电容式触控电荷转移横向模式技术
- 格式:pdf
- 大小:533.02 KB
- 文档页数:7
电容式触摸原理一、引言电容式触摸技术是目前较为常用的一种触控技术,它既可以被应用于手机等消费电子产品的触摸屏上,也可以被应用于医疗、制造、军事等领域的工业触摸屏上。
本文将介绍电容式触摸技术的基本原理、工作方式、分类及其应用。
二、电容式触摸技术的原理电容式触控是利用手指或其他物体在电容屏表面形成的电荷变化来检测触摸事件,其原理是根据电容效应,在电容屏上建立一个电容场,当手指或其他物体接近或触摸到电容屏的表面时,会改变该电容场的能量分布,这样就会引起电荷的积聚和电势的变化,从而产生信号传递,实现触摸控制。
三、电容式触摸屏的工作方式1. 常规电容式触摸屏电容式触摸屏通常由两层导电玻璃板组成,中间夹层是一层导电的透明涂层,形成一种平行电容,当外界介质(即手指或者导电笔)接触到导电涂层上时,它们的电荷将影响电容场的改变,从而被检测和转化为触摸信号。
2. 非常规电容式触摸屏与常规电容式触摸屏不同,非常规电容式触摸屏在透明导电涂层上附加了电感,通常称为感应屏触摸屏。
当触摸屏上的电流发生变化时,电感的电压也会随之改变,从而产生触摸事件信号。
感应屏触摸屏不仅对电阻性介质(如手指或导电笔)反应快速,而且还可以对最小的物体反应,如手套、带电物体以及断电状态下的物体等。
四、电容式触摸屏的分类电容式触摸屏主要分为五种类型:1. 电容阵列式触摸屏电容阵列式触摸屏通过在显示面板上制造电容矩阵来实现触摸控制。
此类触摸屏不仅可以检测到触摸面积及位置,还可以检测多点触摸,操作手感流畅且对触摸精度要求很高,应用于iPhone、iPad等一线品牌。
2. 电容交叉式触摸屏电容交叉式触摸屏在纵横两个方向上分别布置电极,当触摸屏上的物体在X和Y两个方向上移动时,通过电容变化的方式来控制物体的移动速度。
电容交叉式触摸屏主要用于游戏摇杆、控制旋钮等应用领域。
3. 电容矩形式触摸屏电容矩形式触摸屏的电极通常为银纹或ITO材料,在面板的四周布置,面板上布置有X和Y两个方向上的电场,当手指触摸到屏幕上时,电容效应会使电流沿着手指的两个方向流动,得到X和Y坐标。
深入了解QMatrix 技术中心议题:•QMatrix理论与方案简介•按键矩阵布局和设计•按键材料选择与设计故障诊断•QMatrix 应用技术说明解决方案:•电场的耦合强度因人手触摸而衰减•通过电极的互电容耦合信号检测出交叉点在家电、消费电子和手机应用中,触感控制正在逐渐取代机电开关。
触感技术的普及获得大力推动,因为设计人员认识到,触感控制可让他们实现时尚的多功能设计,从而实现产品的差异化,并为终端用户创造更高的价值。
相比其它形式的电容感测,量研科技集团(爱特梅尔公司于2008年收购了量研科技集团) 所开发的专利电荷转移(QT) 感测技术更稳定,而且它对电磁干扰,以及极端及突变温度湿度都具有更强的耐受能力。
QMatrix™器件采用简单的横模(transverse-mode) 电极结构,可为按键数量较多的应用提供触摸控制。
QSlide™则用于辅助线性滑块类控制,如调节音量和温度;而QWheel™运用一种不同的控制布局,实现如iPod 触摸拨轮(click-wheel)一类的拨轮式面板。
QMatrix 可以利用其3 个感测信道进行配置,实现触摸滑块或拨轮控制。
如今,基于QMatrix 的控制功能已被集成到量研科技集团的许多标准产品中。
此外,定制型款QMatrix 还提供集成各种串口和附加功能,可用于家用电器、手机、笔记本电脑,以及许多其它消费电子设备等应用。
QMatrix理论每一感测电极对包含一个电场驱动电极和一个接收电极(图1)。
驱动发射电极产生一个猝发式逻辑脉冲串,接收电极则通过覆盖在上面的介质前面板来收集由发射电极辐射出来的大部分电荷。
图1 :两个电极之间的QMatrix 场流。
