二阶系统的阶跃响应及频率特性
- 格式:pdf
- 大小:199.83 KB
- 文档页数:3
二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。
2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。
3. 进一步了解数字控制的基本原理和实现方法。
实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。
通过向系统输入一个单位阶跃信号,可以使系统达到稳态。
在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。
二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。
欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。
在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。
具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。
2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。
3. 记录系统的超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。
实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。
2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。
3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。
5. 分析实验结果,并总结出二阶系统的阶跃响应特性。
实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。
通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。
我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。
二阶阶跃响应动态性能指标求取二阶系统是控制系统中常见的一种模型,其阶跃响应动态性能指标是评估系统的性能好坏的重要指标。
本文将从二阶系统的阶跃响应的定义、特点和性能指标的求取方法等方面进行阐述。
首先,二阶系统的阶跃响应是指系统在输入为单位阶跃信号时的响应。
假设二阶系统的传递函数为:G(s)=K/(s^2+2ξω_ns+ω_n^2)其中,K为增益,ξ为阻尼比,ω_n为自然频率。
二阶系统的阶跃响应具有以下特点:1.超调量:超调量是指阶跃响应中峰值与系统最终稳定值之间的差值,用百分数表示。
超调量越小,表示系统对阶跃输入的响应越快速、平稳。
2.响应时间:响应时间是指系统从单位阶跃响应开始到稳定的时间。
响应时间越短,表示系统对阶跃输入的响应越迅速。
3.调整时间:调整时间是指系统从初始状态到达超调量指定范围内的时间,一般取超调量为5%。
调整时间越短,表示系统对阶跃输入的响应越快速、平稳。
4.峰值时间:峰值时间是指系统对阶跃输入的响应达到其最大值的时间。
5.匀稳态误差:系统在稳态下的输出与输入的差值,反映系统的控制准确性。
若单位阶跃输入的稳态输出为1,则对于系统的阶跃响应不应有静态误差。
有了以上的定义和特点之后,下面将介绍二阶系统阶跃响应动态性能指标的求取方法。
首先,根据传递函数可求得系统的特征方程:s^2+2ξω_ns+ω_n^2=0然后,通过特征方程可以求得系统的根:s_1=-ξω_n+ω_n√(ξ^2-1)s_2=-ξω_n-ω_n√(ξ^2-1)根据系统根的位置可以对系统的动态性能进行评估。
1.超调量的计算:超调量的计算公式为:MP=e^(-πξ/√(1-ξ^2))其中,MP为超调量,ξ为阻尼比。
2.响应时间的计算:响应时间的计算公式为:t_r=π/ω_d其中,t_r为响应时间,ω_d为峰值时的角频率,可通过特征方程得到:ω_d=ω_n√(1-ξ^2)3.调整时间的计算:调整时间的计算公式为:t_s=4/(ξω_n)其中,t_s为调整时间。
