代数式求值及去括号
- 格式:doc
- 大小:125.50 KB
- 文档页数:2
2.2 整式的加减第2课时去括号一、新课导入1.课题导入:小敏在求多项式8a-7b与多项式4a-5b的差时,列出算式(8a-7b)-(4a-5b),但小敏想:这种含括号的式子该如何计算呢?这节课我们一起来学习通过去括号化简整式.2.三维目标:(1)知识与技能能运用运算律探究去括号法则,并且利用去括号法则将整式化简.(2)过程与方法经过类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.(3)情感态度培养学生主动探究、合作交流的意识,严谨治学的学习态度.3.学习重、难点:重点:去括号法则.难点:用去括号法则将整式化简.二、分层学习1.自学指导:(1)自学内容:教材第65页倒数第4行至第66页例4之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,弄清本章引言中问题(3)所列带括号的算式的运算方法和过程,领悟去括号时符号变化的规律.(4)自学参考提纲:①教材中是如何化简式子①和②的?先利用分配律,去掉括号,再合并同类项.②比较③④两式,你发现去括号时符号变化的规律吗?正负得负,负负得正.③去括号法则是怎样的?如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.④依去括号法则去括号:2(2a-3b+c)=4a-6b+2c -3(-x+2y-z)=3x-6y+3z⑤+(a+b-c)=a+b-c,-(a+b-c)=-a-b+c.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,深入了解学生是否掌握了去括号法则.②差异指导:对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)去括号时应先看括号前是正数还是负数,再确定去括号后括号内各项的符号是变还是不变,做到要变都变;要不变,则谁也不变;(2)括号内原有几项去掉括号后仍有几项.1.自学指导:(1)自学内容:教材第66页例4的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,学习并思考例4中化简的每一步各项的变化及依据,体验并总结去括号时符号变化的规律.(4)自学参考提纲:①例4(1)去括号后各项符号为什么不变?因为括号外面的因数是正数.②例4(2)去括号后括号内各项符号为什么有的变,有的不变?因为括号外面的因数有正有负.③例题(2)中-3(a2-2b),也可以先化为+3(-a2+2b),然后再去括号,试试看.④尝试化简,然后相互展示交流一下过程和结果.a.化简“课题导入”中的算式(8a-7b)-(4a-5b)=4a-2bb.+(-2x2+3x-1)-(x2-3x+2)=-3x2+6x-3c.2(a2+ab)-3(ab-a2)=5a2-ab2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入学生之中了解自学中存在的问题.②差异指导:对个别学困生进行点拨引导,纠正偏差.(2)生助生:学生相互帮助解决学习中的疑点问题.4.强化:(1)解题要领:对括号外不是+1或-1的乘数,应先将它的绝对值乘到括号内,然后再去括号.(2)练习:x)③-5a+(3a-2)-(3a-7)化简:①12(x-0.5)②-5(1-15④1(9y-3)+2(y+1)3解:①12x-6;②x-5;③-5a+5;④5y+1.1.自学指导:(1)自学内容:教材第67页例5的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,思考顺水速度、逆水速度、船速、水速之间的关系.(4)自学参考提纲:①船在非静水中航行的速度基本关系式是顺水速度=船速+水速,逆水速度=船速-水速.②例题(2)的解答中对-2(50-a)的化简,没有采用前面的两个步骤:第一步化为-(100-2a),第二步化为-100+2a.所以一步到位,既考虑括号前的负号又同时考虑括号前因数的绝对值,即-100+2a.当我们对去括号非常熟悉后可以采用这种一步到位法.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生是否认清问题中的数量关系和去括号时存在的问题.②差异指导:对学习困难的学生进行指导或点拨.(2)生助生:学生相互交流帮助解决学习中的困惑.4.强化:(1)船在顺流、逆流行驶时几个量之间的关系;顺水航速=船速+水速逆水航速=船速-水速(2)练习:飞机的无风航速为a千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?解:飞机顺风飞行4小时的行程是4(a+20)千米;飞机逆风飞行3小时的行程是3(a-20)千米;两个行程相差4(a+20)-3(a-20)=(a+140)千米.三、评价1.学生表述自己在这节课学习中的感受和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.本课时教学时教师要通过对这个法则的不断强化,使学生牢牢记住变形时的符号变化.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(20分)判断:下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c)=a2-2a-b+c;(2)a2-2(a-b+c)=a2-2a+b-c解:(1)错误,应为a2-2a+b-c;(2)错误,应为a2-2a+2b-2c2.(20分)先去括号,再合并同类项:x)(1)2(4x-0.5) (2)-3(1-16(3)-x+(2x-2)-(3x+5) (4)3a2+a2-(2a2-2a)+(3a-a2)解:(1)原式=8x-1;(2)原式=-3+1x;2(3)原式=-x+2x-2-3x-5=-2x-7;(4)原式=3a2+a2-2a2+2a+3a-a2=a2+5a.3.(30分)(1)列式表示:比a的5倍大4的数与比a的2倍小3的数,再计算这两个数的和;(2)列式表示:比x的7倍大3的数与比x的6倍小5的数,再计算这两个数的差.(1)比a的5倍大4的数为5a+4,比a的2倍小3的数为2a-3,解:(5a+4)+(2a-3)=5a+4+2a-3=7a+1.(2)比x的7倍大3的数为7x+3,比x的6倍小5的数为6x-5,(7x+3)-(6x-5)=7x+3-6x+5=x+8.二、综合应用(20分)4.(10分)某村小麦种植面积是a hm2,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5 hm2,列式表示水稻和玉米的种植面积,并计算水稻种植面积比玉米种植面积大多少?解:水稻种植面积为3a hm2,玉米种植面积为(a-5)hm2,水稻种植面积比玉米种植面积大3a-(a-5)=3a-a+5=(2a+5) hm2.5.(10分)某轮船顺水航行3 h,逆水航行1.5 h,已知轮船在静水中的速度是a km/h,水流速度是y km/h,轮船共航行多少千米?解:3(a+y)+1.5(a-y)=3a+3y+1.5a-1.5y=(4.5a+1.5y)(km)轮船共航行了(4.5a+1.5y)km.三、拓展延伸(20分)6.(10分)化简(xyz2-4yx-1)+(-3xy+z2yx-3)-(2xyz2+xy)的值是(C)A.与x,y,z的大小都有关B.与x,y,z的大小有关,而与y,z的大小无关C.与x,y的大小有关,而与z的大小无关D.与x,y,z的大小均无关2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(- 32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b)+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x2+y2)-(x2-y2+8xy)解:原式=8xy-x2+y2-x2+y2-8xy=-2x2+2y2(3)(2x2-12+3x)-4(x-x2+12)解:原式=2x2-12+3x-4x+4x2-2=6x2-x-52(4)3x2-[7x-(4x-3)-2x2]解:原式=3x2-(7x-4x+3-2x2)=3x2-7x+4x-3+2x2=5x2-3x-32.(10分)求(-x2+5+4x)+(5x-4+2x2)的值,其中x=-2.解:(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x2+9x的和等于3x2+4x-1,求这个多项式.解:这个多项式为(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm ).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a ;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.。