触摸可吸收该电场,导致所收集的电荷减少。
电场的耦合强度会因人手触摸而衰减,因为人体将会以电弧的方式导开通过前面板的一部分场线,而所吸收的部分再通过各种电容通道被人体重新辐射回去图2:Qmatrix 双斜率电路通过电极结构的互电容耦合信号,会被收集到一个与驱动脉冲同步开关的采样电容上(图2)。
电容式触摸感应按键技术原理及应用电容式触摸感应按键技术原理及应用2010-05-26 12:45:02| 分类:维修| 标签:|字号大中小订阅市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。
电容式触摸感应按键的基本原理◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
所以,我们测量周期的变化,就可以侦测触摸动作。
具体测量的方式有二种:(一)可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。
(二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。
而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
◆以Silicon Labs的MCU实现触摸感应按键利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。
与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。
一文知道电容式触摸感应原理与类型所有的电容式触摸的核心都是一组与电场相互作用的导体。
人体组织的皮肤是一种有损电解质,相当于导电电极,在简单的平行片电容中间隔着一层电介质,该系统中的大部分能量聚集在电容器极板之间,少许的能量会溢出到电容器极板以外的区域,当手指放在电容触摸系统时,相当于放置于能量溢出区域(称为:边缘场),并将增加该电容系统的导电表面积。
电容感应的方法分为两种:自电容感应、互电容感应技术——自电容感应技术自电容使用一个引脚,并测量该引脚和电源地之间的电容。
即:驱动与传感器相连的引脚上的电流,由于将手指放在传感器上,其系统的电容会增加,因此其电压也会增加,实测电压的变化即可检测是否有手指进行触摸。
这种技术一般用于单点触摸或滑条。
互电容感应互电容感应技术使用两个电容,一个为发送电极、一个为接收电极,TX引脚提供数字电压,并测量RX引脚上所接收到的电荷,在RX 电极上接收到的电荷与两个电极间的互电容成正比,当TX和RX电极间放置手指时,互电容降低,因此RX电极上接收到的电荷也会降低。
由此通过检测RX电极上的电荷检测触摸/无触摸状态。
根据传感器感应的维度,大致可以分为:按键传感器(0维)、滑条传感器(1维)、触摸板传感器(2维)、接近感应传感器(3维)零维传感器零维传感器在白色家电、照明控制等领域有众多的应用,其输出两种状态:有手指触摸、无手指触摸,如通过一根走线连接到控制器引脚的简单按键。
当需要大量按键时,如计算器的键盘等,可以将电容传感器排列成一个矩阵一维传感器一维传感器也称滑条传感器,适用于需要渐进式调节的控制应用,如照明调光、音量控制、图示均衡器等,一个滑条传感器由一系列称为段的电容传感器构成,某一个段的动作会导致邻近其他传感器的部分动作,通过插值算法的中心位置计算方式可以使触摸位置分辨率大于滑条段数量。
线性滑条,每个IO引脚连接一个滑条段双工滑条,每个IO引脚连接两个不同的滑条段辐射滑条,这种类型的滑条具备连续性,没有起点或终点两维传感器如触摸屏和触控板,通过按X和Y模式设置的线性滑条,可以确定手指的位置三维传感器接近感应传感器在手或其他导体靠近的时候就能检测到,实现接近感应的一种方法是围着用户界面铺上一条长走线,该走线可在大范围内感应电容的变化,由此使得系统对用户的触摸感应显得更加快速。