二阶系统的阶跃响应一.实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率nω对系统动态性能的影响。
二.实验内容1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。
3.运行Matlab软件中的simulink仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与理论计算的结果作比较。
三.实验步骤1. 典型环节的simulink仿真分析在实验中观测实验结果时,只要运行Matlab,利用Matlab软件中的simulink仿真功能,以及Matlab编程功能,可以完成常见的控制系统典型环节动态响应。
研究特征参量ζ和nω对二阶系统性能的影响标准二阶系统的闭环传递函数为:2222)()(n n n s s s R s C ωζωω++=二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。
典型二阶系统的结构图如图所示。
不难求得其闭环传递函数为2222)()()(n n n B s s R s Y s G ωζωω++==其特征根方程为222n n s ωζω++=0 方程的特征根: 222n n s ωζω++=0))(()1)(1(2121=--=++s s s s T s T s 式中, ζ称为阻尼比; n ω称为无阻尼自然振荡角频率(一般为固有的)。
当ζ为不同值时,所对应的单位阶跃响应有不同的形式。
当ζ=0.1时的仿真结果当ζ=0.3真结果当ζ=1时的结果当ζ=2时的仿真结果三.实验总结结论:二阶系统的阻尼比ξ决定了其振荡特性ζ< 0 时,阶跃响应发散,系统不稳定;ζ≥ 1 时,无振荡、无超调,过渡过程长;0<ζ<1时,有振荡,ξ愈小,振荡愈严重,但响应愈快;ζ= 0时,出现等幅振荡。
实验四二阶系统的频率响应与频率特性测量一、实验目的1掌握频率特性的实验测试方法,进一步理解频率特性的物理意义2•掌握根据频率响应实验结果绘制Bode图的方法3•根据二阶系统的Bode图,确定系统的数学模型4•掌握二阶系统的频域指标与时域指标的对应尖系二、实验仪器与设备1自动控制原理学习机2•计算机(安装自动控制原理实验系统)3.万用表及接线三、实验原理1.输入、输出波形直接测试法如图4-1所示,给定的被测对象是一个稳定的系统。
由实验系统提供正弦信号,每选择一个频率,即可利用实验系统获得输入、输出随时间变化的曲线,取输出稳定后同周期的输入、输出曲线如图4・2。
图测量被控系统的频率响应图4・2稳定后系统的输入输出曲线幅频特性G(j°)2X m(o) 相频特性ZG(jco) =- * x 360T2.李沙育图形法取被测对象某一选定频率下的输入信号x (t)和输出信号y (t)(去掉不稳定部分),利用实验系统做X-Y图'得到一个椭圆图形‘如图4-3所示。
x(t 2Ym2Y Q)J L2Xm图4-3李沙育图形幅频特性:相频特性:如图4-3,椭圆长轴在第一、三象限尸討若椭圆长轴在第二、四象限,:=180o-sin-1^a2Ym® )随着角频率的增加,大多数情况下椭圆逆时针运动,表明输出信Y( t)滞后于输入号信号X ( t),相位的计算结果要添加一个负号,如果椭圆顺时针运(t)超前于X动,计算结果为正。
(t)'幅值取两倍是为了便于测量。
3.测试频率的选取选取合适的实验测试频率范围是准确确定系统频率特性的尖控制系统多为低通滤波辖y在频率很低时,系统的输出能够复现输入信号,通常,取被测对象转折频率的1/10作为起始测试频率,若对象模型未知,则先确定最大测试频率,方法是先测出输入信号频率为0时输出的幅值Y (0),逐渐增大输入信号频率,直至输岀幅值Ym为丫( 0) / ( 50-100), 此时频率便可确定为最大测试频率,测试频率可以在0与「max之间选取若干点。
二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。
三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(nn n S S S R S C ωζωω++= (2-1)闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:)(111)(2βωζζω+--=-t Sin e t C d t n式中21ζωω-=n d ,ζζβ211-=-tg。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
