最新弯曲的内力与强度计算习题
- 格式:doc
- 大小:182.50 KB
- 文档页数:14
第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
( × )2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。
三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
9.3. 图示起重架的最大起吊重量(包括行走小车等)为P=40 kN ,横梁AC 由两根No18 槽钢组成,材料为Q235 钢,许用应力[ ]=120MPa 。
试校核梁的强度。
Bzo30A yCPNo18× 23.5m解:(1) 受力分析当小车行走至横梁中间时最危险,此时梁AC 的受力为X C Y C S Ao30 AC D P由平衡方程求得oM 0 S sin 30 3.5 P 1.75 0 S P 40kNC A Ao oX 0 X S cos30 0 X S cos30 34.64 kNC A C A1M 0 Y 3.5 P 1.75 0 Y P 20kNA C C2(2) 作梁的弯矩图和轴力图M35kNm(+)xN(-) x—34.64kN此时横梁发生压弯组合变形, D 截面为危险截面,N 34.64 kN M 35 kN .mmax(3) 由型钢表查得No.18 工字钢Wy3 29.2992 152cm A cm(4) 强度校核3 3MN 34.64 10 35 10maxmax c max 4 62A 2W 2 29.299 10 2 152 10y5.9 115.1 121 MPa 1.05[ ] 故梁AC 满足强度要求。
注:对塑性材料,最大应力超出许用应力在5%以内是允许的。
9.5. 单臂液压机架及其立柱的横截面尺寸如图所示。
P=1600 kN ,材料的许用应力[ ]=160MPa。
试校核立柱的强度。
y c890A DP3800 I I P 50ad16b 16 c16860 B C900 14001400截面I-I2760解:(1) 计算截面几何性2A A 1.4 0.86 1.204 m1 ABCD2A A 1.4 0.05 0.016 0.86 2 0.016 1.105m2 abcd2A A A 0.099m1 2截面形心坐标y cA y A y1 1c2 2cA1.204 0.7 1.105 0.051.4 0.05 0.01620.51 m0.099截面对形心轴的惯性矩12I 3 4I 0.86 1.4 0.7 0.51 1.204 0.24 mzc12I II zc1120.86 2 0.016 1.4 0.05 0.016 31.4 0.05 0.016220.05 0.51 1.105 0.2114mI II 4I I I 0.24 0.211 0.029 mzc zc zc(2) 内力分析截开立柱横截面I-I ,取上半部分PI IMNy c900由静力平衡方程可得上海理工大学力学教研室1N P 1600kN M P 0.9 y c 2256kNm 所以立柱发生压弯变形。
弯曲变形的强度条件和强度计算当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。
如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。
如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。
本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。
图1 平面弯曲一、梁弯曲时的内力——剪力和弯矩梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。
为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。
图2 剪力的正负图3 弯矩的正负例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。
解:(1)求支反力=∑C M:0310126=⨯--⋅AyF,kN7=AyF=∑Y:010=-+ByAyFF,kN3=ByF(2)列内力方程剪力:⎩⎨⎧<<-<<=63kN33kN7)(S xxxF弯矩:⎩⎨⎧≤≤≤≤⋅-⋅-=633mkN)6(3mkN127)(xxxxxM(3)作剪力图和弯矩图二、梁弯曲时的正应力在一般情况下,梁的横截面上既有弯矩又有剪力。
若梁上只有弯矩没有剪力,称为纯弯曲。
本讲主要讨论纯弯曲时横截面上的应力——正应力。
梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。
