电容式触控技术入门及实例解析
- 格式:doc
- 大小:320.50 KB
- 文档页数:8
电容式触摸原理一、引言电容式触摸技术是目前较为常用的一种触控技术,它既可以被应用于手机等消费电子产品的触摸屏上,也可以被应用于医疗、制造、军事等领域的工业触摸屏上。
本文将介绍电容式触摸技术的基本原理、工作方式、分类及其应用。
二、电容式触摸技术的原理电容式触控是利用手指或其他物体在电容屏表面形成的电荷变化来检测触摸事件,其原理是根据电容效应,在电容屏上建立一个电容场,当手指或其他物体接近或触摸到电容屏的表面时,会改变该电容场的能量分布,这样就会引起电荷的积聚和电势的变化,从而产生信号传递,实现触摸控制。
三、电容式触摸屏的工作方式1. 常规电容式触摸屏电容式触摸屏通常由两层导电玻璃板组成,中间夹层是一层导电的透明涂层,形成一种平行电容,当外界介质(即手指或者导电笔)接触到导电涂层上时,它们的电荷将影响电容场的改变,从而被检测和转化为触摸信号。
2. 非常规电容式触摸屏与常规电容式触摸屏不同,非常规电容式触摸屏在透明导电涂层上附加了电感,通常称为感应屏触摸屏。
当触摸屏上的电流发生变化时,电感的电压也会随之改变,从而产生触摸事件信号。
感应屏触摸屏不仅对电阻性介质(如手指或导电笔)反应快速,而且还可以对最小的物体反应,如手套、带电物体以及断电状态下的物体等。
四、电容式触摸屏的分类电容式触摸屏主要分为五种类型:1. 电容阵列式触摸屏电容阵列式触摸屏通过在显示面板上制造电容矩阵来实现触摸控制。
此类触摸屏不仅可以检测到触摸面积及位置,还可以检测多点触摸,操作手感流畅且对触摸精度要求很高,应用于iPhone、iPad等一线品牌。
2. 电容交叉式触摸屏电容交叉式触摸屏在纵横两个方向上分别布置电极,当触摸屏上的物体在X和Y两个方向上移动时,通过电容变化的方式来控制物体的移动速度。
电容交叉式触摸屏主要用于游戏摇杆、控制旋钮等应用领域。
3. 电容矩形式触摸屏电容矩形式触摸屏的电极通常为银纹或ITO材料,在面板的四周布置,面板上布置有X和Y两个方向上的电场,当手指触摸到屏幕上时,电容效应会使电流沿着手指的两个方向流动,得到X和Y坐标。
如何正确使用电容式触摸屏正确使用电容式触摸屏是我们日常生活中的一项基本技能。
电容式触摸屏广泛应用于智能手机、平板电脑、电子显示屏等设备中,它可以提供直观、快速的触摸输入方式。
本文将介绍如何正确使用电容式触摸屏,从触摸操作的基本原理、使用技巧到常见问题的解决方法,帮助读者更好地利用电容式触摸屏。
一、电容式触摸屏的基本原理电容式触摸屏是利用人体的电容作用来实现触摸输入的。
触摸屏表面覆盖一层导电薄膜,当手指接触到触摸屏时,由于人体具有电导性,就会在触摸屏表面形成电流。
触摸屏控制器会根据触摸点的电容变化来确定触摸位置,并将触摸信号传送给设备,从而实现触摸操作。
二、正确使用电容式触摸屏的技巧1. 清洁触摸屏表面保持触摸屏表面清洁是正确使用的第一步。
使用干净的柔软布擦拭触摸屏,避免使用带有化学物质的清洁剂,以免对触摸屏造成损害。
2. 使用手指进行触摸在使用电容式触摸屏时,最好使用干燥的手指进行触摸操作。
触摸屏对手指的电容变化最为敏感,可以提供更准确的触摸反馈。
避免使用尖锐物体或指甲进行触摸,以免划伤屏幕。
3. 轻触而不是用力按压电容式触摸屏是基于电容变化来工作的,所以只需要轻轻触摸触摸屏表面就可以实现操作,无需过分用力按压。
用力按压不仅无法提高触摸精度,还可能对触摸屏造成损害。
4. 快速而准确地进行滑动操作在进行滑动操作时,需要快速而准确地滑动手指。
较大的滑动速度和准确的方向可以更好地响应并完成滑动操作。
同时,适当加大滑动范围可以提高识别率,减少误触的发生。
5. 注意触摸屏的灵敏度设置不同的设备和操作系统可能有不同的触摸屏灵敏度设置。
根据个人喜好和使用习惯,可以适当调整触摸屏的灵敏度,提高操作的舒适性和准确性。
三、常见问题的解决方法1. 触摸屏不响应如果触摸屏不响应,可以先检查是否有保护膜或污渍覆盖在触摸屏表面。
清洁触摸屏表面后再试一次。
如果问题仍然存在,可能是触摸屏硬件故障,需要联系专业维修人员进行检修。
电容式触摸感应按键技术原理及应用电容式触摸感应按键技术原理及应用2010-05-26 12:45:02| 分类:维修| 标签:|字号大中小订阅市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。
电容式触摸感应按键的基本原理◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
所以,我们测量周期的变化,就可以侦测触摸动作。
具体测量的方式有二种:(一)可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。
(二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。
而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
◆以Silicon Labs的MCU实现触摸感应按键利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。
与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。