实验二二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
基于MATLAB的二阶系统的阶跃响应分析阶跃响应分析是研究系统对单位阶跃输入信号的响应过程。
具体来说,本文将通过使用MATLAB对二阶系统的阶跃响应进行分析。
首先,要进行阶跃响应分析,我们需要先建立一个二阶系统模型。
假设我们的二阶系统是一个质量、阻尼、刚度为m、b、k的振动系统。
其动力学方程可以表示为:m*y''(t)+b*y'(t)+k*y(t)=f(t)其中y(t)是系统的位移响应,t是时间,f(t)是单位阶跃输入信号。
为了便于分析,我们可以将上述方程转换为一个常微分方程组。
设x(t)=y(t),则y'(t)=x'(t),y''(t)=x''(t)。
将这些变量代入方程,可以得到:m*x''(t)+b*x'(t)+k*x(t)=f(t)现在,我们可以使用MATLAB进行阶跃响应分析。
首先,我们要定义系统的参数m、b和k。
假设m = 1 kg,b = 0.1 Ns/m,k = 10 N/m。
```MATLABm=1;b=0.1;k=10;```接下来,我们可以建立系统的状态空间模型。
状态空间模型可以表示为x'(t)=A*x(t)+B*f(t),y(t)=C*x(t)+D*f(t)。
通过对系统动力学方程进行变换,我们可以得到状态空间模型的矩阵形式。
```MATLABA=[01;-k/m-b/m];B=[0;1/m];C=[10];D=0;```现在,我们可以使用MATLAB的`step`函数来计算系统的阶跃响应。
```MATLABt=0:0.01:10;u = ones(size(t));sys = ss(A, B, C, D);[y, t] = step(sys, t);```上述代码中,我们定义了时间向量t,以及一个与t长度相同的单位阶跃输入信号向量u。
然后,我们使用`ss`函数建立了状态空间模型sys。
实验四二阶系统的频率响应与频率特性测量一、实验目的1.掌握频率特性的实验测试方法,进一步理解频率特性的物理意义2.掌握根据频率响应实验结果绘制Bode图的方法3.根据二阶系统的Bode图,确定系统的数学模型4.掌握二阶系统的频域指标与时域指标的对应关系二、实验仪器与设备1.自动控制原理学习机2.计算机(安装自动控制原理实验系统)3.万用表及接线三、实验原理1.输入、输出波形直接测试法如图4-1所示,给定的被测对象是一个稳定的系统。
由实验系统提供正弦信号,每选择一个频率,即可利用实验系统获得输入、输出随时间变化的曲线,取输出稳定后同周期的输入、输出曲线如图4-2。
图4-1 测量被控系统的频率响应图4-2 稳定后系统的输入输出曲线幅频特性)(2)(2)(ωωωmmXYjG=相频特性oTtjG360)(⨯∆-=∠ω2.李沙育图形法取被测对象某一选定频率下的输入信号x (t )和输出信号y (t )(去掉不稳定部分),利用实验系统做X-Y 图,得到一个椭圆图形,如图4-3所示。
图4-3 李沙育图形幅频特性:)(2)(2)(ωωωm m X Y j G =相频特性:如图4-3,椭圆长轴在第一、三象限,()()()ωωωφm 01-2Y 2Y sin=若椭圆长轴在第二、四象限,()()()ωωωφm 01-o 2Y 2Y sin-180=随着角频率的增加,大多数情况下椭圆逆时针运动,表明输出信号Y (t )滞后于输入信号X (t ),相位的计算结果要添加一个负号,如果椭圆顺时针运动,Y (t )超前于X (t ),计算结果为正。
幅值取两倍是为了便于测量。
3.测试频率的选取选取合适的实验测试频率范围是准确确定系统频率特性的关键。
控制系统多为低通滤波器,在频率很低时,系统的输出能够复现输入信号,通常,取被测对象转折频率的1/10作为起始测试频率,若对象模型未知,则先确定最大测试频率,方法是先测出输入信号频率为0时输出的幅值Y (0),逐渐增大输入信号频率,直至输出幅值Y m 为Y (0)/(50-100),此时频率便可确定为最大测试频率,测试频率可以在0与max ω之间选取若干点。
二阶系统的阶跃响应的解析解二阶系统的阶跃响应是指当输入信号为阶跃函数时,系统的输出信号随时间的变化情况。
阶跃响应是研究系统动态特性的重要指标之一,可以反映系统的稳定性、动态特性以及对输入信号的响应能力。