第06讲代数式相关概念(8大考点)考点考向一.代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.例如:ax+2b,﹣13,2b23,a+2等.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|﹣2.25|等.二.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.三.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.四.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.五.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.六.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.七.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.八.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式考点精讲一.代数式(共2小题)1.(2021秋•海安市期中)下列各式中,符合代数式书写要求的是()A.x•5B .﹣ab C.1x D.4m×n【分析】根据代数式的书写要求判断各项.【解答】解:A、字母与数字相乘时,乘号省略不写,数字写在前面,原书写错误,故此选项不符合题意;B、符合代数式的书写要求,原书写正确,故此选项符合题意;C、带分数应写成假分数,原书写错误,故此选项不符合题意;D、字母与字母相乘时,通常简写成“•”或者省略不写,原书写错误,故此选项不符合题意.故选:B.【点评】本题考查代数式的书写规则.解题的关键是掌握代数式的书写规则:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.(2021秋•高淳区期中)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义用100元买每斤9.8元的苹果x斤余下的钱.【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【解答】解:代数式100﹣9.8x的实际意义为:用100元买每斤9.8元的苹果x斤余下的钱.故答案为:用100元买每斤9.8元的苹果x斤余下的钱.【点评】此题主要考查了代数式,结合题意利用图片得出是解题关键.二.列代数式(共6小题)3.(2021秋•惠山区期末)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为(m+11)人(用含m的代数式表示).【分析】根据题意和题目中的数据,可以用含m的代数式表示出参加文艺类社团的人数和参加科技类社团的人数,然后将三个社团的人数相加,即可求得参加三类社团的总人数.【解答】解:由题意可得,参加体育类社团的有m人,参加文艺类社团的有(m+6)人,参加科技类社团的有[(m+6)+2]人,故参加三类社团的总人数为:m+(m+6)+[(m+6)+2]=m+m+6+(m+6)+2=m+m+6+m+3+2=(m+11)人.故答案为:(m+11)人.【点评】本题考查列代数式,解答本题的关键是用含m的代数式表示出参加文艺类社团的人数和参加科技类社团的人数.4.(2021秋•溧水区期末)用代数式表示图中阴影部分的面积ab﹣πb2.【分析】用矩形的面积减去半径为b的半圆的面积即可得到阴影部分的面积.【解答】解:S阴影部分=S矩形﹣S半圆=ab﹣πb2,故答案为:ab﹣πb2【点评】本题考查了列代数式的知识,解题的关键是明确阴影部分的面积的求法.5.(2021秋•宝应县期末)甲超市在中秋节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖,x(单位:kg)表示购买苹果的质量.(1)中秋节这天,小明购买3kg苹果需付款30元;购买5kg苹果需付款46元;(2)中秋节这天,小明需购买苹果xkg,则小明需付款10x或(6x+16)元;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,小明如果要购买多少kg苹果时,随便在哪家购买都一样?【分析】(1)根据在不同购买量不同的价格进行计算;(2)分x≤4和x>4两种情况进行列式表达;(3)根据两家超市的优惠方案列方程求解即可.【解答】解:(1)10×3=30(元),10×4+10×0.6×(5﹣4)=40+6×1=40+6=46(元),故答案为:30,46;(2)当x≤4时,小明需付款10x元,当x>4时,小明需付款10×4+10×0.6×(x﹣4)=40+6×(x﹣4)=40+6x﹣24=(6x+16)(元),故答案为:10x或(6x+16);(3)由题意列方程得,10×4+10×0.6×(x﹣4)=10×0.8x,解得x=8,答:小明如果要购买8kg苹果时,随便在哪家购买都一样.【点评】此题考查了根据实际问题列代数式的能力,关键是能准确理解实际问题中的数量关系.6.(2021秋•溧阳市期末)为“美丽乡村”建设,某市对市属国道两旁绿化区域进行绿化升级,“阳光”工程队承包了该路段绿化升级工程,原计划每天绿化升级0.5公里,施工开始时,工程队改变计划,实际施工绿化升级是原计划的1.6倍,已知该市需要绿化升级的总长为a公里,完成这项工程的实际时间比原计划时间少用天(用含a的代数式表示).【分析】用原计划的天数﹣实际天数即可得解.【解答】解:原计划的天数为(天),实际天数为(天),(天).故答案为:.【点评】本题主要考查了列代数式,解题的关键是求出原计划的天数和实际天数.7.(2021秋•南京期末)小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m(m>10)张,一列(20﹣m)张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了(m ﹣10)张.(结果用含有m的代数式表示)【分析】设一列m(m>10)张的黑桃有n张,则红桃有(m﹣n)张,再求出短的一列中红桃有10﹣(m﹣n)=(10﹣m+n)张,两种牌数作差即可﹒【解答】解:设一列m(m>10)张的黑桃有n张,则红桃有(m﹣n)张,短的一列中红桃有10﹣(m﹣n)=(10﹣m+n)张,:.长的一列中的(黑桃)比短的一列中的(红桃)多:n﹣(10﹣m+n)=(m﹣10)张.故答案为:(m﹣10).【点评】本题考查用代数式表示数,整式的加减法运算,掌握用代数式表示数的方法,整式的加减法运算去括号合并同类项是解题关键﹒8.(2021秋•如东县期末)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数为10b+a.【分析】个位数字a,十位数字b的两位数可以表示为:10b+a.【解答】个位数字a,十位数字b的两位数是:10×b+1×a=10b+a,故答案为:10b+a.【点评】本题考查正整数的代数式表示.注意代数式表示数字与具体数字表示的区别.三.代数式求值(共7小题)9.(2021秋•广陵区期末)已知a﹣2b2=3,则2022﹣2a+4b2的值是()A.2016B.2028C.2019D.2025【分析】将原式变形为2022﹣2(a﹣2b2),然后把已知等式代入计算即可求出值.【解答】解:2022﹣2a+4b2=2022﹣2(a﹣2b2),∵a﹣2b2=3,∴原式=2022﹣2×3=2016.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.10.(2021秋•江都区期末)已知﹣2x+y=2,则(2x﹣y)2+2x﹣y﹣3=﹣1.【分析】由﹣2x+y=2得出2x﹣y=﹣2,整体代入进行计算即可得出答案.【解答】解:∵﹣2x+y=2,∴2x﹣y=﹣2,∴(2x﹣y)2+2x﹣y﹣3=(﹣2)2+(﹣2)﹣3=4﹣2﹣3=﹣1,故答案为:﹣1.【点评】本题考查了代数式求值,由﹣2x+y=2得出2x﹣y=﹣2是解题的关键.11.(2021秋•溧阳市期末)若2x﹣y=﹣3,则6﹣4x+2y=12.【分析】首先变形6﹣4x+2y=6﹣2(2x﹣y),再把2x﹣y=﹣3代入可得答案.【解答】解:∵2x﹣y=﹣3,∴6﹣4x+2y=6﹣2(2x﹣y)=6﹣2×(﹣3)=12,故答案为:12.【点评】本题主要考查代数式求值,解题的关键是变形6﹣4x+2y=6﹣2(2x﹣y).12.(2021秋•仪征市期末)如图是一个数值运算的程序,若输入的x值为5,则输出的y值为12.【分析】根据运算程序中的计算顺序,将x=5代入即可.【解答】解:由题意得,y==12.故答案为:12.