电容式触控技术一、电容式触控技术的概述:1、电容式触控技术的定义2、电容式触控技术的工作原理3、电容式触控技术优点二、电容式触控技术的应用及解决方案1、电容式触控技术在家电产品中的应用2、多点电容式触摸技术的参数化优化设计3、赛普拉斯的电容式触控技术解决方案4、ADI的电容式触控技术方案三、电容式触控技术的发展动力及趋势1、电容式触控技术的发展动力及趋势2、电容式触控技术再精进电荷转移横向模式技术诞生电容式触控技术主要是应用人力的电流感应技术进行工作.当手指触摸到金属层上时,人体电场、用户和触控屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流,这个电流从触控屏四角上的电极中流出,经过四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息.电容式触控技术的工作原理电容式触控面板的应用需由触控面板(Touch Panel)、控制器(Touch CONtroller)及软件驱动程序(Utility)等3部分分别说明.触控面板一般电容式触控面板是在透明玻璃表面镀上一层氧化锑锡薄膜(ATO Layer)及保护膜(Hard Coat Layer)而与液晶银幕(LCD Monitor)间则需作防电子讯号干扰处理(Shielded Layer).下图为电容式触控面板的侧面结构.人与触控面板没有接触时,各种电极(Electrode)是同电位的,触控面板没有上没有电流(ELECTRIC Current)通过.当与触控面板接触时,人体内的静电流入地面而产生微弱电流通过.检测电极依电流值变化,可以算出接触的位置.玻璃表面上氧化锑锡薄膜(ATO)层有电阻系数,为了得到一样电场所以在其外围安装电极,电流从四边或者四个角输入.从4条边上输入时,等电场是通过4角周围的电阻小于4条边上的阻抗分配方式所得到的.对实际应用而言,有在透明导电膜(ATO Layer)上安装一组电阻基版类型;也有对透明导电膜(ATO Layer)作蚀刻所行成的类型.从4角输入时,一般通过印刷额缘电阻与透明导电膜(ATO Layer)组合得到等电场.从4条边上输入时,根据上下、左右电流比计算就可以得出,检测方法较为简单.从4条角输入时,检测方法要得出与4条边的距离比,位置计算也较为复杂.举例来说,假设触控面板位置中心为0,X轴与Y轴位置可以下面方程式计算出:X轴:L1+L4-L2-L3/L1+L2+L3+L4 Y轴:L3+L4-L1-L2/L1+L2+L3+L4控制器控制器(Touch Controller)也是电容式触控面板应用上不可或缺的一员,由于不平衡的透明导电膜(ATO Layer)厚度会造成工作位置精度的偏差,且触控面板做的愈大此情形愈加明显.因此为了得到正确位置精度,需藉由控制器作线性分析及补偿.控制器经由多点(多为25点)线性补偿功能(Multi-point Linearity Compensation Function),将补偿数据(Compensation Data)纪录于EEPROM中,以对通过不平衡的透明导电膜而引起的偏差进行补偿.通常此对策能将线性偏差(Accuracy Tolerance)控制在1%以下.但上述情形是建立在理想状况下,实际操作时,「漂移现象」(Drift Phenomenon)一直是电容式触控面板应用亟待克服的问题,由于流经电容式触控面板讯号是非常微弱的,且直接受温度、湿度、手指湿润程度、人体体重、地面干扰与线路寄生电容所影响,而多点线性补偿功能只能解决局部区域线性问题,无法解决整体的漂移现象.软件驱动程序软件驱动程序(Utility)对于不同作业平台支持的能力通常反映在一家公司的竞争力及市占率上,一般软件驱动程序所支持的作业平台:微软Windows OS:95,98,Me,2000,NT4,XP and Tablet PC Edtion微软Windows CE:2.12,3.0, and 5.0 Linux:RedHat9.0,Mandrake 9.2,SuSE 10.0,Yellow Dog 3.x and Fedora Core 4Dos及iMac 9.0 and 10.X版本另外对于操作使用者来说,软件驱动程序所支持的功能也是选购时的考虑.一般多同时支持RS232及USB的通讯接口,2048×2048的屏幕分辨率(Resolution),4点校正(4 Point Calibration)、25点线性补偿功能,微软Windows作业平台下支持多国语系,屏幕旋转(Monitor Rotation)及多重屏幕(Multi-monitor Supported)等功能.电容式触控技术优点与电阻式触控屏和电磁式感应板相比,电容式触控屏表现出了更加良好的性能.由于轻触就能感应,使用方便.而且手指与触控屏的接触几乎没有磨损,性能稳定,经机械测试使用寿命长达30年.另外,电容式触控屏原理整个产品主要由一块只有一个高集成度芯片的PCB组成,元件少,产品一致性好、成品率高.电容式触控技术缺点代表流行风向标的iPhONe上使用电容式触控屏无疑进一步印证了其拥有的各项优势.然而,瑕不掩瑜,电容电容式触控屏原理式触控屏也面临着以下一些挑战:由于人体成为线路的一部分,因而漂移现象比较严重;电容式感应输入技术在中小尺寸平板显示器上输入或控制点状目标(如点击软键盘上的电话号码或输入中英文字)时的性能有待改进;温度和湿度剧烈变化时性能不够稳定,需经常校准;不适用于金属机柜;当外界有电感和磁感的时候,可能会使触控屏失灵.电容式触控技术在家电产品中的应用近来在便携式媒体播放器、笔记型计算机、手机市场中陆续出现的各项令人感到兴奋的电容式感测技术之应用,让人几乎忘了这类界面技术早已广泛地应用于家电用品的设计中许多年了.感测算法与控制电路两方面的重大进展,让这项技术适用于更多的应用领域.设计人员看到了电容式感测技术的价值所在-不仅可取代机械式按键与膜片开关;并可适用于各项新颖的应用,如:触控式屏幕与近距传感器等.感测电容电容式传感器是由导体片、接地面、与控制器所构成.在多数的应用中,导体片会用一片铜制电路板,而接地则用灌注填充.这两者之间存在有原生(寄生)电容(CP).当其它如手指头等导电物体接近传感器时,随着该物体的电容值(CF)增加,系统的电容值也随之增加.(如图1)要侦测由CF造成电容值增加的方法有好几个.场域效应(Field Effect)量测方法中,在感测电容器与系统参考电容器之间使用交流电分压器.藉由监测电流在分压器上的改变可以感测到手指触碰时所产生的电容值变化.电荷转移(Charge Transfer)则使用切换式电容器电路以及参考总线电容值,重复进行从较小的传感器电容器至较大总线电容器之间的电荷转移步骤.