图4 梁弯曲时的正应力分布图即有yIxMz)(=σ(1)中性轴把截面分成受拉区和受压区两部分,且最大拉应力和最大压应力发生在上下边缘处,其值为max max y I Mz=σ。
令max y I W z z=,即有:zW M =max σ (2)式中,W z 称为抗弯截面系数,它与横截面的几何尺寸和形状有关,量纲为[长度]3,常用单位为mm 3或m 3。
轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。
()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。
()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。
()5.轴力是指杆件沿轴线方向的内力。
()6.内力图的叠加法是指内力图上对应坐标的代数相加。
()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。
9.如图所示,杆件受力P作用,分别用N1、N2、N3和ζ1、ζ2、ζ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力ζ1>ζ2>ζ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A> L B, 所以△L A>△L B (两杆均处于弹性范围内),因此有εA>εB。
()11.因E=ζ/ε,因而当ε一定时,E随ζ的增大而提高。
()12.已知碳钢的比例极限ζp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力ζ=Eε=200×10×0.002=400Mpa。
()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。
()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。
()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。
()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。
()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
43 第7章弯曲强度7-1 直径为d 地圆截面梁,两端在对称面内承受力偶矩为M 地力偶作用,如图所示.若已知变形后中性层地曲率半径为ρ;材料地弹性模量为E .根据d 、ρ、E 可以求得梁所承受地力偶矩M .现在有4种答案,请判断哪一种是正确地.(A)M =E π d 习题7-1图(B) 64ρ M =64ρ (C) E π d4M =E π d (D)32ρM =32ρ E π d 3正确答案是A .7-2关于平面弯曲正应力公式地应用条件,有以下4种答案,请判断哪一种是正确地.(A)细长梁、弹性范围内加载;(B)弹性范围内加载、载荷加在对称面或主轴平面内;(C)细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D)细长梁、载荷加在对称面或主轴平面内.正确答案是C _.7-3长度相同、承受同样地均布载荷q 作用地梁,有图中所示地4种支承方式,考虑,请判断哪一种支承方式最合理.l 5习题7-3图d . 7-4悬臂梁受力及截面尺寸如图所示.图中地尺寸单位为mm .求:梁地1-1截面上A 、−⎜ ⎟ A z B 两点地正应力.习题7-4图解:1. 计算梁地1-1截面上地弯矩:M =⎛1×103N ×1m+600N/m ×1m ×1m ⎞=−1300N ⋅m⎝2 ⎠2. 确定梁地1-1截面上A 、B 两点地正应力: A 点:⎛150×10−3m ⎞ 1300N ⋅m ×⎜−20×10−3m ⎟σ =M z y =⎝2⎠=2.54×106Pa =2.54MPa(拉应力) I zB 点:100×10-3m ×(150×10-3m )3121300N ⋅m ×⎜0.150m−0.04m ⎟⎛⎞σ=M z y =⎝2⎠=1.62×106Pa =1.62MPa(压应力)B 0.1m×(0.15m )3 127-5 简支梁如图所示.试求I-I 截面上A 、B 两点处地正应力,并画出该截面上地正应力 分布图. 习题7-5图A (a)A C B(b)F R AkN ⋅解:(1)求支座约束力F RA =3.64kN,F RB =4.36kN习题7-5解图(2)求I -I 截面地弯矩值(见习题7-5解图b )M I −I =3.64kN ⋅m(3)求所求点正应力σ=M I-I y AI z33I =bh 12=75×150 12=21.1×106mm 4 y A =(75−40)=35mm6∴σ=−3.64×10 ×35=−6.04MPa A 21.1×1066σ=3.64×10 ×75=12.94MPa B 21.1×1067-6加热炉炉前机械操作装置如图所示,图中地尺寸单位为mm .