【点评】本题是程序运算题,考查了有理数的混合运算,根据程序得到运算顺序是解题的关键.13.(2021秋•徐州期末)若a﹣2b+1=0,则代数式3a﹣6b的值为﹣3.【分析】根据a﹣2b+1=0,可得:a﹣2b=﹣1,再整体代入即可.【解答】解:∵a﹣2b+1=0,∴a﹣2b=﹣1,∴3a﹣6b=3×(﹣1)=﹣3故答案为:﹣3.【点评】本题考查了代数式求值问题,涉及到整体代入,要熟练掌握,求代数式的值可以直接代入计算,有时需要整体代入.14.(2021秋•高新区期末)已知关于x的代数式2x2﹣bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,则a+b=﹣13.【分析】根据已知列出关于a、b的方程,求出a、b的值,再代入即可得到答案.【解答】解:∵关于x的代数式2x2﹣bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2﹣b=0,a+17=0,∴a=﹣17,b=4,∴a+b=﹣17+4=﹣13.故答案为:﹣13.【点评】本题考查代数式求值,解题的关键是掌握代数式的值与x无关,则含x的同类项合并后系数为0.15.(2021秋•宝应县期末)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为2021.【分析】把1921代入程序中计算,判断即可得到结果.【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故答案为:2021.【点评】此题考查了有理数的混合运算,弄清程序中的运算过程是解本题的关键.四.规律型:数字的变化类(共6小题)16.(2021秋•徐州期末)下列一组数:1,2,3,4,3,2,1,2,3,4,3,2,1,2,…其中第2022个数是()A.1B.2C.3D.4【分析】不难发现这组数以1,2,3,4,3,2,这6个数不断循环出现,则2022÷6=372,从而可判断第2022个数.【解答】解:由题意得:这组数以1,2,3,4,3,2,这6个数不断循环出现,∵2022÷6=337,∴第2022个数是2.故选:B.【点评】本题主要考查数字的变化规律,解答的关键是由所给的数字分析出存在的规律.17.(2021秋•广陵区期末)【阅读】计算1+3+32+...+3100的值时,令S=1+3+32+ (3100)则3S=3+32+33+…+3100+3101,因此3S﹣S=3101﹣1,所以.仿照以上推理,计算:=.【分析】令S=1﹣4+42﹣43+44﹣45+...+42020﹣42021,则4S=4﹣42+43﹣44+45﹣ (42021)42022,求出S=﹣,再运算即可.【解答】解:令S=1﹣4+42﹣43+44﹣45+…+42020﹣42021,则4S=4﹣42+43﹣44+45﹣…+42021﹣42022,∴5S=1﹣42022,∴S=﹣,∴1﹣4+42﹣43+44﹣45+…+42020﹣42021+=﹣+=,故答案为:.【点评】本题考查数字的变化规律,根据所给的例子仿照列式,并准确计算是解题的关键.18.(2021秋•东台市期末)如图,“海春书局”把WIFI密码做成了数学题.小红在海春书局看书时,思索了一会儿,输入密码,顺利地连接到了“海春书局”的网络,那么她输入的密码是88.【分析】通过观察发现,密码的前两位数是第一个数字与第三个数的乘积,中间两位数字是第二个数与第三个数的乘积,最后两个数是所得的两个积的和.【解答】解:通过观察可知密码的前两位数是2×8=16,中间两位数是9×8=72,最后两位数是16+72=88,故答案为:88.【点评】本题考查数字的变化规律,通过观察所给的密码,探索出密码与所给数字之间的运算关系是解题的关键.19.(2021秋•连云港期末)观察下列两行数:3,5,7,9,11,13,15,17,19,….4,7,10,13,16,19,22,25,….探究发现:第1个相同的数是7,第2个相同的数是13,…,若第n个相同的数是1801,则n等于300.【分析】由所给的数字可发现:第1个相同的数是7,第2个相同的数是13=7+6,第3个相同的数为19=7+6×2,…,从而可得其规律:第n个相同的数为:6(n+1),则可求解.【解答】解:第1个相同的数是7,第2个相同的数是13=7+6,第3个相同的数为19=7+6×2,…,则第n个相同的数为:7+6(n﹣1)=6n+1,∴当第n个相同的数是1801时,得:6n+1=1801,解得:n=300.故答案为:300.【点评】本题主要考查规律型:数字的变化类,解答的关键是根据所给的数字,得出相应的规律.20.(2021秋•高新区期末)王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、6、7、9、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组;……如此进行下去,那么如果当王老师数完2022后,C组中的人数是6.【分析】分别求出每次变化后每组的人数,发现每五次循环一次,由此可知2022后与数完2的人数相同,即可求解.【解答】解:编号分别是A、B、C、D、E,每组的人数分别是10、6、7、9、8,数完1,编号分别是A、B、C、D、E,每组的人数分别是9、10、6、8、7,数完2,编号分别是A、B、C、D、E,每组的人数分别是8、9、10、7、6,数完3,编号分别是A、B、C、D、E,每组的人数分别是7、8、9、6、10,数完4,编号分别是A、B、C、D、E,每组的人数分别是6、7、8、10、9,数完5,编号分别是A、B、C、D、E,每组的人数分别是10、6、7、9、8,……∴每五次循环一次,∵2022÷5=404…2,∴2022后与数完2的人数相同,∴C组有10人,故答案为:10.【点评】本题考查数字的变化规律,根据题意,分别求出每次变化的人数,从而发现循环规律是解题的关键.21.(2021秋•海门市校级月考)如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是36,它是自然数8的平方,第8行共有15个数;(2)用含n的式子表示:第n行的最后一个数是n2,第n行第一个数是n2﹣2n+2,第n行共有(2n﹣1)数;(3)求第n行各数之和(只需要写出算式)【分析】(1)根据图中的数据,可以发现数字的变化特点,从而可以写出第8行的最后一个数;(2)根据题意和(1)中发现的数字变化特点,可以写出第n行的第一个数和第n行的数字个数;(3)根据前面发现的数字的变化特点进行求解即可.【解答】解:(1)由图中的数据可知,第n的行的最后一个数据是n2,每一行中的数据都是按照从小到大排列的,每行的数字个数依次为1,3,5,…,是一些连续的奇数,故第8行的最后一个数是82=64,它是自然数8的平方,第8行共有82﹣72=15个数;故答案为:64,8,15;(2)由题意可得,第n的行的最后一个数据是n2,第n行的第一个数是:(n﹣1)2+1=n2﹣2n+1+2=n2﹣2n+2,第n行共有数的个数为:n2﹣(n﹣1)2=2n﹣1,故答案为:n2,n2﹣2n+2,(2n﹣1);(3)第n行各数之和为:[(n﹣1)2+1+n2]×(2n+1)=(2n+1)(n2﹣n+1)=2n3﹣n2+n+1.【点评】本题主要考查了数字的变化规律,发现每行末尾数字是行数的平方是解答此题的关键.五.规律型:图形的变化类(共6小题)22.(2021秋•建湖县期末)如图所示的图形是由正方形和相同大小的圆按照一定规律摆放而成,按此规律,若要得到604个圆,则为第()个图形.A.200B.201C.202D.302【分析】观察图形的变化可知:第1个图形中圆的个数为4;第2个图形中圆的个数为4+3=7;第3个图形中圆的个数为4+3+3=10;进而发现规律,即可得第n个图形中圆的个数,从而可求得到604个圆时,n的值.【解答】解:观察图形的变化可知:第1个图形中圆的个数为4;第2个图形中圆的个数为4+3=4+3×1=7;第3个图形中圆的个数为4+3+3=4+3×2=10;…则第n个图形中圆的个数为4+3×(n﹣1)=3n+1.当有604个圆时,得3n+1=604,解得:n=201.故选:B.【点评】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律.23.(2021秋•新吴区期末)由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.216【分析】观察可得规律:n每增加一个数,s就增加四个.【解答】解:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=60时,s=(60﹣1)×4=236.故选:B.【点评】主要培养学生的观察能力和空间想象能力.24.(2021秋•宝应县期末)某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)(用含n的代数式表示).