总线电容器上的电压值与传感器电容值两者之间存在着比例关系,因此在固定次数的步骤后量测电压值,或藉由计算达到某一电压临界值所需的步骤次数,来决定该电容值.另外,弛张振荡器(relaxation oscillator)则是用量测充电时间的方法,其中充电速率通常是由固定电流源的值和传感器电容值所决定的.较大的传感器电容器需要较长的充电时间,这部份通常能运用脉冲宽度调变器(PWM)与定时器来进行量测.至于连续近似法(Successive Approximation)也是量测电容充电时间的方法,不同的是当中的起始电压是由连续近似法所决定的.以PSoC组件执行的连续近似法(Cypress申请之专利)采用一组电容对电压的转换器以及单斜率模拟数字转换器(ADC).其电容值量测方式是先藉由将电容值转换至电压值,接着将该电压值储存于电容器内,然后再利用可调式电流源来量测所储存之电压值.其中电容值对电压值转换器乃是利用切换式电容器技术,此电路系统让传感器电容器可依其电容值反映出对应的电压值.切换式电容器所用的频率则是由PSoC本身内部的振荡器所产生.传感器电容器连接到模拟多任务总线上,并利用同样连接总线的可编程电流输出数字模拟转换器(iDAC)进行充电.每个总线上充电电量为q=CV.当SW2为开路且SW1为闭路时,跨CX两端的电位势为零,且会减低总线上的电量,所减低的值与传感器的电容值成比例.这种充放电的动作会一直重复,此时传感器电容器也会成为总线上的电流负载.(如图2)藉由切换式电容器的电路运作,iDAC就会以二元搜寻法的方式决定出总线上恒定的电压值有多少.该电压值会影响切换式电容器的切换频率、传感器电容值、以及iDAC的电流值.总线其实也等同于一个旁路电容器(bypass capacitor),可以稳定最终电压.在总线上也可以增加额外的电容器,以调整电路的行为与时序.计算所得的iDAC值接着再度用来对总线充电,并且测量总线从初始电压到比较器的临界电压所需的充电时间.初始电压是在没有手指触碰的情形下,因此充电时间可事先测定.当手指触碰传感器时会增加CX的值,并且降低初始电压,因此会延长充电时间量测.(如上公式及图3)建构传感器电容传感器有多种型态与功能,可以采用各式各样的媒介,实作样式从简单到复杂都有.而决定传感器建构与建置细节的还是应用本身的需求.最常见的传感器样式要属按键与滑杆.按键其实就是连接至控制器的大型导体片,其中所测得的电容值会与一连串的临界值作比较,而测定结果也能藉由数字输出获得,或用其它模拟特性,以进一步感测触动的压力或手指面积.至于滑杆则是许多导体片以直线或放射状排列所构成的.利用计算质心的算法就可以测定出接触的位置,而且分辨率远大于感测所用的针脚数.像按键或滑杆这类简单的电容感测器,绝大多数都会采用铜片沉积至印刷电路板.然而也能使用其它基板材质与沈积媒介物制作电路,例如高导电性的银墨(silver ink).(如图4)动态使用者接口的按键或触控区则可以任意配置其显示器样式.这类的显示器拥有更为平顺且直觉化的互动操作,创造更佳的使用者经验.要建构这类系统比一般简单的按键或滑杆更为复杂.投射式电容触控屏幕在显示器上多加了透明导电物质.这层导电表面利用沈积方式附着于玻璃或PET薄膜这类基板上,并且连接至控制电路,接着再将此基板黏着于触控表层与显示器之间.触发区域测定方式与滑杆相同.纵向与横向的两组滑杆相互交错以覆盖整个显示区域,而且这两个方向的滑杆会侦测触动位置并且输出x轴与y轴数据.由于投射式电容触控屏幕上方还有一个覆盖层,因此也保护屏幕不受直接冲击、弯曲、环境因素影响等常见于传统电阻式触控屏幕的伤害.近距传感器基本上就是很大的按键.近距传感器的目的并不在侦测导电物体的确切位置,而是物体是否在附近.由于不需知道物体确切位置,因此反应时间可以稍慢(3-4ms vs.250us).近距传感器的灵敏度高很多;设计得当甚至可达30cm的距离.也由于近距传感器无须结合任何显示图形,因此在装置中的摆放位置就有更多的弹性.无论是控制电路板外的铜线圈,或是覆盖层后方的导线,都可以建置出非常基本且具成本效益的近距传感器.(如图5)使用电容传感器电容传感器的用途日益广泛.上述传感器的弹性、耐用、简洁的特性已为许多设计人员创造了新的机会.基本的选单浏览和点选功能依然使用按键方式,但使用价格实惠的电位计这种具备模拟特性的按键,就能建置出更多简单、具成本效益、可靠又安全的功能.LG LA-N131DR空气清静机在面板显示器选单浏览的按键上中用了五个电容传感器.这些按键让设计人员可以设计出平顺的机身,同时也具备使用者接口.电容式按键透过四毫米的玻璃侦测有无手指触碰.控制电路则建置在双层印刷电路板上没有传感器的一面.LG采用PSoC混合讯号数组来控制传感器,并且将状态输出至主要的装置处理器上.(如图6)近距传感器具备反应式背光功能,这主要是为了夜间操作或是安全因素考虑.这些情形多半需要更大的触发组件,例如成?的手或是金属罐子,才有办法达到可控制的范围.近距传感器、按键、滑杆、甚至是触控屏幕,都可利用PSoC的单一处理器进行控制.韧体例程则可依照使用者输入或主机命令进行状态的更改.为您创造电容感测应用PSoC混合讯号数组内含一个包含可组态的数字与模拟资源、闪存、RAM、8位微控制器与其它多种功能的数组.这些特色让PSoC能在其CapSense系列产品中实现创新的电容感测技术.运用PSoC的直觉式开发环境即可为装置进行组态与重新组态,以符合设计规格或任何规格变更.新感测技术的出现提升了感测灵敏度与抗噪声能力,并且减少功耗、增加升级速率,让设计人员创造出更好的应用产品.多点电容式触摸技术的参数化优化设计iPhONe极具创意的界面设计预示着多点电容式触摸屏技术将成为今后几年消费电子技术中的一大亮点,尤其是手机,MP3,MP4播放器和汽车GPS等等应用领域.同是源于电容式触摸原理,触摸屏相对于TouchPad鼠标的难度在于触摸屏采用了高阻抗高透明度的ITO(Indium Tin Oxide,铟锡氧化物)材料,每条sensor的电阻通常在10K欧姆左右甚至更高,而TouchPad是电阻只有几个欧姆的copper/PCB.