其操作臂由两根无缝 钢管所组成.外伸端装有夹具,夹具与所夹持钢料地总重F P =2200N ,平均分配到两根钢管上.求:梁内最大正应力(不考虑钢管自重).3习题7-6图解:1.计算最大弯矩:−33M max =−2200N ×2395×10m=−5.269×10N ⋅m2.确定最大正应力:σ=Mmax = M max,α= 66mm=0.611max32W σ=Mmax =2×πD32(1−α4)5.268N ⋅m108m m=24.71×106P a =24.71M P a max2W=π(1=08×10−3m ) 2×(1−0.6114) 327-7图示矩形截面简支梁,承受均布载荷q 作用.若已知q =2 kN/m ,l =3 m ,h =2b=240mm .试求:截面竖放(图c)和横放(图b)时梁内地最大正应力,并加以比较. 习题7-7图解:1.计算最大弯矩: ql22×103N/m ×(3m )2M max ===2.25×103N ⋅m882.确定最大正应力:3平放:σ =M max = 2.25×10N ⋅m ×6 =3.91×106Pa=3.91MPamax 2−3 −32hb6240×10 m ×(120×10 m )4 ⎝ ⎠ 竖放:σ=M max = 2.25×103N ⋅m ×6=1.95×106Pa=1.95MPamax 2−3 −32 bh 6120×10m ×(240×10 m )3.比较平放与竖放时地最大正应力:σmax (平放) () 3.91 ≈2.07-8圆截面外伸梁,图中尺寸单位为mm .已知F P =10kN ,q = M解:σ( )M max1 =32×30.65×10N ⋅m =113[σ] max 实= W 1π(140×10-3m )3σ( )M max2 = 32×20×103N ⋅m =100.3×106Pa=100.3MPa<[σ] max 空=⎡⎛⎞⎤ W 2π(140×10-3m )3⎢1− ⎢⎣ 100⎜140⎟⎥所以,梁地强度是安全地.7-9悬臂梁AB 受力如图所示,其中F P =10kN ,M =70kN ·m ,a =3m .梁横截面地形状及尺寸均示于图中(单位为mm),C 为截面形心,截面对中性轴地惯性矩I z =1.02×108mm 4,拉伸许用应力[σ]+=40MPa ,压缩许用应力[σ]-=120MPa .试校核梁地强度是否安全.解:画弯矩图如图所示:σ σ σ σ M (kN.m) C 截面30x+max =30×10N ⋅m ×96.4×10 m =28.35×106Pa=28.35MPa 1.02×108×10−12m 43−3 D 截面 -max =30×10N ⋅m ×153.6×10m =45.17×106Pa=45.17MPa 1.02×108×10−12m 43−3 +max =40×10N ⋅m ×153.6×10m =60.24×106Pa=60.24MPa>[σ] 1.02×108×10−12m 43−3- max =40×10N ⋅m ×96.4×10 m =37.8×106Pa=37.8MPa 1.02×108×10−12m 4所以,梁地强度不安全.7-10由No.10BC 连接,BC 杆在C 处用铰链悬挂[σ]=160MPa ,试求:M8max P习题7-10图解:画弯矩图如图所示:对于梁:M max =0.5qσ=M max ≤[σ], 0.5q ≤[σ] max WW[σ]W 160×106×49×10−6q ≤ ==15.68×103N/m=15.68kN/m 0.50.5对于杆: σ=F N ≤[σ],4F B =4×2.25q ≤[σ] maxA πd 2 πd 2πd 2×[σ] π×(20×10-3)2×160×106q ≤ ==22.34×103N/m=22.34kN/m4×2.254×2.25所以结构地许可载荷为[q ]=15.68kN/m7-11 图示外伸梁承受集中载荷F P 作用,尺寸如图所示.已知F P =20kN ,许用应力[σ]=160MPa ,试选择工字钢地号码. 习题7-11图解:M =F ×1m=20×103N ×1m=20×103N ⋅m σmax =M maxW≤[σ], F ×1m 20×103×1m W ≥ P ==0.125×10-3m 3=125cm 3[σ] 所以,选择No.16 工字钢. 160×106Pa7-12图示之AB 为简支梁,当载荷F P 直接作用在梁地跨度中点时,梁内最大弯曲正应力超过许用应力30%.为减小AB 梁内地最大正应力,在AB 梁配置一辅助梁CD ,CD 也可以 习题7-12图看作是简支梁.试求辅助梁地长度a .解:1.