【分析】观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,据此可得答案.【解答】解:观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块;观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1,图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2,归纳得:4+2n(即2n+4),∴若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)块,故答案为:(2n+4);【点评】本题以等腰直角三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.25.(2021秋•淮安期末)用同样大小的两种不同颜色的正方形纸片,按如图方式拼成正方形.第90个比第89个多179个小正方形纸片.【分析】根据图形得出第n个图形有n2个小正方形纸片即可.【解答】解:根据图形知,图1有1=12个小正方形纸片,图2有4=22个小正方形纸片,图3有9=32个小正方形纸片,图4有16=42个小正方形纸片,…,图n有n2个小正方形纸片,∴第90个图比第89个图多902﹣892=179(个),故答案为:179.【点评】本题主要考查图形的变化规律,根据图形的变化归纳出第n个图形有n2个小正方形纸片是解题的关键.26.(2021秋•秦淮区期末)在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化,如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积和周长分别为()A.16a2和2n+3a B.16a2和2n+4aC.32a2和2n+3a D.32a2和4n a【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【解答】解:周长依次为32a,64a,128a,…,2n+4a,即无限增加,所以不断发展下去到第n次变化时,图形的周长为2n+4a;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a2.故选:B.【点评】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键,本题有一定难度.27.(2021秋•泰州期末)在无限大的正方形网格中按规律涂成的阴影如图所示,第1、2、3个图中阴影部分小正方形的个数分别为6个、11个、18个,根据此规律,则第20个图中阴影部分小正方形的个数是443.【分析】根据每一个图形都是图形的个数×(图形的个数+2),再加上3,即可求出答案.【解答】解:根据所给的图形可得:第一个图有小正方形的个数是:6=1×3+3(个),第二个图有小正方形的个数是:11=2×4+3(个),第三个图有小正方形的个数是:18=3×5+3(个),…,则第n个为n(n+2)+3=n2+2n+3,第20个图有小正方形的个数是:400+40+3=443(个),故答案为:443.【点评】本题考查了图形的变化类问题,解题的关键是通过归纳与总结,得到其中的规律,根据规律进行解答.六.整式(共2小题)28.(2021秋•邗江区校级期中)下列代数式,其中整式有()A.1个B.2个C.3个D.4个【分析】直接利用整式的定义判断得出答案.【解答】解:整式有,m2+3m,,﹣8,共有4个.故选:D.【点评】此题主要考查了整式,正确掌握整式的定义是解题的关键.整式的定义:单项式和多项式统称为整式.29.(2021秋•高港区期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义即可得.【解答】解:整式的有:(1)﹣mn,(2)m,(3),(5)2m+1,(6),(8)x2+2x+,故选:C.【点评】本题主要考查整式,熟练掌握整式的定义是解题的关键.七.单项式(共4小题)30.(2021秋•新吴区期末)单项式﹣23a2b3的系数和次数分别是()A.﹣2,8B.﹣2,5C.2,8D.﹣8,5【分析】根据单项式的系数和次数的概念求解可得.【解答】解:单项式﹣23a2b3的系数是﹣23=﹣8,次数分别是2+3=5,故选:D.【点评】本题主要考查单项式,解题的关键是熟练掌握单项式的系数和次数的概念.31.(2021秋•崇川区期末)关于单项式的说法,正确的是()A.系数为2,次数是2B.系数为,次数是3C.系数为,次数是2D.系数为,次数是3【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:单项式﹣xy2的系数为﹣、次数为3,故选:D.【点评】本题考查了单项式的相关概念,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.32.(2021秋•射阳县校级期末)单项式﹣2πa2bc的次数为4.【分析】根据单项式的次数的概念解答即可.【解答】解:单项式﹣2πa2bc的次数为:2+1+1=4,故答案为:4.【点评】本题考查的是单项式的次数的概念,一个单项式中所有字母的指数的和叫做单项式的次数.33.(2021秋•建湖县期末)单项式﹣23xy3的次数是4.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣23xy3的次数是4.故答案为:4.【点评】此题主要考查了单项式,正确掌握单项式的次数确定方法是解题关键.八.多项式(共4小题)34.(2021秋•鼓楼区校级期末)多项式x3﹣4x2y3+26的次数是5.【分析】根据多项式中次数最高的项的次数叫做多项式的次数解答.【解答】解:多项式x3﹣4x2y3+26的次数是5.故答案为:5.【点评】本题考查的是多项式,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键.35.(2021秋•启东市期末)若关于x、y的多项式2x2+3mxy﹣y2﹣xy﹣5是二次三项式,则m=.【分析】直接利用多项式系数与次数确定方法得出3m﹣1=0,进而得出答案.【解答】解:∵关于x、y的多项式2x2+3mxy﹣y2﹣xy﹣5是二次三项式,∴3mxy﹣xy=0,。
代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。
2、已知a+b=3ab ,求代数式b 1a 1+的值。
3、已知x 2-5x+1=0,求代数式x 1x +的值。
4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。
5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。
8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。
【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。
解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。
解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。
解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。
解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
第三课时合并同类项一、在学代数式的求值之前必须学会合并同类项二、知识目标要点(1)单项式和多项式统称为整式。
单项式:数与字母的乘积。
多项式:几个单项式的代数和组成的式子。
(2)像8n与5n,2a2b与 -7a2b这样所含字母相同,并且相同字母的指数也相同的项,叫做同类项(3)把同类项合并成一项就叫做合并同类项。
如2a+7a=10a(4)在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变(5)写代数式时,一般降幂排列各项。
如3a3+2a2-7a+5(6)单项式的次数:单项式中所有字母指数的和。
多项式的次数:多项式中次数最高的单项式的次数叫做多项式的次数。
(7)合并同类项的步骤:(8)1)找:找出字母及其指数相同的项(有括号的话先去括号)2)搬:搬到一起3)合:合并它们的系数合并同类项:1).合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
2).合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3).合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