触摸屏工作原理
触摸屏是一种通过手指触摸屏幕来实现操作的输入设备。
它适用于各种电子设备,如智能手机、平板电脑、电脑和ATM机等。
触摸屏的工作原理可以大致分为四种类型:电阻式触摸屏、电容式触摸屏、表面声波触摸屏和电磁式触摸屏。
电阻式触摸屏通过屏幕表面覆有一层特殊的电阻膜来实现触摸的检测。
当手指触摸屏幕时,电荷从一侧电极传递到另一侧电极,从而形成一个电路。
通过测量电流的变化,系统可以确定触摸的位置。
电容式触摸屏使用一层透明导电材料覆盖在屏幕表面,如铺有氧化铟锡薄膜的玻璃或PET薄膜。
当手指触摸屏幕时,手指和电容层之间会形成一个电容。
通过测量电容的变化,系统可以检测到触摸的位置。
表面声波触摸屏由发射器和接收器组成,它们位于屏幕的四个角落。
发射器会向上发射超声波,这些超声波会沿着屏幕表面反射。
当手指触摸屏幕时,超声波的传播路径会发生变化。
接收器会检测这些变化,并通过计算来确定触摸的位置。
电磁式触摸屏使用电磁感应原理来检测触摸位置。
它会在屏幕表面放置一层电磁感应板,当手指触摸屏幕时,会造成感应板上感应线圈的电感变化。
通过测量电感的变化,系统可以确定触摸的位置。
每种触摸屏的工作原理不同,具有不同的特点和适用场景。
随着技术的进步,触摸屏正在不断地改进和创新,使得我们的操作更加直观、方便。
电容式触控工作原理
电容式触控技术是一种现代化的触控技术,它的工作原理是利用电容效应来实现触控操作。
电容式触控技术已经广泛应用于各种电子设备中,如智能手机、平板电脑、电视等。
电容式触控技术的工作原理是利用电容效应来实现触控操作。
电容效应是指当两个电极之间存在电场时,它们之间会产生电容。
当手指或其他物体接触到电容屏幕时,会改变电场分布,从而改变电容值。
电容屏幕会检测这种电容值的变化,并将其转换为触控信号,从而实现触控操作。
电容式触控技术有两种类型:电阻式和电容式。
电阻式触控技术是利用两个导电层之间的电阻来实现触控操作。
电容式触控技术则是利用电容效应来实现触控操作。
相比之下,电容式触控技术更加灵敏和精准,因为它可以检测到非常微小的电容值变化。
电容式触控技术的优点是非常明显的。
首先,它可以实现多点触控,即可以同时检测到多个触控点。
这使得用户可以使用手指进行缩放、旋转等复杂的操作。
其次,电容式触控技术非常灵敏,可以检测到非常微小的触控操作。
这使得用户可以使用手指轻轻触碰屏幕来实现操作。
最后,电容式触控技术非常精准,可以实现高精度的触控操作。
这使得用户可以进行精细的操作,如绘画、书写等。
电容式触控技术是一种非常先进的触控技术,它的工作原理是利用
电容效应来实现触控操作。
它具有多点触控、灵敏、精准等优点,已经广泛应用于各种电子设备中。
电容式触摸屏原理和技术的特点电容式触摸屏是通过在基材上镀上一层或者多层导电材料(比如铟锡氧化物ITO)而制成,之后与保护盖板密封贴合以保护电极。
当其它的导电体,比如裸露的手指或者导电笔触摸到它的表面,一个电子回路就在那里形成,感应器嵌入在玻璃里面以检测电流的位置,就这样完成了一个触摸操作。
这种工作方式跟电阻TP依靠物理点击是完全不一样的。
电容式触摸屏可以分为以下两大类:Surface Capacitive-表面电容式在玻璃基板上镀上透明导电涂层,然后在导电涂层上增加一层保护涂层。
电极被放置在玻璃的四个角上,四个角都被施加上相同的相位电压,在玻璃表面形成一个匀强电场。
当手指触摸到玻璃表面,电流将从玻璃的四个角上流经手指,从四个角上流经的电流比例将被测量以判断触摸点的具体位置。
测量出来的电流值跟触摸点到四个角的距离是成反比的。