没有辅助梁时σmax=M max≤[σ], WF P l4 =1.30[σ] W σmax=M max≤[σ], WF P l(3−2a ) 2=[σ]W F P l (3−2a ) F P l2= 4=[σ]W 1.30×W 1.30×(3−2a )=3a =1.384m7-13一跳板左端铰接,中间为可移动支承.为使体重不同地跳水者站在跳板前端在跳板中所产生地最大弯矩M zmax 均相同,问距离a 应怎样变化? 习题7-13图解:最大弯矩发生在可移动简支点B 处.(见图a 、b )设不同体重分别为W ,W +ΔW ,则有,W (l −a )=(W +ΔW )(l −a −Δa ) ABW A整理后得 a 图 Δa = ΔW(W +ΔW )b 图(l −a ) 此即为相邻跳水者跳水时,可动点B 地调节距离Δa 与他们体重间地关系.7-14利用弯曲内力地知识,说明为何将标准双杠地尺寸设计成a=l /4.M MF习题7-14图解:双杠使用时,可视为外伸梁..A C Bb 图 若将a 地长度设计能达到下述情况为最经济、省工: M +=M −, max max即正负弯矩地绝对值相等,杠为等值杆.当a=l /4时,+ max− max=F P l /4(如图a,在中间面C ); =F P l /4(发生在图b 所示受力情况下地A 面或B 面).7-15图示二悬臂梁地截面均为矩形(b×h ),但(a)梁为钢质,(b)梁为木质.试写出危险截面上地最大拉应力与最大压应力地表达式,并注明其位置.二梁地弹性模量分别为E 、 E .P FP习题7-15图解:(1)两悬臂梁均为静定梁,故应力与材料弹性常数无关.(2)两悬臂梁均发生平面弯曲,危险面均在固定端处.σ σ σ σ 6 I 6I (3)钢梁: (4)木梁:+ max− max=6F P l bh 2 =6F P l bh 2(在固定端处顶边诸点) (在固定端处底边诸点) + max − max=6F P l hb 2=6F Pl hb 2(在固定端处后侧边诸点) (在固定端处前侧边诸点) 7-16T 形截面铸铁梁受力如图所示,其截面地I z=2.59×10−6m 4.试作该梁地内力图,求出梁内地最大拉应力和最大压应力,并指出它们地位置.画出危险截面上地正应力分布图.习题7-16图解:(1)求支座约束力F RA =37.5kN, F RB =112.5kN(2)作内力图,剪力图、弯矩图分别见习题7-16解图b 、c . (3)求所最大正应力和最小正应力E 、B 两截面分别发生最大正弯矩与最大负弯矩.所以,两个截面均有可能是危险截面.σ+=M E y2=14×10 ×142=76.8MPa (在E 截面下缘)z2.59×107σ−=M B y 2 =25×10 ×142=−137MPa (在B 截面下缘)z 2.59×107正应力分布图见图d.σ σ σ y m (a)AqEBD2m 1m50kN37.5kN⊕(b)⊕Ө1 62.5kN43.6MPa(d)(c)14kN·my 2⊕Ө25 kN·m 76.8MPa137MPa习题7-16解图7-17.在横放和竖放两种情况下,(a)比较许用弯曲力偶矩m O 绘出危险截面上地正应力分布图.解:(a)F R A2M (b) Өy 1(c)y 235y 1y 2σ习题7-17解图33(1)求支座约束力F RA=FRB=mOkN 5(2)作弯矩图见习题7-17解图b 所示. (3)竖放下地许用弯曲力偶矩m O由型钢表查得 从b 图中得:W =269.6×103 mm 3M =3m O由强度条件maxσmax =5 M maxW≤[σ] m ≤5W [σ]=5×269.6×10×160=71.89kN ⋅mO33(4)横放下地许用弯曲力偶矩m O由型钢表查得由强度条件W =30.61×103 mm 3m ≤5W [σ]=5×30.61×10 ×160=8.16kN ⋅mO33危险截面上地正应力分布图见图c.7-18制动装置地杠杆用直径d =30mm 地销钉支承在B 处.若杠杆地许用应力 [σ]=140MPa ,销钉地剪切许用应力[τ]=100MPa ,求许可载荷[F P1],[F P2].F P1F P2习题7-18图解:(1)求F P1 与F P2地关系4杠杠平衡时有:F P1×1000=F P2×250, (2)作弯矩图,如图 a 所示F P2 =4F P11000F(3σmax =M max W≤[σ]20×603 (20×303−)W = 1212=1.05×104mm 330 1000F p1W≤[σ] F ≤W [σ]=1.05×10×140=1.47kN P11000 1000∴F P2 ≤5.88kN(4)校核销钉地剪切强度剪切强度条件:F Q τmax = A≤[τ] 其中,F=5F=3.675mm 2 Q2P13 ∴τmax=3.675×10706.86=5.2MPa<[τ]则,销钉安全.(5)杠杆系统地许可载荷为[FP1]=1.47kN,[FP2]=5.88kN.上一章返回总目录下一章。
