3.3.1 二阶系统的单位阶跃响应
- 格式:pptx
- 大小:496.44 KB
- 文档页数:10
1、反馈:输出信号被测量环节引回到输入端参与控制的作用。
2、开环控制系统与闭环控制系统的根本区别:有无反馈。
3、线性及非线性系统的定义及根本区别:当系统的数学模型能用线性微分方程描述时,该系统的称为线性系统。
非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。
根本区别:线性系统遵从叠加原理,而非线性系统不然。
4、传递函数的定义及特点:零初始条件下,系统输出量的拉斯变换与输入量的拉斯变换的比值。
用G〔s〕表示。
特点:1〕、传递函数是否有量纲取决于输入与输出的性质,同性质无量纲。
2〕、传递函数分母中S的阶数必n不小于分子中的S的阶数m,既n=>m ,因为系统具有惯性。
3〕、假设输入已给定,则系统的输出完全取决于其传递函数。
4〕、物理量性质不同的系统,环节和元件可以具有相同类型的传递函数。
5〕、传递函数的分母与分子分别反映系统本身与外界无关的固有特性和系统同外界的关系。
5、开环函数的定义:前向通道传递函数G〔s〕与反馈回路传递函数H(s)之积。
6、时间响应的定义和组成:系统在激励信号作用下,输出随时间的变化关系。
按振动来源分为:零状态响应和零输入响应。
按振动性质:自由响应和强迫响应。
7、瞬态性能指标以及反映系统什么特性:性能指标:上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts、振荡次数N。
这些性能指标主要反映系统对输入的响应的快速性。
8、稳态误差的定义及计算公式:系统进入稳态后的误差。
稳态误差反映稳态响应偏离系统希望值的程度。
衡量控制精度的程度。
稳态误差不仅取决于系统自身结构参数,而且与输入信号有关。
系统误差:输入信号与反馈信号之差。
9、减少输入引起稳态误差的措施:增大干扰作用点之前的回路的放大倍数K1,以及增加这一段回路中积分环节的数目。
10、频率响应的概念:线性定常系统对谐波输入的稳态响应称为频率响应。
11、频率特性的组成:幅频特性和相频特性。
12、稳定性的概念:系统在扰动作用下,输出偏离原平衡状态,待扰动消除后,系统能回到原平衡状态〔无静差系统〕或到达新的平衡状态〔有静差系统〕。
[标签:标题]篇一:自动控制原理试题库(有答案的)自动控制理论试卷(A/B卷闭卷)一、填空题(每空1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过值进行的。
2、复合控制有两种基本形式:即按前馈复合控制。
3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G(s),则G(s)为(用G1(s)与G2(s) 表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率?n?,阻尼比??,该系统的特征方程为,该系统的单位阶跃响应曲线为。
5、若某系统的单位脉冲响应为g(t)?10e?0.2t?5e?0.5t,则该系统的传递函数G(s)为。
6、根轨迹起始于终止于7、设某最小相位系统的相频特性为?(?)?tg?1(??)?900?tg?1(T?),则该系统的开环传递函数为。
8、PI控制器的输入-输出关系的时域表达式是其相应的传递函数为,由于积分环节的引入,可以改善系统的性能。
二、选择题(每题2 分,共20分)1、采用负反馈形式连接后,则( )A、一定能使闭环系统稳定;B、系统动态性能一定会提高;C、一定能使干扰引起的误差逐渐减小,最后完全消除;D、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提高系统的稳定性没有效果()。
A、增加开环极点;B、在积分环节外加单位负反馈;C、增加开环零点;D、引入串联超前校正装置。
3、系统特征方程为D(s)?s3?2s2?3s?6?0,则系统()A、稳定;B、单位阶跃响应曲线为单调指数上升;C、临界稳定;D、右半平面闭环极点数Z?2。
4、系统在r(t)?t2作用下的稳态误差ess??,说明()A、型别v?2;B、系统不稳定;C、输入幅值过大;D、闭环传递函数中有一个积分环节。
5、对于以下情况应绘制0°根轨迹的是()A、主反馈口符号为“-”;B、除Kr外的其他参数变化时;C、非单位反馈系统;D、根轨迹方程(标准形式)为G(s)H(s)??1。
二阶系统的阶跃响应一.实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率nω对系统动态性能的影响。
二.实验内容1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。
3.运行Matlab软件中的simulink仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与理论计算的结果作比较。
三.实验步骤1. 典型环节的simulink仿真分析在实验中观测实验结果时,只要运行Matlab,利用Matlab软件中的simulink仿真功能,以及Matlab编程功能,可以完成常见的控制系统典型环节动态响应。
研究特征参量ζ和nω对二阶系统性能的影响标准二阶系统的闭环传递函数为:2222)()(n n n s s s R s C ωζωω++=二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。
典型二阶系统的结构图如图所示。
不难求得其闭环传递函数为2222)()()(n n n B s s R s Y s G ωζωω++==其特征根方程为222n n s ωζω++=0 方程的特征根: 222n n s ωζω++=0))(()1)(1(2121=--=++s s s s T s T s 式中, ζ称为阻尼比; n ω称为无阻尼自然振荡角频率(一般为固有的)。