4).在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
三、新课知识例一、合并同类项(1)-xy2+3xy2 (2)7a+3a2+2a-a2+3 (3)3a+2b-5a-b练习一、合并同类项(1)-4ab+8-2b2-9ab-8 (2)30a2b+2b2c-15a2b-4b2c例二、把(x+y),(x-y)看作一个整体合并同类项(1)7(x+y )-2(x+y )-4(x+y )+2(x+y )(2)(x-y )2+2(x-y )-(x-y )-2 (x-y )2四、提升训练1、 当k 取什么值时,多项式x 2+3kxy-3y 2-32xy-8中不含xy 项。
中考数学一轮专题复习学案02 代数式与整式代数式:像2(x -1),abc ,s t,a 2等式子都是代数式,单独一个数或字母也是 代数式.【例1】苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元【考点】列代数式.【分析】用单价乘数量得出,买2千克苹果和3千克香蕉的总价,再进一步相加即可.【解答】解:单价为a 元的苹果2千克用去2a 元,单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选:C .【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.代数式的值:一般地,用 数值 代替代数式里的字母,按照代数式中的运算关系,计算得出的 结果 ,叫做代数式的值.知识点1:代数式知识点梳理典型例题知识点2:代数式的值知识点梳理【例2】(2020•重庆B 卷5/26)已知a +b =4,则代数式122a b ++的值为( ) A .3B .1C .0D .-1【考点】代数式求值【分析】将a +b 的值代入原式11()2a b =++计算可得. 【解答】解:当a +b =4时,原式11()2a b =++ 1142=+⨯ 12=+3=,故选:A .【点评】本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.典型例题整式思维导图知识点3:整式的加减知识点梳理1.整式加减的实质:合并同类项2.同类项:所含字母相同,并且相同字母的指数也相同的项.如3a与a是同类项,3a与a2不是同类项;所有的常数项是同类项3.合并同类项法则:把同类项的系数相加,字母和字母的指数保持不变,如3a+a=4a,当同类项的系数互为相反数时,合并后的结果为0.4.去括号法则:a+(b+c)=a+ b+c,即括号前是“+”号时,括号内各项均不变号;a-(b+c)=a- b-c,即括号前是“-”号时,括号内各项均变号.典型例题【例3】(2020•通辽2/26)下列说法不正确的是()A.2a是2个数a的和B.2a是2和数a的积C.2a是单项式D.2a是偶数【考点】单项式;合并同类项【分析】分别根据乘法的定义,单项式的定义以及偶数的定义逐一判断即可.【解答】解:A、2a = a + a,即2a是2个数a的和,说法正确;B、2a是2和数a的积,说法正确;C、2a是单项式,说法正确;D、2a不一定是偶数,故原说法错误.故选:D.【点评】本题主要考查了单项式的定义,偶数的定义,熟记相关定义是解答本题的关键.【例4】(2020•天津13/25)计算x+7x-5x的结果等于.【考点】合并同类项【分析】根据合并同类项法则求解即可.【解答】解:x+7x-5x=(1+7-5)x=3x.故答案为:3x.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.1.同底数幂乘法:底数不变,指数相加,a m ·a n = a m +n ,如 a 3 ·a -2= a .2.同底数幂除法: 底数不变,指数相减 ,a m ÷a n = a m -n (a ≠0)3.幂的乘方: 底数不变,指数相乘 ,(a m )n = a mn4.积的乘方: 各因式乘方的积 ,(a m b n )p =____a mp b np __,如(-2a 2b )3= -8a 6b 3 ,(-ab )2= a 2b 2【例5】(2020•重庆B 卷3/26)计算a ·a 2结果正确的是( )A .aB .a 2C .a 3D .a 4【考点】同底数幂的乘法【分析】根据同底数幂的乘法法则计算即可.【解答】解:a ·a 2= a 1+2= a 3.故选:C .【点评】本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【例6】(2020•河北11/26)若k 为正整数,则()k k kk k k ++⋯+=个( )A .2k kB .21k k +C .2k kD .2k k +【考点】幂的乘方与积的乘方【分析】根据乘方的定义及幂的运算法则即可求解.【解答】解:22()()()k k k k k kk k k k k k k ++⋯+=⋅==个,故选:A .【点评】本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.【例7】(2020•陕西5/25)计算:232()3x y -=( ) A .632x y - B .63827x y C .63827x y - D .54827x y - 【考点】幂的乘方与积的乘方知识点4:幂的运算知识点梳理典型例题【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积. 【解答】解:23323363228()()()3327x y x y x y -=-=-. 故选:C .【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【例8】(2020•吉林4/26)下列运算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解答】解:A 、a 2·a 3=a 5,原计算错误,故此选项不符合题意;B 、(a 2)3=a 6,原计算错误,故此选项不符合题意;C 、(2a )2=4a 2,原计算错误,故此选项不符合题意;D 、a 3÷a 2=a ,原计算正确,故此选项符合题意.故选:D .【点评】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.1.单项式乘以单项式:把系数、相同字母的幂分别相乘,其余字母连同它们的指数作为积的一个因式,如:2x 3y ·3x 2=2 ·3x 3+2y =6x 5y2.单项式乘以多项式:m (a +b )= ma +mb3.多项式乘以多项式:(m +n )(a +b )= ma +mb +na +nb4.(1)乘法公式:(a +b )(a -b )= a 2-b 2 ;(a +b )2= a 2+2ab +b 2 ;(a -b )2= a 2-2ab +b 2 ;(2)常见的变形有:a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab ;(-a -b )2=(a +b )2;知识点5:整式的乘除知识点梳理(-a+b)2=(a-b)25.单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.如:(3x)2y÷x= 9xy典型例题【例9】(2020•山西3/23)下列运算正确的是()A.3a+2a=5a2B.-8a2÷4a=2a C.-(2a2)3=-8a6D.4a3·3a2=12a6【考点】整式的混合运算【分析】直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.【解答】解:A、3a+2a=5a,故此选项错误;B、-8a2÷4a=-2a,故此选项错误;C、-(2a2)3=-8a6,正确;D、4a3·3a2=12a5,故此选项错误;故选:C.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.【例10】(2020•北京19/28)已知5x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)+x(x﹣2)的值.【考点】整式的混合运算—化简求值.【答案】见试题解答内容【分析】直接利用乘法公式以及单项式乘多项式运算法则化简,进而把已知代入得出答案.【解答】解:(3x+2)(3x﹣2)+x(x﹣2)=9x2﹣4+x2﹣2x=10x2﹣2x﹣4,∵5x2﹣x﹣1=0,∴5x2﹣x=1,∴原式=2(5x2﹣x)﹣4=﹣2.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.2.(2020•广东12/25)如果单项式3m x y与35nx y-是同类项,那么m n+=.3.(2020•广东14/25)已知5x y=-,2xy=,计算334x y xy+-的值为.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.7.