电容式触摸屏三维结构触摸屏设计最重要的环节就是优化每一条sensor的电阻和电容.要了解这个问题,需要先知道ITO的工艺结构和sensor平面版图.图1是常见的抽象化的双层ITO工艺概图.从上到下分别是:覆盖层(overlay):大多是钢化玻璃(0.4~1mm),也有可能是PET(聚对苯二甲酸乙二醇酯).PET的优势在于触摸屏可以做到更薄,而且比现有的塑料和玻璃材质更加便宜;绝缘层(isolation)1/2/3:玻璃(0.4~1mm),有机薄膜(10~100um),粘合剂,空气层;ITO:典型厚度50~100nm,其方块电阻大约100~300欧姆范围;工艺三维结构直接关系到触摸屏的2个重要电容参数:感应电容(手指与上层ITO)和寄生电容(上下层ITO之间,下层ITO与LCD之间).ITO的厚度决定了其电阻率.图2.是Cypress的专利技术ITO菱形图形.蓝色是上层ITO,黄色是下层ITO.这里面包含的主要关键电学参数是:纵向sensor与横向sensor之间的寄生电容;sensor的电阻值.Sensor的电阻值取决于菱形块的大小,以及菱形之间的过桥宽度.参数化设计思想触摸屏设计的目标就是尽量减小电阻和寄生电容,并同时增加感应电容.系统优化设计包括结构优化和版图优化,涉及到十几个物理和电学变量.由于缺少解析表达式,复杂边界条件下的MAXWELL方程组数值模拟几乎成为唯一的选择.绝大多数数值计算软件需要直接输入三维结构图,有的甚至要求对边界的数值描述文件.另外,这种结构绝缘层以及ITO极薄的厚度也会给仿真软件带来非常巨大的计算难度,甚至无法准确计算电学寄生参数.由于一系列困难,使得优化仿真的前端工作变得庞大,使整个优化设计变得几乎不可能.针对这一设计瓶颈,Cypress Semiconductor Corp.和Ansoft Corp.探讨了一套设计流程,简单地讲就是利用Ansoft/Q3D对版图和结构参数化,达到快速自动仿真优化的设计目的.Ansoft/Q3D通过采用多种先进的数值方法,能够得到基于物理参数的非常直观的标准RLGC参数矩阵.对于设计者而言,RLGC参数矩阵直接描述物理结构,因此更容易解设计的问题出处和关键所在,能非常方便的指引设计者设计的方向.同时,Ansoft/Q3D提供了强大的参数化功能和参数优化功能,可以大大提高设计者的工作效率.图3是ITO触摸屏的一个单元.这个单元的所有2D和3D参数可以通过Ansoft的Q3D进行参数化,包括ITO的厚度,双层ITO之间的间隔,以及菱形结构之间的间距和过桥宽度.结构参数化之后,设计人员可以根据不同情况对其中的一个或多个物理结构参数进行扫描式仿真;同时设计者可以使用Ansoft/Q3D 内嵌的优化算法,根据设计要求,自定义优化的目标参数,得到接近最优的物理结构参数.对于更为复杂的3D结构,Ansoft/Q3D也可以采用同样的参数化方法进行建立模型.可以想象,有了这样的一种先进的参数化CAD设计流程,整个系统的优化设计可行性变得水到渠成.设计流程在我们给出的设计举例中,限于篇幅,仅仅列举出电容参数矩阵.在Q3D的计算中,电阻矩阵的计算相对容易,消耗较小的计算机内存;而电容参数的计算,不仅仅是影响设计的关键因素,而且在Q3D的仿真中消耗较多的计算机内存.下面只是列出电容计算的结果(1和2表示单元菱形结构编号,其实C[1,1]和C[2,2]是1和2两个菱形的自电容参数,C[1,2]和C[2,1]表示互电容).首先,假定其他结构参数不变,通过Q3D计算电容矩阵参数随着ITO厚度的变化.从下面结果可以看到,ITO的厚度对于电容参数的影响很小.对于绝缘层厚度也是设计中需要考虑到重要因素,因此我们计算ITO之间绝缘层厚度对于电容参数的影响.从Q3D计算的结果果可以看到,电容参数随着绝缘层的厚度成近似正比例增长.其实从平板电容的角度思考,这些结果是能够自洽的.并且,我们计算了上下菱形之间缝隙尺寸对于电容参数的影响.这个部分也是计算中最难确定的一部分.可以看到Q3D可以准确的给出缝隙对于电容参数的影响.以上数据给设计者提供了设计方向,更重要的是能够帮助设计者得到准确的电学参数.通过这些最优单元电学参数的计算,并结合使用Ansoft的另外一个工具Designer,就可以完成整版的电学参数计算,并在Designer里面计算驱动端到任何一个节点单元之间电学参数以及电路响应.驱动端读取这些电学参数,就可以实现触摸屏的响应.最后,我们给出一个利用Ansoft/Q3D实现设计的典型流程.上面的流程整个触摸屏设计制造的一部分,是设计触摸屏的性能是否能够达到要求的最重要的部分.这个CAD流程的使用者可以是触摸屏生产商,也可以是提供解决方案的芯片供应商.其关键价值在于极大的缩短了从结构到版图设计优化的整个流程.赛普拉斯的电容式触控技术解决方案赛普拉斯的CapSense电容式感应解决方案由具有CapSense功能的器件和PSoC可配置混合信号片上系统微控制器构成,用户只需手指轻触CapSense界面即可形成一个与内嵌式传感器的电连接,传感器与PSoC器件一道工作,将手指的位置数据转化为各种系统控制功能.而传感器本身只是印刷电路板(PCB)上的铜层,并非实际元件.控制传感器的电路则全部位于PSoC器件内部.一个具有简洁、触敏界面的CapSense器件可以取代数十个机械式开关和控制器.基于CapSense的"按键"和"滑动条"控制器比相应的机械式控制器更为可靠,原因在于它们不像裸露在外的按键和开关那样容易受到环境磨损的影响.在全球,已经有逾百种赛普拉斯CapSense设计得以应用,其中包括手机、PMP、白色家电、PC、笔记本电脑、打印机及汽车等."目前PSoC器件和CapSense的全球出货量已超过1个亿,手机和电动自行车是两个最主要的应用市场,"Babak Hedayati表示,"2006年PSoC微控制器PSoC可编程混合信号片上系统刚进入中国新兴的电动自行车市场,就占据了20%以上的市场份额,我们预测这一市场份额今年将继续增长到30%以上.PSoC在手机市场的市场份额不太好统计,但CapSense在手机上已是一个非常流行的特性,大多数主要的手机OEM都在开发基于CapSense和PSoC的电容式触摸输入功能,有的已经开始向市场推出具备这一功能的产品."