技术特点:◆更适合大尺寸的显示器◆对很轻的触摸都有反应,而且不需要感应实际的物理压力◆由于只有一层玻璃,产品的透过率很高◆结构坚固,因为它只由一层玻璃组成◆潮湿、灰尘和油污对触摸效果不会产生影响◆视差小◆高分辨率和高响应速度◆不支持裸露手指与带手套组合操作,不支持裸露手指与手写笔组合操作◆不支持多点触摸◆有可能被噪声干扰Projected Capacitive-投射电容式相比表面电容式,投射电容式触摸屏通常用在较小的屏幕尺寸上,内部结构上包括一个集成了IC芯片用于处理数据的线路板,拥有指定图案的许多透明电极层,表面上覆盖一层绝缘的玻璃或者塑料盖板。
当手指接近触摸屏表面,静电电容在多个电极间同时变化,通过测量这些电流之间的比例,可以精确地判断出接触的位置。
投射电容式技术有两种感应方式:栅格式和线感式。
人体能够导电是因为含有大量的水份,当手指靠近X和Y电极的图案,在手指和电极间将产生一个耦合电容,耦合电容会使用X和Y电极间的静电电容发生变化,通过侦测电极间哪个位置的静电电容发生变化,触摸感应器就能发现具体的触摸点。
电容式触摸传感器设计技巧触摸传感器已经被广泛使用很多年了。
但近期混合信号可编程器件的发展,让电容式触摸传感器已成为各种消费电子产品中机械式开关的一种实用、增值型替代方案。
典型的电容式传感器覆盖层的厚度为3mm或更薄。
随着覆盖层厚度的增加,手指触摸的传感将变得越来越困难。
换句话说,伴随着覆盖层厚度的增加,系统调整过程将必须从科学向艺术发展。
为了说明如何制作一个能够提升目前技术极限的电容式传感器,本文所述的实例中选用玻璃覆盖层的厚度为10mm。
玻璃使用简单,随处可见,而且是透明的,所以你可以看到下面的感应垫。
玻璃覆盖层还可直接应用于白色家电。
手指电容任何电容式触摸传感系统的核心都是一组与电场相互作用的导体。
人体皮肤下面的组织中充满了传导电解质---这是一种有损电介质。
正是手指的这种导电特性使得电容式触摸传感成为可能。
简单的平行板电容器有两个导体,这两个导体之间隔着一层电介质。
该系统中的大部分能量直接聚集在电容器极板之间。
少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场叫做边缘场。
制作实用电容式传感器的部分难题在于需要设计一套印刷电路板轨线,来将边缘场引导到用户易接近的有效感应区域中。
平行板电容器不是这种传感器模式的理想选择。
当把手指放在边缘电场的附近时,电容式传感系统的导电表面积会增加。
由手指所产生的额外电荷存储容量,就是我们所知的手指电容CF。
在本文中,无手指触摸时的传感器电容用CP来表示,意指寄生电容。
关于电容式传感器人们常有这样的误解:为了使系统正常工作,手指必须接地。
实际上,手指之所以被传感是因为它带有电荷,而与其是否悬空或接地完全无关。
传感器的PCB布局图1显示了一块PCB的顶视图,该PCB应用了本设计案例中的一个电容式传感器按键。
图1:PCB顶视图。
这个按键的直径为10mm,相当于一个??指尖的平均尺寸。
为该演示电路而组装的PCB带有4个按键,其中心相隔20mm。
如图1中所示,接地平面也位于顶层。
电容触摸原理与电荷转移相关的基本原理1. 电容触摸原理概述电容触摸技术是一种常见的触摸屏技术,它利用了电容的原理来实现触摸屏的功能。
电容触摸屏通过在触摸屏表面覆盖一层电容板,当用户触摸屏幕时,电容板上的电荷发生变化,通过检测这种变化,可以确定用户的触摸位置。
电容触摸屏具有很多优点,比如高灵敏度、快速响应、多点触控等,因此被广泛应用于智能手机、平板电脑、电子签名板等设备中。
2. 电容触摸原理详解2.1 电容的基本原理在了解电容触摸原理之前,我们先来了解一下电容的基本原理。
电容是指两个导体之间由于存在电荷而形成的电场,导体之间的电荷储存在电容器中。
电容器由两个导体板和介质组成,导体板上的电荷数量与电压成正比,与两板之间的距离成反比。
电容的大小可以通过电容公式来计算:C = ε * A / d其中,C表示电容的大小,ε表示介质的介电常数,A表示导体板的面积,d表示导体板之间的距离。