(2020•重庆A卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()巩固训练A .10B .15C .18D .218.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .219.(2019·天津市13/25)计算x 5•x 的结果等于 .10.(2019·安徽省2/23)计算a 3•(﹣a )的结果是( )A .a 2B .﹣a 2C .a 4D .﹣a 411.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++--17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .18.(2020•上海7/25)计算:23a ab = .19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+124.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a25.(2020•江西7/23)计算:2(1)a -= .26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.【考点】列代数式.【分析】本题要从“以8折出售”入手,从而知现价为2500×80%=2000(元),易得购买a 台这样的电视机的费用为a 2000元;所以解题的关键是理解打折问题在实际问题中应用.【解答】解:a a 2000%802500=⨯(元).故答案:a 2000.2.(2020•广东12/25)如果单项式3m x y 与35n x y -是同类项,那么m n += .【考点】同类项【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得3m =,1n =,再代入代数式计算即可.【解答】解:单项式3m x y 与35n x y -是同类项,3m ∴=,1n =,314m n ∴+=+=.故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到m ,n 的值是解题的关键.3.(2020•广东14/25)已知5x y =-,2xy =,计算334x y xy +-的值为 .【考点】代数式求值【分析】由5x y =-得出5x y +=,再将5x y +=、2xy =代入原式3()4x y xy =+-计算可得.【解答】解:5x y =-,5x y ∴+=, 当5x y +=,2xy =时,原式3()4x y xy =+-3542=⨯-⨯ 巩固训练解析=-158=,7故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x y+、xy及整体代入思想的运用.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).【考点】列代数式;规律型:图形的变化类【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解答】解:第1个图案有4个三角形,即4311=⨯+第2个图案有7个三角形,即7321=⨯+第3个图案有10个三角形,即10331=⨯+⋯按此规律摆下去,第n个图案有(31)n+个三角形.故答案为:(31)n+.【点评】本题考查了规律型-图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.【考点】规律型:数字的变化类【分析】首先得出5月1日~5月30日,包括四个完整的星期,分别分析5月30日分别为星期一到星期天时所有的可能,进而得出答案.【解答】解:5月1日~5月30日共30天,包括四个完整的星期,5∴月1日~5月28日写的张数为:7(17)41122⨯+⨯=, 若5月30日为星期一,所写张数为11271120++=,若5月30日为星期二,所写张数为11212120++<,若5月30日为星期三,所写张数为11223120++<,若5月30日为星期四,所写张数为11234120++<,若5月30日为星期五,所写张数为11245120++>,若5月30日为星期六,所写张数为11256120++>,若5月30日为星期日,所写张数为11267120++>,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.【点评】此题主要考查了规律型:数字的变化类和推理与论证,根据题意分别得出5月30日时所有的可能是解题关键.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2,第三次从A 2点起跳,落点为OA 2的中点A 3;如此跳跃下去…最后落点为OA 2019的中点A 2020,则点A 2020表示的数为 .【考点】数轴;规律型:图形的变化类. 【答案】201912.【分析】根据题意,得第一次跳动到A 1处,离原点为1个单位,第二次跳到OA 1的中点A 2处,即在离原点12个单位处,第三次从A 2点跳动到A 3处,即距离原点(12)2处,依此即可求解.【解答】解:第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2; …则点A 2020表示的数为(12)2019,即点A 2020表示的数为201912; 故答案为:201912.【点评】本题考查了数轴,是一道找规律的题目,本题注意根据线段中点的定义表示出各个点表示的数的规律.7.(2020•重庆A 卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .21【考点】规律型:图形的变化类【分析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+,据此可得第⑤个图案中黑色三角形的个数.【解答】解:第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++,⋯⋯∴第⑤个图案中黑色三角形的个数为1234515++++=,故选:B .【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+.8.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B.19C.20D.21【考点】规律型:图形的变化类【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为++,据此求解可得.n n22【解答】解:第①个图形中实心圆点的个数5213=⨯+,第②个图形中实心圆点的个数8224=⨯+,第③个图形中实心圆点的个数11235=⨯+,⋯⋯∴第⑥个图形中实心圆点的个数为26820⨯+=,故选:C.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为22++的规律.n n9.(2019·天津市13/25)计算x5•x的结果等于.【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.10.(2019·安徽省2/23)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【考点】同底数幂的乘法;单项式乘单项式.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.11.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个【考点】同底数幂的除法;单项式乘单项式;合并同类项;幂的乘方与积的乘方【分析】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.【解答】解:①23m n 与25mn 不是同类项,不能合并,计算错误;②32522(2)4a b a b a b -=-,计算错误;③32326()a a a ⨯==,计算错误;④3312()()()a a a a --÷-=-=,计算正确;故选:D .【点评】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=【考点】同底数幂的乘法;同底数幂的除法;合并同类项【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、2a 与3a 不是同类项,不能合并,故本选项错误;B 、3a 与2a 不是同类项,不能合并,故本选项错误;C 、应为325a a a =,故本选项错误;D 、32a a a ÷=,正确.故选:D .