除电容式感应功能以外,系统设计师还能够利用可配置PSoC架构,轻易将多种功能(如LED和LCD显示驱动)集成到设计之中.此外,PSoC CapSense解决方案还具有诸多优点,如采用I2C、SPI或USB接口的便捷通信、可利用相同的器件来实现跟踪板(x-y矩阵)和线性滑动条应用,以及可通过基于闪存的PSoC架构快速更改设计.所有PSoC器件都是可动态重建的,使得设计者能够随意创建新的系统功能.在许多情况下,设计者都可在不同时间对同一芯片进行不同功能的重新设置,从而获得超过100%的硅片利用率.CapSense器件可以透过厚度为5mm的玻璃或者塑料准确感知.为了回应业界对CapSense在温度和湿度剧烈变化时性能不够稳定的批评,2007年3月底赛普拉斯为PSoC CapSense电容式感应解决方案推出了两种新型感应方法,即CapSense Sigma-Delta调制器(CSD)和CapSense逐步趋近(CSA)这两种用户模块,它们可在PSoC Designer集成开发环境中提供给用户.CSD用户模块可使按钮、滑动条、触摸板和触摸屏等在潮湿环境下仍能实现无缺陷运行,并具有出色的温度响应,从而为白色家电及其他对湿度敏感的系统提供极佳的性能.高水准判断逻辑可补偿温度、湿度以及电源电压等环境因素的变化.独立的保护电极可用来降低分布电容,在有水雾或水滴存在的环境下仍然能够可靠运行.CSA用户模块的抗干扰性能提高了45倍,而功耗降低了60%,从而在性能上获得了显着改进,使其成为便携式消费类应用的理想选择.CSA用户模块可对按钮、滑动条、触摸板以及触摸屏的组合提供支持,并配有先进的软件程序,可补偿环境与物理传感器的变化.赛普拉斯CapSense产品部门总监Carl Brasek表示:"这些新型用户模块提供了能够克服恶劣环境条件的感应方法,从而进一步拓宽了电容感应输入技术的应用领域."ADI的电容式触摸技术解决方案ADI的电容式感应输入解决方案包括电容到数字转换器CDC(如AD7745、AD7746、AD7747和AD7142)以及电阻到数字转换器IDC(AD5933和AD5934),除了AD7142以外,所有上述CDC和IDC都针对工业控制、汽车和医疗电子应用中的高精度传感器设计.ADI最新的CDC(AD7142)则主要面向消费电子领域.尽管所有这些CDC都基于ADI的sigma-delta架构,但他们是非常不同的器件.AD7142是一款针对手持消费电子设备的可编程14通道电容数字转换器(CDC),它们能使当代的触摸控制设计做到超薄而具有高可靠性,以改善用户的触摸感.凭借ADI先进的电容传感器内核,这款低功耗CDC具有自动校准快速改变的外界环境的功能,从而使其适合移动环境应用.使得触控导航屏幕功能成为可能的电容传感器正在快速取代机械输入方式,以改善蜂窝手机、MP3播放器、PMP和数码相机应用中屏幕控制的外观和触感.AD7142具有卓越的抗环境干扰能力.这些干扰主要来自环境温度和湿度,它们会降低其它电容传感器的性能.该器件的功耗比同类解决方案低50%,从而使其适合电池供电的应用.AD7142有14个输入端,可对各种传感器配置进行设置,例如触控滚动条、8路位置传感器,以及驱动弹出菜单的滚轮,从而使用户可以更方便地浏览大量的音乐、图片和视频文件."手机和MP3播放器的用户接口是最困难的设计环节之一,因为它要求在现代触摸屏设计的最小尺寸和最低功耗范围内具有最高的精密度和功能,"ADI公司精密信号处理产品线总监Pat O'Doherty说,"像我们用于工业和汽车应用的CDC产品一样,AD7142能以较低的成本提供鲁棒性和无差错的性能,同时比以前的产品提供更大的设计自由度."AD7142具有高度可编程能力,并包含自适应阈值和灵敏度算法,允许芯片调整用户的手指尺寸,从而使该传感器对手指粗细不同的用户都适用.这款16位、低噪声、高精度CDC允许终端用户调整单个传感器的敏感程度,以适应他们的手指和触摸方式.AD7142通过片内数字校准功能实现独特的自动环境补偿,从而不论在任何时间和任何环境条件都能保证传感器的性能无差错.由于该器件显而易见地对用户提供了这种连续的校准,所以在外部传感器上不会产生误触摸或者无效触摸.。
电容式触控技术主要是应用人力的电流感应技术进行工作。
当手指触摸到金属层上时,人体电场、用户和触控屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流,这个电流从触控屏四角上的电极中流出,经过四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息。
目录∙电容式触控技术优点∙电容式触控技术缺点∙电容式触控技术的工作原理∙ADI的电容式触摸技术解决方案∙电容式触控技术的发展动力及趋势电容式触控技术优点∙与电阻式触控屏和电磁式感应板相比,电容式触控屏表现出了更加良好的性能。
由于轻触就能感应,使用方便。
而且手指与触控屏的接触几乎没有磨损,性能稳定,经机械测试使用寿命长达30年。
另外,电容式触控屏原理整个产品主要由一块只有一个高集成度芯片的PCB组成,元件少,产品一致性好、成品率高。
电容式触控技术缺点∙代表流行风向标的iPhONe上使用电容式触控屏无疑进一步印证了其拥有的各项优势。
然而,瑕不掩瑜,电容电容式触控屏原理式触控屏也面临着以下一些挑战:由于人体成为线路的一部分,因而漂移现象比较严重:电容式感应输入技术在中小尺寸平板显示器上输入或控制点状目标(如点击软键盘上的电话号码或输入中英文字)时的性能有待改进:温度和湿度剧烈变化时性能不够稳定,需经常校准:不适用于金属机柜:当外界有电感和磁感的时候,可能会使触控屏失灵。
电容式触控技术的工作原理∙电容式触控面板的应用需由触控面板(Touch Panel)、控制器(Touch CONtroller)及软件驱动程序(Utility)等3部分分别说明。