2.2 电容触摸原理电容触摸屏的原理是利用了电容的基本原理。
在电容触摸屏上,触摸屏表面覆盖了一层导电的透明材料,该材料可以看作是一个电容器的一部分。
当用户触摸屏幕时,手指和导电材料之间形成了一个电容,这个电容的大小与手指和触摸屏之间的接触面积成正比,与手指和触摸屏之间的距离成反比。
当用户触摸屏幕时,手指和导电材料之间的电容发生变化,触摸屏控制器会通过测量电容的变化来确定用户的触摸位置。
2.3 电荷转移的基本原理电容触摸屏利用了电荷转移的原理来实现触摸位置的检测。
在电容触摸屏中,触摸屏控制器会周期性地给导电材料施加一个交替电压。
当用户触摸屏幕时,手指和导电材料之间的电容发生变化,触摸屏控制器会通过测量电容的变化来确定用户的触摸位置。
电容触摸屏控制器通过电荷转移的方式来测量电容的变化。
电荷转移是指将电荷从一个导体转移到另一个导体的过程。
在电容触摸屏中,当用户触摸屏幕时,手指和导电材料之间的电容发生变化,触摸屏控制器会通过电荷转移的方式来测量这种变化。
电容式触控电荷转移横向模式技术目前电阻式触控面板由于其多层材料堆栈架构的限制,使其在透光度与计算手指位置的精确度上不若电容式触控面板来得好,电容式触控面板若采用电荷转移技术中的横向模式方案,则更可解决电容式触控屏幕噪声与噪讯比的问题,从而开发更具优势的电容式触控屏幕。
由于触控屏幕反应迅速,而且是直观式操作,因此正迅速被各类消费电子产品和交通售票系统等工业及商业设备选为使用者接口。
在技术层面上,触控屏幕早在数10年前就已确实可行,但早期技术并不适用于低成本的大众市场应用,这些技术包括红外线系统与表面声波感测系统,由于红外线系统采用由水平和垂直两个方向构成的传感器数组,用以检测使用者的手指是否靠近屏幕表面,而阻断经过调制的光束,而表面声波传感器,因手指接近屏幕表面时会吸收声波,因此该技术可根据声波的变化确定是否有手指触及屏幕。
除上述提到的技术之外,还有几种其它技术,不过目前的主流趋势是电阻式和电容式感测,这两种技术都有其优势,但最新的电容式控制IC不单能简化单触控应用,而且还可以实现电阻式感测系统无法提供的多指触控功能。
电阻式触控面板囿于架构而导致诸多缺点电阻式触控屏幕已摆脱从1970年代就存在的专利限制桎梏,这种技术的工作原理很简单,主要部分是由两层微小空气隙隔离的透明电阻材料组成,一般是淀积在塑料膜和玻璃基板上的氧化铟锡(ITO),其中,顶层是软性的(Flexible),而低层是硬性的(Rigid),中间有许多细小的透明间隔点以隔离两个导电层(图1),当用户手指按压顶层时,在接触点形成电压梯度时,电子控制组件会对之进行感测,并计算出X、Y坐标的位置。
图1:电阻式触控面板原理示意图2:电阻式触控屏幕电极正交电位计在最简单的四线(Four-wire)电阻式连接中,顶层两端和低层两端分别各连接两个电极,两层的电极互相呈九十度交叉,形成四线星状连接结构,这实际上就是一对彼此正交的电位计(图2),相当于机械操纵杆的平面屏幕模拟。
为了在X轴方向测量触摸位置,触控板的控制器将X-设为接地,而X+偏置为参考电压,然后从Y层的两端读取电压,以找出X 轴上两层的接触点。
同样地,控制器透过在Y层的电极上加载驱动电压,并从X层读取触摸点电压,可以确定Y轴上的触摸位置。
这种技术的变化形包括五线系统,基板带有ITO涂层,四边都有电极。
软性隔膜为第五个电极,当用户手指压按时,控制器可测量出X和Y轴的电压,从而确定触摸的位置。
这种排列通常可提供比四线结构更佳的稳定性和更长的寿命。
其它变化还有适用于大型屏幕、分辨率更高的六线和八线系统。
电阻式技术的主要优势在于其接口电子结构很简单,控制器只须在一对电极上加载参考电压,同时测量另一对电极间的电势即可,而这一点利用片上(On-chip)金属氧化物半导体场效晶体管(MOSFET)开关、模拟多路器和模拟数字转换器(ADC)就可轻松做到。