【点评】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷ 【考点】同底数幂的除法【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:3x 2(0)x x x =≠,∴覆盖的是:÷.故选:D .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-【考点】合并同类项;同底数幂的乘法;单项式乘多项式【分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答】解:A 、325a a a =,所以A 错误;B 、32ab ab ab -=,所以B 错误;C 、2611233a a a a+=+,所以C 错误; D 、2(3)3a a a a -=-,所以D 正确;故选:D .【点评】本题考查整式乘除法的简单计算,注意区分同底合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-【考点】幂的乘方与积的乘方;同底数幂的乘法;合并同类项;同底数幂的除法【分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.【解答】解:A 、235x x x =,选项错误.不符合题意;B 、633x x x ÷=,选项正确,符合题意;C 、3332x x x +=,选项错误,不符合题意;D 、33(2)8x x -=-,选项错误,不符合题意;故选:B .【点评】此题考查同底数幂的乘法、除法和积的乘方以及合并同类项,关键是根据法则解答.16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++-【考点】零指数幂;实数的运算;绝对值【分析】原式先计算乘方运算,再算加减运算即可得到结果.【解答】解:20(1)|(3)112π-++-+-=【点评】此题考查了实数的运算,绝对值、零指数幂、熟练掌握运算法则是解本题的关键.17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .【考点】绝对值;零指数幂【分析】根据零次幂和绝对值的意义,进行计算即可.【解答】解:0(1)|2|123π-+-=+=,故答案为:3.【点评】本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.18.(2020•上海7/25)计算:23a ab = .【考点】单项式乘单项式【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2236a ab a b =.故答案为:26a b .【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【考点】同底数幂的除法;幂的乘方与积的乘方【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式633a a a =÷=.故选:C .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.【考点】平方差公式;单项式乘多项式【分析】根据平方差公式、单项式乘以多项式的计算方法计算即可.【解答】解:(2)(2)(1)a a a a +--+224a a a =---4a =--.【点评】本题考查平方差公式、单项式乘以多项式的计算方法,掌握运算方法和平方差公式的结构特征是正确计算的前提.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=【考点】完全平方公式;幂的乘方与积的乘方;同底数幂的乘法【分析】根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.【解答】解:A 、235a a a =,故选项错误;B 、222()2x y x y xy +=++,故选项错误;C 、5226()a a a ÷=,故选项正确;D 、22(3)9xy xy -=,故选项错误;故选:C .【点评】本题考查了同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题的关键.22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.【考点】规律型:图形的变化类【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解答】解:第1个正方形需要4个小正方形,242=,第2个正方形需要9个小正方形,293=,第3个正方形需要16个小正方形,2164=,⋯,∴第1n +个正方形有2(11)n ++个小正方形,第n 个正方形有2(1)n +个小正方形,故拼成的第1n +个正方形比第n 个正方形多22(2)(1)23n n n +-+=+个小正方形. 故答案为:23n +.【点评】此题考查的知识点是图形数字的变化类问题,关键是通过图形找出规律,按规律求解.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+1【考点】整式的混合运算.【答案】D【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.【解答】解:A 、(﹣3ab 2)2=9a 2b 4,原式计算正确,不合题意;B 、﹣6a 3b ÷3ab =﹣2a 2,原式计算正确,不合题意;C 、(a 2)3﹣(﹣a 3)2=0,原式计算正确,不合题意;D 、(x +1)2=x 2+2x +1,原式计算错误,符合题意.故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.24.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a【考点】整式的混合运算-化简求值【分析】根据整式的混合运算顺序进行化简,再代入值即可.【解答】解:原式22211a a a a =+++--3a =.当a =原式=【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先进行整式的化简,再代入值.25.(2020•江西7/23)计算:2(1)a -= .【考点】完全平方公式【分析】直接利用完全平方公式计算即可解答.【解答】解:22(1)21a a a -=-+.故答案为:221a a -+.【点评】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:222()2a b a ab b ±=±+.26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.【考点】整式的混合运算-化简求值【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:22()()()2x y x y x y x +++--2222222x xy y x y x =+++--2xy =,当x y =原式2==【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先化简,再代入值求解.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.【考点】单项式乘多项式;完全平方公式【分析】利用完全平方公式和多项式的乘法,进行计算即可;【解答】解:2()(3)x y y x y ++-22223x xy y xy y =+++-,25x xy =+.【点评】本题考查整式的四则运算,掌握计算法则是正确计算的前提.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.【考点】完全平方公式;单项式乘多项式【分析】根据整式的四则运算的法则进行计算即可;【解答】解:2()(2)x y x x y ++-22222x xy y x xy =+++-,222x y =+.【点评】考查整式的四则混合运算,掌握计算法则是正确计算的前提.。
第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知。
初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a 米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²已知x、y是正数,且x - y=3,xy= 5,Array求代数式x3+x2y+x2y+y3的值。
