制的工作原理。
第一步,我们需要了解异步电动机的基本结构和工作原理。
异步电动机是一种基于相对转子的感应原理工作的电动机。
它由定子和转子两部分组成。
定子上绕制有三相绕组,通过交流电源供电。
而转子则通过磁场感应作用,由转速略低于旋转磁场速度的自转速度工作。
第二步,我们需要明白电动机的启动原理。
在电动机启动时,定子绕组通电,形成旋转磁场。
然而,由于转子自转速度较低,会感应出一个反向磁场。
这个反向磁场与旋转磁场之间产生了差磁动力,从而引起定子上的电流。
这个电流产生了一个磁场,与初始磁场的方向相同,加强了初始磁场的作用,使得定子旋转速度加快。
第三步,我们需要了解点动控制的概念和用途。
点动控制是一种简单粗暴的控制方式,用于瞬时或短时间内对电机进行开启或关闭操作,常用于起动大功率的三相异步电动机。
点动控制可以在低电压启动电机,以减小启动时的电流冲击,并且可以实现快速的停止和反向运行。
第四步,我们需要介绍点动控制电路的组成和工作原理。
点动控制电路主要由几个关键元件组成:接触器、断路器、控制器和电源。
它们之间的工作原理如下:1. 接触器:接触器是用于控制电动机启动和停止的元件。
当接触器的控制电路得到启动信号时,接触器的触点闭合,使得电源直接供电给电机,电动机开始运行。
反之,当接触器的控制信号失效时,触点打开,电源断开与电机的连接,从而停止电机运行。
2. 断路器:断路器是用于保护电机和电路的元件。
当电机运行时,若发生电流过载或短路等异常情况,断路器会自动切断电路,起到过载保护的作用。
3. 控制器:控制器是点动控制电路的主要控制元件。
它通过控制接触器的闭合和断开,实现电动机的启动、停止和反向运行。
4. 电源:电源提供电流和电压供电给电动机。