∙触控面板∙一般电容式触控面板是在透明玻璃表面镀上一层氧化锑锡薄膜(ATO Layer)及保护膜(Hard Coat Layer)而与液晶银幕(LCD Monitor)间则需作防电子讯号干扰处理(Shielded Layer)。
下图为电容式触控面板的侧面结构。
电容式触摸按键布线分享1):电容式触摸按键特点及应用与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。
它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中!2):电容式触摸按工作基本原理所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。
具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理!3): 电容式触摸按电容构成及判断PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。
电容式触摸按键布板要求1): PCB板的电容构成因素:PCB板中电容构成因素如右图:其中代表PCB板最终生成电容代表空气中的介质常数代表两板电介质常数代表两极板面面积代表两板距离2): PCB板的布局电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:虽然触摸按键最终的效果可能与其他一些因素还有很多直接或间接的关系,但做为PCB的绘制人员,我们因该尽量保证我们所绘制的PCB效果达到最佳(及控制好触摸按键的中的基准电容值)PCB布板至关重要,因为PCB构成的电容容量极小,而且必须要尽量控制等效电容,不能过大,因为人体电容也是极小的(数pF),不同的人之间差异也比较大,而触摸按键的灵敏度就在于手指接触按键前后PAD电容量的差异,而且这么小的电容充放电极易受到干扰,所以布线的关键两点就是:1、控制电容量2、避免干扰影响电容容量的因素是极板的面积和极板间的介质材料,在实际应用中人体是不太可能直接接触PCB的,所以PCB与按键接触面必须有覆盖层,在触摸按键应中影响容量的因素有:1、 PAD的面积与铺地间的距离以及铺地的面积2、 PAD上的覆盖层的厚度和材质(介质)3、 PCB的厚度和材质对应的策略如下:1、 PAD的面积应尽量接近手指接触按键的有效面积。
电容式触控工作原理
电容式触控技术是一种利用电容的原理实现的触控技术。
其基本工作原理是将一个薄膜电容器放置在液晶显示器或其他电子设备的
表面,当用户触摸该表面时,手指和电容器之间形成了一个电容,使得电容器中的电荷分布发生变化。
通过测量这种变化,可以确定用户的触摸位置和力度。
电容式触控技术可以分为电阻式和电容式两种类型。
电阻式触控技术基于用户与一层受电阻的薄膜之间的接触来测量位置和力度。
而电容式触控技术则基于用户与一层电容器之间的接触来测量位置和
力度。
电容式触控技术有许多优点。
首先,它比电阻式触控技术更灵敏。
其次,它可以支持多点触控,使得用户可以同时使用多个手指进行操作。
此外,电容式触控技术的响应速度也比电阻式触控技术更快,从而使得用户可以更快地完成操作。
总之,电容式触控技术是一种高效、灵敏和可靠的触控技术,已经被广泛应用于各种电子设备中,如智能手机、平板电脑、车载娱乐系统等。
- 1 -。
电容触摸原理电容触摸原理电容触摸技术是一种基于电容原理的交互式输入方式,它利用人体和物体的电容变化来实现触摸操作。
该技术广泛应用于智能手机、平板电脑、智能手表、家居智能控制等领域。
1. 电容原理要理解电容触摸原理,首先需要了解电容原理。
电容是指两个导体之间隔着一层绝缘体时所具有的储存电荷的能力。
当两个导体之间施加一个电压时,会在它们之间形成一个静电场,这个静电场会使得导体上出现正负极性的荷载,从而形成一个储存能量的状态。
2. 人体和物体的电容变化当人类接近带有静态或动态静电场的物体时,人体会与物体之间形成一个微小但可测量的静态电荷。
这个静态电荷可以被感测器检测到,并转换为数字信号进行处理。
3. 传感器传感器是实现电容触摸技术的关键部分。
传感器通常由两部分组成:感应区和控制芯片。
感应区是由一组电极构成的,这些电极可以感测到人体和物体的电容变化。
控制芯片则负责将感应区的信号转换为数字信号,并进行处理。
4. 工作原理当手指接触到触摸屏时,手指和屏幕之间会形成一个微小的静电场。
传感器会检测到这个静电场,并将其转换为数字信号。
控制芯片会对这个数字信号进行处理,然后将其发送给处理器。
处理器会根据这个信号来判断用户的操作意图,并执行相应的操作。
5. 优点与传统机械按键相比,电容触摸技术具有以下优点:- 可以实现多点触控;- 操作更加灵敏、精准;- 无需机械按键,更加美观、耐用;- 可以实现手写输入等高级功能。
6. 应用电容触摸技术已经广泛应用于智能手机、平板电脑、智能手表、家居智能控制等领域。
随着人工智能和物联网技术的发展,它在未来还有很大的应用前景。
总之,电容触摸技术是一种基于电容原理的交互式输入方式,它利用人体和物体的电容变化来实现触摸操作。
该技术具有多点触控、操作灵敏、美观耐用等优点,已经广泛应用于各个领域。
电容式触控技术原理: 电容式触控技术在厨房设备中的应用已经有几年了,例如在烤箱和煎锅的不透明玻璃面板 后面采用分离按键实现。
这些触摸控制键逐渐替代了机械按键, 因为后者具有使用寿命短、 不够卫生等方面的问题,而且还有在 面板上开孔安装按键的相关成本,图 1是电容式感应技术原理示意图。
电容式感应技术由于具有耐用、较易 于低成本实现等特点,而逐渐成为触 摸控制的首选技术。
此外,由于具有 可扩展性,该技术还可以提供其它技 术所不能实现的用户功能。
在显示屏 上以软按键方式提供用户界面,这通 常被称为触摸屏。
图 1: 技术原理示意图。