当ζ为不同值时,所对应的单位阶跃响应有不同的形式。
当ζ=0.1时的仿真结果当ζ=0.3真结果当ζ=1时的结果当ζ=2时的仿真结果三.实验总结结论:二阶系统的阻尼比ξ决定了其振荡特性ζ< 0 时,阶跃响应发散,系统不稳定;ζ≥ 1 时,无振荡、无超调,过渡过程长;0<ζ<1时,有振荡,ξ愈小,振荡愈严重,但响应愈快;ζ= 0时,出现等幅振荡。
二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。
三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(nn n S S S R S C ωζωω++= (2-1)闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:)(111)(2βωζζω+--=-t Sin e t C d t n式中21ζωω-=n d ,ζζβ211-=-tg。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
二阶系统单位阶跃响应曲线二阶系统单位阶跃响应曲线是描述二阶系统对单位阶跃输入信号的响应特性的一种表示方法。
在控制系统理论中,二阶系统是一种常见的系统类型,其具有较为复杂的动态特性。
对于控制系统的设计和分析来说,了解二阶系统单位阶跃响应曲线的形态和特性具有重要的意义。
首先,我们来研究二阶系统单位阶跃响应曲线的基本形态。
通常情况下,二阶系统的单位阶跃响应曲线呈现出一种振荡的形态。
这是因为二阶系统具有两个自由度,存在两个特征根,所以在系统响应中会出现两个频率成分。
这种振荡的形态通常可以用峰值超调量、峰值时间等指标来描述。
其次,我们需要了解二阶系统单位阶跃响应曲线的参数对其形状的影响。
对于一个给定的二阶系统,其单位阶跃响应曲线的形态主要由系统的阻尼比和角频率来决定。
阻尼比描述了系统的阻尼程度,而角频率则决定了系统的振荡频率。
可以通过调节这两个参数来控制二阶系统单位阶跃响应曲线的形状,以达到我们所需的控制效果。
此外,我们还需要关注单位阶跃响应曲线的稳态误差特性。
单位阶跃输入信号的阶跃函数是一个理想的信号,因此我们希望系统在单位时间内能够达到稳态并输出正确的数值。
单位阶跃响应曲线的稳态误差可以通过观察单位阶跃响应曲线在无穷大时间后的稳定值来评估。
对于理想的二阶系统,稳态误差应该为零,即在无穷大时间后,系统输出应该收敛到单位阶跃信号的幅值。
最后,了解二阶系统单位阶跃响应曲线对于控制系统设计和分析具有重要的指导意义。
通过观察和分析单位阶跃响应曲线的形态和特性,我们可以判断系统的稳定性、阻尼程度、振荡频率等,并根据需求进行参数调节和控制器设计。
这有助于我们更好地理解和掌握二阶系统的动态特性,从而提高控制系统的性能和可靠性。
综上所述,二阶系统单位阶跃响应曲线是描述二阶系统动态特性的重要工具。
了解单位阶跃响应曲线的形状和参数对其影响,以及对稳态误差的分析,对于控制系统设计和分析具有指导意义。
通过深入研究和应用单位阶跃响应曲线,我们能够更好地理解和掌握二阶系统的行为,从而设计出更加高效和可靠的控制系统。
自动控制原理选择题(48学时)1.开环控制方式是按 进行控制的,反馈控制方式是按 进行控制的。
(A )偏差;给定量 (B )给定量;偏差(C )给定量;扰动 (D )扰动;给定量 ( B )2.自动控制系统的 是系统正常工作的先决条件。
(A )稳定性 (B )动态特性(C )稳态特性 (D )精确度 ( A )3.系统的微分方程为 222)()(5)(dt t r d t t r t c ++=,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( D )4.系统的微分方程为)()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( B )5.系统的微分方程为()()()()3dc t dr t tc t r t dt dt +=+,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( C )6.系统的微分方程为()()cos 5c t r t t ω=+,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( D )7.系统的微分方程为 ττd r dt t dr t r t c t ⎰∞-++=)(5)(6)(3)(,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( B )8.系统的微分方程为)()(2t r t c =,则系统属于 。
(A )离散系统 (B )线性定常系统(C )线性时变系统 (D )非线性系统 ( )9. 设某系统的传递函数为:,12186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有: (A )t t ee 2,-- (B )t t te e --, (C )t e t sin - (D )t t te e 2,-- ( )10. 设某系统的传递函数为:,22186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有:(A )t t e e 2,-- (B )t t te e --,(C )t e t sin - (D )t t te e 2,-- ( C )11. 设某系统的传递函数为:,23186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有: (A )t t e e 2,-- (B )t t te e --,(C )t e t sin - (D )t t te e 2,-- ( A )12.时域中常用的数学模型不包括 。