本文将从二阶系统的定义、阶跃响应的解析解推导以及实际应用等方面进行论述。
我们先来了解二阶系统的定义。
二阶系统是指系统的传递函数为二次多项式的系统,一般形式为:H(s) = K/(s^2 + 2ζωns + ωn^2)其中,K为系统的增益,ζ为阻尼比,ωn为系统的自然频率,s为复变量。
阶跃响应的解析解是指通过对传递函数进行解析运算,得到的系统输出与时间的函数关系。
对于二阶系统的阶跃响应,可以通过拉普拉斯变换和反变换的方法进行求解。
具体求解过程如下:1. 将传递函数H(s)进行拉普拉斯变换,得到系统的传递函数表达式:H(s) = K/(s^2 + 2ζωns + ωn^2)2. 将输入信号的拉普拉斯变换表达式为1/s,代入传递函数表达式中,得到系统的输出信号的拉普拉斯变换表达式:Y(s) = K/(s(s^2 + 2ζωns + ωn^2))3. 对上述表达式进行部分分式分解,将其分解为多个简单分式的和的形式:Y(s) = A/s + (Bs + C)/(s^2 + 2ζωns + ωn^2)4. 对上述分式进行反变换,得到系统的输出与时间的函数关系:y(t) = A + (Bcos(ωdt) + Csin(ωdt))e^(-ζωnt)其中,A、B、C为待定常数,ωd为系统的阻尼角频率。
通过上述推导过程,我们得到了二阶系统的阶跃响应的解析解。
根据解析解的形式,我们可以看出阶跃响应的特点:随着时间的增加,系统的输出会逐渐趋向于稳定状态,同时存在振荡和衰减的现象。
其中,振荡的频率和衰减的速度受到系统的阻尼比和自然频率的影响。
二阶系统的阶跃响应在实际应用中具有重要的意义。
例如,在控制系统中,阶跃响应可以用来评估系统的性能指标,如超调量、调节时间等。
实验七 二阶系统的特性测量一、实验目的1、掌握二阶网络的构成方法。
2、掌握二阶网络的系统响应特性。
3、了解二阶网络波特图的测量方法。
二、实验内容1、通过阶跃信号观察其阶跃响应。
2、通过正弦信号观察系统的幅频特性,学会绘制波特图。
三、实验步骤1、把二阶系统分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。
2、二阶网络单位阶跃响应测量:函数信号发生器模块产生一频率为1KHz ,峰峰值为5V 左右的方波信号,将方波信号加入到此实验模块的“输入”端。
用示波器测量二阶网络的单位阶跃响应,改变系统的阻尼系数,可以观察不同阻尼情况下的阶跃响应。
与图2-7-2进行比较。
3、二阶网络波特图的测量 幅频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1KHz ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器测量“输出”,观察二阶网络的输出信号。
(3)然后不断增加信号源的输出频率(以二倍频为一步进,即2K 、4K 、6K ……),并保持其输出幅度不变,测量相应频点,并记录下输出信号的幅度、输出信号与输入信号的相位差。
以频率与输出幅度(可换算成相对0点的相对电平值,单位为dB )为变量画出一曲线,即为二阶网络的幅频特性。
相频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1 K ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器的两个探头测量,一个测输出,一个测输入,用李沙育图的方法观察(以45、90、135、180为特征角度)。
不同系统阻尼情况下的幅频和相频特性:先使二阶系统工作在欠阻尼状态下,即1<ξ ,进行观察,可以改变系统的工作阻尼状态,测量过阻尼状态的幅频特性和相频特性。
二阶系统单位阶跃响应曲线二阶系统单位阶跃响应曲线是描述二阶系统对单位阶跃输入信号的响应特性的一种表示方法。
在控制系统理论中,二阶系统是一种常见的系统类型,其具有较为复杂的动态特性。
对于控制系统的设计和分析来说,了解二阶系统单位阶跃响应曲线的形态和特性具有重要的意义。
首先,我们来研究二阶系统单位阶跃响应曲线的基本形态。
通常情况下,二阶系统的单位阶跃响应曲线呈现出一种振荡的形态。
这是因为二阶系统具有两个自由度,存在两个特征根,所以在系统响应中会出现两个频率成分。
这种振荡的形态通常可以用峰值超调量、峰值时间等指标来描述。
其次,我们需要了解二阶系统单位阶跃响应曲线的参数对其形状的影响。