触摸输入滚动/指示功能器件,例如 iPod 音乐播放器上的点击式转盘,这类器件在消费市 场已经获得广泛的认可,正在逐渐出现在更多的消费设备市场。
有两种基本类型的滚动器 件:第一种是绝对报告类型,提供直接位置输出报告;另外一种是相对类型,这类器件提 供用来增加或减少某个值的直接报告。
使用电容式感应的 IC 设计感应开关电路板与其它电路的开发流程略有不同, 因为电容式开 关的设计上会受到机构与其它电路设计上的影响,会有比较多的调整程序,所以需要一个 比较复杂的开发流程,现就以出道较早且具有代表性的“Quantum ”产品的开发流程及要 点介绍给大家,希望对需要的朋友有所帮助。
下图是开发流程图: 1. Step 1:机构设 计:a. b.面板的材质必须是塑料,玻璃,等非导电物质。
在机构设计阶段同时也必需设计操作流程,以选择合适的产品,如果是按键的产 品,要考虑是否有复合按键的设计,或是综合滑动操作及按键操作等,如果是以滑 动操作的产品,就必须考虑是否需要切割出按键。
由于感应电极与面板接触点之间不能有空隙,所以机构设计上必须考虑将感应验 路板直接黏贴在外壳面板的内侧,以及考虑面板的组装方式。
c.d.同样的,感应电极与手指之间不能有金属层夹在中间,所以面板上不可以有金属 电镀及含金属超过 15%的喷漆等会形成导电层的设计。
电容触摸屏
电容触摸屏的技术解析
电容触摸屏技能是使用人体的电流感应进行作业的。
电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内外表和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为作业面,四个角上引出四个电极,内层ITO为屏蔽层以保证杰出的作业环境。
当手指触摸在金属层上时,因为人体电场,用户和触摸屏外表构成以一个耦合电容,关于高频电流来说,电容是直接导体,所以手指从接触点吸走一个很小的电流。
这个电流分别从触摸屏的四角上的电极中流出,而且流经这四个电极的电流与手指到四角的间隔成正比,控制器经过对这四个电流份额的精确核算,得出触摸点的方位。
电容面板的触控技能投射电容式触摸屏是在两层ITO导电玻璃涂层上蚀刻出不一样的ITO导电线路模块。
两个模块上蚀刻的图形彼此笔直,能够把它们看作是X和Y方向连续改变的滑条。
因为X、Y架构在不一样外表,其相交处构成一电容节点。
一个滑条能够当成驱动线,别的一个滑条当成是侦测线。
当电流经过驱动线中的一条导线时,假如外界有电容改变的信号,那么就会导致另一层导线上电容节点的改变。
侦测电容值的改变能够经过与之相连的电子回路丈量得到,再经由A/D控制器转为数字信号让核算机做运算处置获得(X,Y)轴方位,进而到达定位的目地。
1。
电容式触摸屏原理揭秘及原理解析触摸屏的产品在几年前并不是十分火热,当时触屏也仅应用于PDA、TablePC等一些产品。
但最近几年,随着触摸屏的应用范围逐渐加大,无论手机、相机还是随身影音播放器,都竞相推出配置触摸屏的产品。
而随着人们对于触屏产品的接触越来越多,触摸屏的产品在近两年也被更多人所认可,发展速度逐渐加快。
触摸屏迅速的成长,不仅激起了更加激烈的竞争,也间接推动了技术的发展。
去年苹果iPhone推出后,其多点触控的操作方式更是另触摸屏产品的影响力提升到了一个新的高度,而iPhone采用的电容式触摸屏也逐渐被人们所关注起来。
电容式触摸屏与传统的电阻式触摸屏有很大区别。
电阻式触控屏幕在工作时每次只能判断一个触控点,如果触控点在两个以上,就不能做出正确的判断了,所以电阻式触摸屏仅适用于点击、拖拽等一些简单动作的判断。
而电容式触摸屏的多点触控,则可以将用户的触摸分解为采集多点信号及判断信号意义两个工作,完成对复杂动作的判断。
使用两根手指的拉伸、换位即可在屏幕上完成诸液晶广告机如放大、旋转这样趣味十足的操作,这在电容式触摸屏出现之前,几乎是不可想象的。
苹果iPhone上市之后,很快造成了一股触控风潮;不久后,苹果又乘胜追击,推出了同样支持多点触控的iPodtouch(其实也就相当于一个简化版的iPhone),同样受到用户及媒体的追捧。
苹果两款产品的成功,刺激了其他的IT厂商。
一直致力于随身数码影音产品市场的三星,也在第一时间跟进,推出了自己的首款多点触控产品——YP-P2,在随身数码影音市场取得了很大反响。
相对而言,国内厂商在电容式触摸屏产品的跟进脚步上慢了一些,直到近期台电T50的推出才弥补了这个空缺。
但由于在制造工艺、技术等方面的差距,目前国内的电容式触摸屏产品在灵敏度及操作感等方面比起国外厂商的产品还略有差距。
容式触摸屏工作原理,与电阻式触摸屏不同,电容式触摸屏是利用人体的电流感应进行工作的。
电容式触控技术解析-ITO篇电容式触控技术解析第三章LAYOUT 分析3.1 什么是ITOITO 是Indium Tin Oxides的缩写,中文意为:氧化铟锡,是一种N型氧化物半导体。
ITO薄膜即铟锡氧化物半导体透明导电膜,主要的性能指标是电阻率和光透过率。
下面介绍一些关于ITO的分类:3.1.1 ITO GLASSITO GLASS,是通过ITO导电膜玻璃生产线,在无尘的生产环境中,利用平面磁控技术,在超薄玻璃上溅射氧化铟锡导电薄膜镀层并经高温退火处理得到的.下面介绍一下关于ITO GLASS的分类:(1).按阻抗分类分为高电阻玻璃(电阻在150~500奥姆)、普通玻璃(电阻在60~150奥姆)、低电阻玻璃(电阻小于60奥姆)。
高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。
(2).按尺寸分类分为14”x14”、14”x16”、20”x24”等规格(3). 按厚度分类分为2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm以下的主要用于STN液晶显示器产品。
(4). 按平整度分类分为抛光玻璃和普通玻璃。
3.1.2 ITO FILMITO FILM 是指有硬涂层处理的PET胶片,是由PET和经过UV处理的耐化学试剂硬涂层组成。