(一)一、填空题1.一只小狗的奔跑速度为a 千米/时,从A 地到B 地的路程为(b +15)千米,则这只小狗从A 地到B 地所用的时间为_______;当a =21,b =12时,它所用的时间为_______.2.当x =1,y =32,z =34时,代数式y (x -y +z )的值为_______.3.香蕉比桔子贵25%,若香蕉的价格是每千克m 元,则桔子的价格为每千克_______.4.爸爸的体重比妈妈的2倍少30 kg ,若妈妈的体重为p kg ,用代数式表示爸爸的体重为_______kg.当p=50时,爸爸的体重为_______kg. 二、判断题1.一项工程,甲单独做x 天完成,乙单独做y 天完成,两人合作需yx +1天完成.( )2.当a=1,b=1时,a 2+b 2=4. ( ) 3.当m=11时,2m 为奇数. ( )4.某车间一月份生产P 件产品,二月份增产9%,两月共生产[P+(1+9%)P ]件产品.( ) 三、选择题1.正方形的边长为m ,当m =91时,它的面( ) A.181 B.271C.811D.312.蚯蚓每小时爬a 千米,b 小时爬了c 千米,则b等于( )A.ca B.a c C.abc D.ba c+ 3.如果x =3y ,y =6z ,那么x +2y +3z 的值为( )A.10zB.30zC.15zD.33z 4.若s =8,t =23,v =32,则代数式s +vt的值( ) A.1041 B.9 C.8 D.894 四、解答题电话费与通话时间的关系如下表(2)计算当a =100时,b 的值.五、根据给出的x 、y 的值填表.观察给予x 、y 不同的值,你都能计算x -2xy +y 2与(x -y )2的值吗?______.当x =0,y =1时,x 2-2xy +y 2与(x -y )2的值相同吗?__________.当x =-1,y =-2时,x 2-2xy +y 2与(x -y )2的值相同吗?______.是否当无论x 、y 是什么值,计算x 2-2xy +y 2与(x -y )2所得结果都相同吗?__________.由此你能推出x 2-2xy +y 2=(x -y )2吗?__________.总结:①给出代数式中字母的值,就能计算代数式的值,并且根据所给值的不同,求出的代数式的值也不同.②根据所给数值还可以发现一些规律.(二)一、填空题1.小明比小亮大3岁,小亮今年a 岁,小明今年__________岁.2.三个连续的整数,最大的为x ,则其余两个由小到大,依次为__________.3.所有不能被2整除的整数统称为奇数,设n 是整数,则所有的奇数可以表示为______.4.某商店购进一批茶杯,每个1.5元,则购进n 个茶杯需付款__________元,如果茶杯的零售价为每个2元,则售完茶杯得款_____元,当n=300时,该商店的利润为______元.5.培育水稻新品种,如果第1代得到120粒种子,并且从第一代起,以后各代的每一粒种子都得到下一代的120粒种子,到第n 代可以得到这种新品种的种子__________粒.6.一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦__________块,第n 层铺瓦__________块.7.某处细菌在培养过程中,每30分钟分裂一次(一个分裂成两个),经过4小时,这种细菌由1个可繁殖成__________个.8.一个长、宽、高分别为a 米、b 米、c 米的长方体的表面积为__________.9.某次考试全班参考人数n ,考试及格人数为m (m ≤n ),则这次考试的及格率为p=______,当n=50,m=30时,p=______.10.某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a 元,那么这种蔬菜今天的价格为每千克____元,当a=1.2时,今天蔬菜的价格为____元.11.小明将“压岁钱”存入银行参加教育储蓄,如果存入350元,年利率为10%,则一年后本金和利息共__________元.12.“抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了a 万元,乙比甲的2倍少5万元,丙比甲多6万元,则捐款总额为__________万元,当a=30时,捐款总额为__________万元. 二、选择题 13.ba ba +-2的意义是( ) A.a 与b 差的2倍除以a 与b 的和 B.a 的2倍与b 的差除以a 与b 和的商 C.a 的2倍与b 的差除a 与b 的和D.a 与b 的2倍的差除以a 与b 和的商14.一个二位数,个位上的数字是a ,十位上的数字为b ,则这个两位数是( )A. baB. abC. 10a +bD.10b +a15.用代数式表示a 的5倍的平方与b 的差正确的是( )A.(5a )2-bB.5a 2-bC.5(a 2-b )D.25(a 2-b )16.当a =4,b =6,c =-5时,cb a 2)(21-的值为( )A.1B.-21 C.2 D.-117.下列说法正确的是( )A.一个代数式只有一个值B.代数式中的字母可以取任意的数值C.一个代数式的值与代数式中字母所取的值无关D.一个代数式的值由代数式中字母所取的值确定三、解答题18.某种水果第一天以2元的价格卖出a 斤,第二天以1.5元的价格卖出b 斤,第三天以1.2元的价格卖出c 斤,求:(1)三天共卖出水果多少斤? (2)这三天共得多少元?(3)三天的平均售价是多少?并计算当a =30,b =40,c =45时,平均售价的数值.(三)情景再现:计算下列代数式的值: 5a +2b +3a +5b -2a -3b (1)当a =5,b =4时(2)当a =31,b =21时 你能总结出规律吗?像上面,5a ,3a ,-2a 这样所含字母相同并且相同字母的指数也完全相同的项叫同类项.将同类项合并成一项叫合并同类项.计算时,先合并同类项再求值.既节省时间,又容易算对. 一、选择题1.下列计算正确的是( )A.2a +b =2abB.3x 2-x 2=2C.7mn -7nm =0D.a +a =a 22.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为( )A.29B.-6C.14D.243.下列单项式中,与-3a 2b 为同类项的是( )A.-3ab3 B.-41ba 2C.2ab 2D.3a 2b 24.下面各组式子中,是同类项的是( )A.2a 和a 2B.4b 和4aC.100和21D.6x 2y 和6y 2x二、填空题1.合并同类项:-mn +mn =_______-m -m -m =_______.2.在多项式5m 2n 3-32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______都是三次.因此5m 2n 3与-32m 2n 3是_______.3.合并同类项的法则是_______,所得结果作为_______、_______和_______不变.4.两个单项式-2a m 与3a n 的和是一个单项式,那么m 与n 的关系是_______. 三、根据题意列出代数式1.三个连续偶数中,中间一个是2n ,其余两个为_______,这三个数的和是_______.2.一个长方形宽为x cm,长比宽的2倍少1 cm ,这个长方形的长是_______,周长是_______.3.一个圆柱形蓄水池,底面半径为r ,高为h ,如果这个蓄水池蓄满水,可蓄水_______. 四、解答题如果单项式2mx a y 与-5nx 2a -3y 是关于x 、y 的单项式,且它们是同类项.1.求(4a -13)2003的值.2.若2mx a y +5nx 2a -3y =0,且xy ≠0,求(2m +5n )2003的值.(四)观察下列①式与②式①8-(4-1)=8-3=5②8-(4-1)=8+(-1)(4-1)=8+(-1)×4-(-1)×1=8-4+1=5也就是说8-(4-1)=8-4+1上式左边有括号,而右边去掉了括号,你能说出去掉括号后,括号内的各项发生了什么变化吗?照上面的规律:你能去掉下式的括号吗? a -(b -c)=__________.试着做一做:a -(b +c )=_________. c -(b -a )=_________.一、填空题1.a +b -c +d =a +b -_______.2.x 2+_______=x 2-2x+1.3.-2a 2+a -3=-_______.4.(x -2y+z)(x+2y -z)=(x -____)(x+_____).5.不改变式子a -(b -3c)的值,把其中的括号前的符号变成相反的符号,结果是_______. 二、下列等式是否一定成立. 1.a +(b -c )=a +b -c( )2.-m+n=-(n+m) ( )3.3-2x=-(2x+3) ( )4.-(u -v)=-u+v( )5.5(x -1)=5x -1( )三、化简下列各式 1.5a -(a +3b ).2.3(a +b )-(a +b )-5(a +b ).3.-2(pq +mn )+(2pq -mn ).四、初一(1)班,男生有a 人,女生比男生的2倍少25人,并知男生比女生的人数多,用代数式来表示,能化简的化简.1.女生有多少人?2.男生比女生多多少人?3.全班共有多少人?。