对于一个给定的二阶系统,其单位阶跃响应曲线的形态主要由系统的阻尼比和角频率来决定。
阻尼比描述了系统的阻尼程度,而角频率则决定了系统的振荡频率。
可以通过调节这两个参数来控制二阶系统单位阶跃响应曲线的形状,以达到我们所需的控制效果。
此外,我们还需要关注单位阶跃响应曲线的稳态误差特性。
单位阶跃输入信号的阶跃函数是一个理想的信号,因此我们希望系统在单位时间内能够达到稳态并输出正确的数值。
单位阶跃响应曲线的稳态误差可以通过观察单位阶跃响应曲线在无穷大时间后的稳定值来评估。
对于理想的二阶系统,稳态误差应该为零,即在无穷大时间后,系统输出应该收敛到单位阶跃信号的幅值。
最后,了解二阶系统单位阶跃响应曲线对于控制系统设计和分析具有重要的指导意义。
通过观察和分析单位阶跃响应曲线的形态和特性,我们可以判断系统的稳定性、阻尼程度、振荡频率等,并根据需求进行参数调节和控制器设计。
这有助于我们更好地理解和掌握二阶系统的动态特性,从而提高控制系统的性能和可靠性。
综上所述,二阶系统单位阶跃响应曲线是描述二阶系统动态特性的重要工具。
了解单位阶跃响应曲线的形状和参数对其影响,以及对稳态误差的分析,对于控制系统设计和分析具有指导意义。
通过深入研究和应用单位阶跃响应曲线,我们能够更好地理解和掌握二阶系统的行为,从而设计出更加高效和可靠的控制系统。
二阶电路是指由两个电感和两个电容构成的电路,常用于滤波、放大和振荡等应用。
在二阶电路中,阶跃响应是指当电路输入为阶跃信号时,电路输出的响应情况。
对于一个二阶系统,其阶跃响应可以分为三种情况:
1.无阻尼振荡:当系统存在无阻尼时,即无阻尼系数ζ=0时,系统会出现无阻尼振荡。
此时,系统的输出将会产生一系列周期性的波形,幅值振荡并逐渐趋向于稳定状态。
2.欠阻尼:当系统存在欠阻尼时,即0<ζ<1时,系统的输出将会发生震荡,并逐渐衰
减至稳定状态。
此时,系统的输出将会出现多次衰减的振荡,振荡的频率取决于系统的固有频率ωn和阻尼系数ζ。
3.过阻尼:当系统存在过阻尼时,即ζ>1时,系统的输出将不会发生震荡,而会快速
衰减至稳定状态。
此时,系统的响应将会非常迅速地趋向于稳定状态,但是衰减的速度取决于系统的阻尼系数ζ和固有频率ωn。
总之,二阶电路的阶跃响应会受到阻尼系数ζ、固有频率ωn等多个因素的影响,而不同的参数组合将会导致不同的响应情况。
因此,在实际应用中,需要根据具体的应用需求选择合适的参数组合以及相应的响应方式。
实验二二阶系统的阶跃响应及频率特性
实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的
处理及其与理论计算分析比较的能力。
适用课程:控制工程基础
实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。
B 学习二阶系统阶跃响应曲线的实验测试方法。
C 研究二阶系统的两个重要参数ζ、ω
n
对阶跃瞬态响应
指标的影响。
D 学习频率特性的实验测试方法。
E 掌握根据频率响应实验结果绘制Bode图的方法。
F 根据实验结果所绘制的Bode图,分析二阶系统的主要
动态特性(M
P ,t
s
)。
面向专业:机械类
实验性质:综合性/必做
知 识 点:A《模拟电子技术》课程中运算放大器的相关知识;
B《数字电子技术》课程中采样及采样定理的相关知识;
C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。
学 时 数:2
设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。
材料消耗:运算放大器,电阻,电容,插接线。
要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。
B推导图2所示积分放大器的输出输入时域关系和传递函数。
C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出)
和S
<1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。
<2>.画出系统方框图。
<3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的
传递函数,写出求解过程。
和ζ。
<4>.求取该系统的ω
n
实验地点:教一楼327室
实验照片:实验装置及仪器。