常用的ITO FILM按层数分类,一般分为单层,两层和三层。
ITO FILM与ITO GLASS在实际的生产过程中是有区别的,ITO在正式上生产线之前,需要进行一道调质处理程序,即所谓的ITO FILM 老化程序。
3.1.3 ITO 镀膜方式(1)真空蒸渡是指在真空状态(约0.01pa以下压力)下,加热金属,氧化物,硫化物等使之挥发气化,从而在载体上形成薄膜层的技术。
真空蒸渡方式的分类:(1)电阻加热(2)高频感应加热(3)电子束加热(2)溅镀是指在真空状态下发生电离子化的高能粒子装机靶材,从而使构成靶材的成分作为粒子溅出并附着于薄膜表面的加工工艺。
电容式触控技术入门及实例解析洪锦维著化学工业出版社
1.Pixcir IC 特点: (1)
2.触控技术的瓶颈 (1)
3.电容式触控芯片设计方法 (3)
1)开关电容法Switched Capacitor Method (3)
2)充电转换法(Charge Transfer Method) (4)
3)张驰振荡法(Relaxation Oscillator Method) (6)
4)串联电容分压法(Series Capacitor V oltage Division Method) (7)
1.Pixcir IC 特点:
1)采用低压制程0~3.3V 每秒充放电30million次。
E=1/2CU2 ,可知较低的电压可以减少充放电过程中的能量损耗。
2)高压制程的输入一般是1.8~5V,扫描脉冲一般为10V+,所以需要增加DC/DC 电路,模拟电路设计增加了芯片体积与功耗。
使用高压制程是为了提高信噪比。
3)Pixcir的Tango系列芯片均使用S-R扫描算法进行抗干扰处理。
对于单指,S-R 算法几乎可以将干扰降低为0;对于多指,Pixcir使用软件模拟出一个实际的干扰曲线,通过调整SPI速度,可以使驱动信号曲线远离干扰曲线,提高抗干扰能力。
2.触控技术的瓶颈
1)floating
若在不接地的环境下使用,如木制桌椅上,会产生划线断点不连续现象。
多指使用过程中,若无可靠GND回路,手指间信号会发生相互干扰。
Drive
Drive
Poor Return
解决方法:
①设备机壳采用技术设计(Iphone 外围的不锈钢圈),保证手持时人体与大地相连接通放电回路。
②
内部增加GND 裸露金属面积,使用电磁辐射方式释放多余电荷。
2)AC Noise
连接充电器时,AC~DC 滤波不完全,引起纹波干扰。
(<100MV )
解决方法:保证充电器达到芯片设计水平;增加设备主板内部滤波模块。
3)大手指问题
大拇指用力按压,会判断为两个或多个触摸。
4)线性度。
5)形变导致的错误报点
组装或使用过程中,TP 形变或由于设备内部金属机构位移会造成sensor 对地电容发生变化产生错误报点。
6)手指分离
两指在间距很小时划线,区分两条轨迹。
3.电容式触控芯片设计方法
1)开关电容法Switched Capacitor Method
充电放电
开关电容器等效电阻
假设充电时Q=CV ,放电时将电荷全部释放。
假设1s 充放电N 次,则会有Q=NCV 的电荷完成移动。
呈现类似电阻的作用,I=V/R.I 是指1s 从电源到地移动的电荷量。
如果两种方式移动的电荷量相同,则可以得到NCV=V/R 。
所以NC=1/R.即:如果开关以N 次/s 的速度进行切换则相当于电路中串接了一个阻值为1/(NC )的电阻器。
通过开关电容等效电阻的原理,可以利用开关电容等效电阻在电路中分压从而通过计算电压值的大小来确定电容的变化。
如下图为一种利用开关电容原理实现触控侦测的一种电路结构。
当手指靠近感应电极时C 变大,所以V out 会变小。
通过侦测V out 的变化就会推测出感应电容的变化。
2)充电转换法(Charge Transfer Method)
c 充电转换法的电路结构
c 开关电容法的电路结构
主要由开关切换器、比较器与电容器构成。
充电转换器的主要操作如下图所示:
c c c
①连接VDD 与感应电极 ②转换开关切换器,储存在Cp 中的电荷会移动到Cs 中,同时Cs 的电压会上升,上升的幅度则由Cp 与Cs 的容量比决定,此时只要通过计算超过一定电压所需要的时间就可以推算出Cp 的值。
③测量结束,通过开关切换器使Cp和Cs放电回到初始化状态。
说明:Cp充电阶段由于电极直接与电源相连,因此阻抗较低,但由于人体存在电阻,当人体接触电极时,是Cp电极部位阻抗增高,不过由于Cp的容量比Cs大,而且电荷的转移瞬间就结束,所以容易受噪声影响的电极在电路中连接的时间非常短,因此可以将噪声的影响抑制在很小的范围内。
3)张驰振荡法(Relaxation Oscillator Method)
张驰振荡电路(Relaxation Oscillator)的一种典型应用就是测量电容。
张驰振荡电路通过电阻给电容充电。
充电时间t约等于RC。
通过计算充电时间就可以计算出被充电电容的大小。
当手指触摸面板时,电容量会变大,所以充电时间就会变长。
Vout
Vref
V CO
说明:由于手指之间的容量很小,如果要求充电时间达到一定值时就必须增加R,然而这样会造成触控点阻抗的增加,从而使这种电路结构容易受噪声的影响。
4)串联电容分压法(Series Capacitor Voltage Division Method)
与充电转换方式的原理大体相同,都是利用电荷的转移特性。
由电阻器、充电用电容器Cs(较大)、基准用电容器Cref(较小)及电压比较器构成。
基准用电容器Cref 与感应电容Cp串联,由于手指的触碰改变了Cp的大小从而改变了Cs的放电时间,通过测量电压降至一定电压时所需要的时间就可以计算出感应电容Cp的大小。
c p
串联电容分压方式的电路结构
工作原理如下图:
①连接S1,对Cs、Cref、Cp充电。
②连接S2、S3,对Cs、Cref、Cp放电。
由于Cref容量小所以被完成放电。
③用Cs给Cref与Cp进行充电。
所以通过计算比较器输出电压推算出刚硬电容Cp的大小。
c c。