弯曲的内力与强度计算一、判断题1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。
()图12.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。
()3、在集中力作用的截面处,Q图有突变,M连续但不光滑。
()4、梁在集中力偶作用截面处,M图有突变,Q图无变化。
()5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。
()6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。
()7.梁的内力图通常与横截面面积有关。
()8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q 图,M图都不变。
()9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。
()10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。
()图 2 图 311.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。
()12.上题中,作用于B处的集中力大小为6KN,方向向上。
()13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。
()图 4 图 514.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。
()15.图5所示梁中,AB跨间剪力为零。
()16.中性轴是中性层与横截面的交线。
()17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。
()18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。
()19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。
()20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。
()21.极值弯矩一定是梁上最大的弯矩。
()22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。
()23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。
()24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。
()25.对弯曲变形梁,最大挠度发生处必定是最大转角发生处。
()26.两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:(1)最大正应力相同;()(2)最大挠度值相同;()(3)最大转角值不同;()(4)最大剪应力值不同;()(5)强度相同。
()27.两根材料、截面形状及尺寸均不同的等跨简支梁,受相同的荷载作用,则两梁的反力与内力相同。
()28.梁内最大剪力的作用面上必有最大弯矩。
()29.梁内最大弯矩的作用面上剪力必为零。
()30.图(a)、(b)中,m-m截面上的中性轴分别为通过截面形心的水平轴与铅垂轴。
()图 1331.在匀质材料的等截面梁中,最大拉应力必出现在弯矩值M最大的截面上。
()32.对于等截面梁,最大拉应力与最大压应力在数值上必定相等。
()33.对于矩形截面的梁,出现最大正应力的点上,剪应力必为零。
()34.弯曲应力公式σ=MY/IZ 适用于任何截面的梁。
()35.在梁的弯曲正应力公式σ= 中,Iz为梁截面对于形心轴的惯性矩。
()36.一悬臂梁及其T形截面如图示,其中c为截面形心,该截面的中性轴Z0,最大拉应力在上边缘处。
()图 1437.T形截面梁受矩为负值,图示应力分布图完全正确。
()图 1538.匀质材料的等截面梁上,最大正应力∣σ∣max必出现在弯矩M最大的截面上。
()39.对于等截面梁,最大拉应力与最大压应力在数值上必定相等。
()40.对于矩形截面的梁,出现最大正应力的点上,剪应力必为零。
()41.矩形截面梁发生剪切弯曲时,其横截面的中性轴处,σ=0,τ最大。
()42.T形梁在发生剪切弯曲时,其横截面上的σmax发生在中性轴上,τmax发生在离中性轴最远的点处。
()43.图16所示T形截面外伸梁的最大拉应力发生在A截面处。
()图 1644.T截面铸铁梁,当梁为纯弯曲时,其放置形式最合理的方式是A。
()图 1745.大多数梁都只进行弯曲正应力强度校核,而不作弯曲剪应力校核,这是因为它们横截面上只有正应力存在。