若ADC 进行差分测量,测量结果实际上成为比率计(Radiometric),可使用Vcc和接地作激励(Stimulus),透过适当的设计,就完全有可能获得4,09*,096的分辨率。
相反地,这种技术的主要缺点源于触控屏幕的多层结构。
其基层一般是玻璃,表面涂有一层均匀的ITO,顶层通常由聚乙烯对苯二甲酸酯(PET)制造,内表面(Inner Surface)也涂有一层均匀的ITO,而外表面(Outer Surface)则有硬涂层,以为保护作用,而形成空气隙以把这些导电层隔离开的细小透明间隔点常在打印制程中产生。
这种多层材料堆栈的多层结构对透光性有所影响,一般将降至约透明玻璃透光率的75%,同时,空气间隙可能产生薄雾效应,进一步降低清晰度。
此外,这种结构很容易刮伤损坏,而且因为机械轴性不重合,还须仔细校准以确定X、Y坐标范围,其它弱点还包括可能吸收电气噪声,尤其是来自液晶显示器(LCD),这时一般须进行滤波,将导致反应时间的延长,当然,控制器一次只能处理一个触摸位置,也是一大局限。
利用电荷转移技术解决应用挑战由于电阻式触控屏幕存在缺陷和局限性,许多设计人员已转向投射式电容感测技术。
这种技术在IC形式上分为好几种电路,主要包括容抗(RC)时间常数测量电路,如弛张振荡器、直流(AC)电流测量组件,以及电荷转移(Charge-transfer)组件。
电荷转移组件又分为单端模式(Single-ended)和横向模式(Transverse-mode),选择上述任何一种方法,利用在两层或更多迭层上的电极行列数组,都可以实现触控屏幕。
RC时间常数技术的基本原理是,当电容组件C随手指触摸改变时,电极区域充电或放电所需的时间也随之改变。
测量充/放电期间的变化可得到C的变化,因为C是未知,所以假设为Cx,这种方法有许多变化形式,可测量频率或时间、可自由运行或以单周期为基础。
RC 时间常数测量的缺点是速度较慢,并易受泄漏电流干扰,其动态范围也非常有限,很难校准,而且容易受到恒定漂移问题的影响。
此外,由于其电路的高阻抗特性,所以也极易受外界噪声干扰,尽管如此,仍有部分触控屏幕采用这种方案。
至于AC电流测量方法,由一个AC电压源驱动阻抗,继而驱动Cx,故测量阻抗产生的电压就可确定Cx的值。
这些电路也有很多和RC电路相同的局限性,不过前者的驱动阻抗一般较低,然而其须利用放大器恢复串联阻抗产生的小电压,但讯噪比等方面的问题又随之而来,这种方法在触控屏幕中已有一定运用,尤其是在带低阻抗边沿的前表面板中。
和RC及AC技术相同,单端电荷转移电容传感器也是在每个感测通道采用一个电极板,但不依赖于时序测量或放大器,而是采用互补式金属氧化物半导体(CMOS)开关把电荷泵入Cx,并把电荷转移到一个参考采样电容(Cs)中。
透过计算Cs达到预先设定的电压值所需的周期数,就可很容易求得电荷电平,且这个周期数与Cx成反比。
众所周知,电荷转移方法有助于抑制泄漏电流的影响,而且由于其采用一个很大的Cs作为检测器,这个检测器相当于对外界的一个低阻抗,故其抗外部电气噪声的能力非常强。
与之相反,横向模式电荷转移感测是每个感测元素都采用两个电极。
基本上,其电气行为与单端电荷转移感测相同,但这些电路在发送/接收矩阵中采用电极数组创造触控屏幕功能。
该方案的优点是其需要的布线较少,更甚之能同时识别和区分多个触点之间的差异,单端电路也可感测多个触点,不过由于讯号本身模糊,故不能区分。
此外,横向模式方案还有速度快和功耗低的优势,因为其能同时测量一条驱动线路上的所有节点,所以可减少50%的采集周期数。
这种双电极式结构具有自我屏蔽外部噪声的功能,在定功率级上可提高讯号稳定性,因此,量研科技(Quantum Research)一直将横向模式感测技术作为驱动触控屏幕的主要方案,利用高载模式采样、扩频调制及数字讯号处理等各种增强型技术的结合,促成抗噪声源干扰能力强,即使在恶劣环境下也较稳健的解决方案。