()46.截面积相等的抗弯截面模量必相等,截面积不等的抗弯截面模量必不相等。
()47.梁弯曲时最合理的截面形状,是在横截面积相同条件下,获得W2/A 值最大的截面形状。
()48.矩形截面梁,若其截面高度和宽度都增加一倍,则其强度提高到原来的16倍。
()49.弯曲变形梁,最大挠度发生处,必定是最大转角发生处。
()50.图18所示脆性材料⊥形截面外伸梁,若进行正应力强度校核,应校核D.B点下边缘。
()51.图19示悬臂梁,其最大挠度处,必定是最大转角发生处。
()图 18 图 1952.不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形时,它们的最大挠度值相同。
()53.EI是梁的抗弯刚度,提高它的最有效,最合理的方法是改用更好的材料。
()二、选择题1.图6所示B截面的弯矩值为()。
图 6A.PL B.–Pa C.Pa D.–PL2.图7所示简支梁剪力图正确的为()。
图 73.应用截面法计算横截面上的弯矩,其弯矩等于()。
A.梁上所有外力对截面力矩的代数和B.该截面左段梁(或右段梁)上所有外力对任何矩心的代数和C.该截面左段梁(或右段梁)所有外力(包括力偶)对该截面形心力矩的代数和D.截面一边所有外力对支座的力矩代数和4.在集中力作用处剪力图()。
A.发生转折 B.发生突变C.无影响D.发生弯曲5.在弯曲的正应力公式σ=中,I Z为梁截面对于()的惯性矩。
A.任一轴Z B.形心轴 C.对称轴D.中性轴6.梁的截面为T型,z轴通过横截面形心,弯矩图如图示,则有()。
A.最大拉应力与最大压应力位于同一截面c或dB.最大抗应力位于截面c,最大压应力位于截面dC.最大拉应力位于截面d,最大压应力位于截面cD.以上说法都不正确图 207.最大弯矩截面最大拉应力等于最大压应力的条件是()。
A.梁材料的拉压强度相等B.截面形状对称于中性轴C.同时满足以上两条D.截面形状不对称于中性轴6、两根荷载、长度、支座相同的梁横截面上最大正应力值相等的条件是()。
A.Mmax与截面积分别相等B.Mmax与WZ分别相等C.Mmax与WZ分别相等,且材料相同D.两梁的许用应力相等8.直梁弯曲强度条件σmax=≤[σ]中,σmax应是()上的最大正应力。
A.最大弯矩所在截面 B.梁的最大横截面C.梁的最小横截面 D.梁的危险截面9.EI是梁的抗弯刚度,提高它的最有效、最合理的方法是()A.改用更好的材料 B.增加横截面面积C.采用惯性矩大的截面形状D.以上作法都不合理10.由叠加法作图示简支梁的弯矩图,则下述正确的是图()。
图 2111.跨中受集中荷载P作用的圆截面简支梁,它的θA= ,yc =。
若将L变为2L,d变为2d时,它的,yc之比为()。
A.B.C.D.三、分析题1.绘出图示梁横截面上的正应力分布图(假定此截面上的弯矩为正值)。
图 22四、计算题1.作下列各梁的剪力图和弯矩图,并求出Qmax和Mmax。
图 82.试作梁的剪力图和弯矩图,并确定M MAX,Q MAX的值;已知V A=8KN(↑),V B=12KN(↑)。
图 93.画出下图梁的内力图。
图 104.作图示多跨静定梁的内力图。
图 115.求静定多跨梁的弯矩图图 126.求图23所示梁的最大正应力及其所在位置。
图237.简支梁受均布荷载作用,已知L=4m,截面为矩形如图24所示。
材料的许用应力[σ]=10Mpa,试求梁的许可荷载q。
图 248.图25所示矩形截面外伸梁,截面高宽比h/b=1.5,材料的许用应力[σ]=10Mpa,试求b和h。
图 259.图26所示T形截面铸铁梁,Z轴为通过截面形心的中性轴,惯性矩Iz=4.0X107mm4,铸铁的许用应力〔σ+〕=35 Mpa,〔σ-〕=140 Mpa,试校核梁的强度。
图 2610.图27所示结构,AB为矩形截面木梁,截面尺寸如图,DE为直径d=30mm的圆截面刚杆,AB的[σ]1=10Mpa,DE的[σ]2=160M pa,试确定F的容许值[F]图 2711.图28所示矩形截面外伸木梁,材料的许用正应力[σ]=10Mpa,许用剪应力[τ]=1Mpa,试校核该梁的强度。
图 2812.图29所示梁,已知矩形截面尺寸的比例为b:h=3:4,梁的许用正应力[σ]=15.6Mpa,许用正应力[τ]=1.7Mpa,试确定截面尺寸。
图 2913.图30所示外伸梁,已知Wz=截面面积A=材料的[σ]=170Mpa,[τ]=100Mpa,试求许可荷载[F]。
图 3014.图31所示为20b工字钢制成的外梁,已知L=6m,P=30KN,q=6KN/m,[σ]=160MPa梁的弯矩图如图示,试校核梁的强度。
提示:20b工字钢 Iz=。
图 3115.图32所示T型截面铸铁梁,已知P1 =10.8KN,P2 =4.8KN,a = 1m,,y1 =5.2cm,=8.8cm,弯矩图已绘出。
试求梁中最大拉应力的数值及其所在位置。