在电气方面,横向模式感测的工作原理非常类似于T桥衰减器电路,使用者的手指实际上相当于一对电容之间的Cx项(图3)。
手指触控屏幕表面吸收驱动电极和接收电极之间的耦合电荷,电荷经由大量杂散电容路径返回至电路的接地,这会降低讯号的强度,而降低的程度很容易且可靠地测出。
图3:横向模式感测的工作原理尽管功耗极低,横向模式传感器却容易可穿过好几毫米厚的塑料、玻璃及其它材料,检测出使用多手指触摸,电极可由任何导电材料制作而成,如ITO,而且几乎任何尺寸和形状都可以。
噪声消除算法可帮助这些传感器消除LCD等模块产生的噪声,通常毋需单独的屏蔽层,从而提高显示器的光传输性能,同时降低产品的建构成本和背光功率的要求,而厂商推出的QMatrix横向模式电路采用一种双斜坡转换形式,可确保电路对时间和温度的变化具有高度稳定性(图4)。
图4:QMatrix横向模式电路示意图厂商发展的芯片透过与驱动脉冲同步开关的采样电容收集耦合到接收电极中的讯号,并利用一个脉冲串改进讯噪比,每个脉冲串的脉冲数量将直接影响电路的增益,因此,可方便调整电路增益,使其适合于不同的面板材料、按键尺寸和面板厚度。
脉冲串产生的第一个斜坡是加到采样电容上的梯级波形讯号,脉冲串过后,驱动器把斜率电阻的参考端切换为高电平,对采样电容进行放电,直到将电荷用完,电压比较器检测出零交叉点为止,获得零交叉点所需的斜坡时间与X、Y电荷耦合成比例,并随用户手指触摸面板表面而减小(图5)。
图5:零交叉点所需的斜坡时间与X、Y电荷耦合比例图这种自动调零行为让电路对工作电压和电路参数,如Cs值的变化具有极强的适应能力。
该项技术还提供潮湿抑制及固有的抗射频(RF)干扰能力,这是其它电容方法无法望其项背的部分,如面板表面若存在水珠之类的局部水膜,将使讯号耦合略微增加;而使用者手指的触摸则会使耦合减小。
这意味着少量的潮湿会造成错误的方向变化,导致误触发,这是令其它解决方案感到头疼的问题。
潮湿水膜的出现可能引开电荷,但由于水膜的建模模型是一个依赖于时间特性的分布式RC网络,电荷收集中门控时间的使用(微秒数量级或更短)抑制水膜的影响。
单层触控屏幕崛起由于组件可以在片上执行所有讯号调节任务,故只需少量离散式电阻与电容,再加上一个简单的序列接口,如I2C即可。
从软件程序设计人员的角度来看,组件拥有简单的命令集(Command Set)和用于不同寄存器的储存映像结构,这样一来,设计人员的主要任务就简化为设计感测矩阵和编写接口代码。
投射式电容触控屏幕需要一个X、Y透明电极矩阵(图6),以精确确定手指的位置。
图6:投射式电容触控屏幕所需之X、Y透明电极矩阵上述通常需要在玻璃或塑料涂敷的透镜后迭压两层或两层以上的ITO,由于每增加一层就会增加成本,并降低9%的透光性,因此应该尽可能减少层数。
虽然厂商的触控屏幕芯片完全能支持多层钻石型图案,但这些芯片也可采用专有的单层膜技术。
相较多层技术,单层膜电极的透明度要高得多、薄得多,成本也低得多,这些优点自然使其大受设计人员青睐。
双轴多触点技术面世利用单层膜同步执行双触点检测也是可行的,但若采用能够同时解决多触点事件的双层技术,性能便会好得多。
如图7显示在一个实验室测试模型中使用者用三根指头和大拇指时,电场的三维测量结果。
图7:使用多手指时电场三维测量结果透过连接一个放在六电极Y层上的八电极X层,控制器可支持大至8寸的双触控屏幕,而且这种多功能控制器能感测多达六个滑块或四十八个离散式按键,或按键、滑块与触摸区域的组合,该控制器为接脚数精简的版本,利用类似的简单布线图(图8),能够驱动八条X 轴和接收四条Y轴,或区分多达三十二个离散式按键。
图8:控制器电路图而直接影响增益的斜率电阻器一般在1mΩ数量级,X和Y方向上可选配的电阻器能改善电磁兼容(EMC)性能和抗静电放电(ESD)能力,典型值在1~20kΩ范围。