汽车理论课程设计:基于Matlab的汽车动力性的仿真
- 格式:doc
- 大小:326.50 KB
- 文档页数:10
[精品]基于MATLAB的汽车动力性和燃油经济性仿真1. 简介汽车动力性和燃油经济性是评价一辆汽车性能的两个重要指标。
基于MATLAB的仿真可以帮助工程师和研究人员更好地理解汽车的动力性能和燃油经济性,从而优化设计和改进汽车技术。
本文将介绍基于MATLAB的汽车动力性和燃油经济性仿真的方法和技术。
2. 动力性仿真汽车的动力性指的是汽车加速性能、最高速度、扭矩特性等。
基于MATLAB的动力性仿真可以通过建立数学模型来预测和评估汽车的动力性能。
以下是一个基本的汽车动力性仿真流程:- 建立车辆动力学模型:可以使用MATLAB的Simulink工具箱,将汽车的运动学、动力学和能量转换等方程建立为一个系统模型。
- 定义输入信号:输入信号可以包括驾驶员的驾驶指令、动力系统的输入等。
例如,加速踏板的输入信号可以用一个阶跃函数模拟。
- 仿真和分析:运行仿真模型,获取汽车的速度、加速度、油耗等数据。
通过对仿真结果的分析,可以评估汽车的动力性能,比较不同设计和控制策略的效果。
3. 燃油经济性仿真燃油经济性是指车辆在单位里程下消耗的燃油量,通常以百公里行驶的油耗来表示。
基于MATLAB的燃油经济性仿真可以通过模拟车辆的行驶过程和能量转换来评估汽车的油耗。
以下是一个基本的燃油经济性仿真流程:- 建立车辆行驶模型:可以使用MATLAB的Simulink工具箱,将车辆的行驶阻力、发动机效率、行驶工况等建立为一个系统模型。
- 设置行驶循环:选择合适的行驶循环来模拟不同的驾驶工况,如城市驾驶、高速驾驶等。
- 仿真和分析:运行仿真模型,获取车辆的行驶速度、驱动力、油耗等数据。
通过对仿真结果的分析,可以评估汽车的燃油经济性,比较不同设计和控制策略的效果。
4. 结论基于MATLAB的汽车动力性和燃油经济性仿真可以为汽车工程师和研究人员提供一个快速、准确和可靠的评估工具。
通过仿真分析,可以优化汽车的设计和控制策略,提高汽车的性能和燃油经济性。
2009 届海南大学机电工程学院汽车工程系汽车理论课程设计题目:汽车动力性的仿真学院:机电工程学院专业:09级交通运输姓名:黄生锐学号:20090504指导教师:编号名称件数页数编号名称件数页数1 课程设计论文 1 3Matlab编程源程序 12 设计任务书 12012年6月20日成绩汽车理论课程设计任务书姓名黄生锐学号20090504 专业09交通运输课程设计题目汽车动力性的仿真内容摘要:本设计的任务是对一台Passat 1.8T手动标准型汽车的动力性能进行仿真。
采用MATLAB编程仿真其性能,其优点是:一是能过降低实际成本,提高效率;二是获得较好的参数模拟,对汽车动力性能提供理论依据。
主要任务:根据该车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合自己选择的适合于该车的发动机型号求出发动机的最大功率、最大扭矩、排量等重要的参数。
并结合整车的基本参数,选择适当的主减速比。
依据GB、所求参数,结合汽车设计、汽车理论、机械设计等相关知识,计算出变速器参数,进行设计。
论证设计的合理性。
设计要求:1、动力性分析:1)绘制汽车驱动力与行驶阻力平衡图;2)求汽车的最高车速、最大爬坡度;3)用图解法或编程绘制汽车动力特性曲线4)汽车加速时间曲线。
2、燃油经济性分析:1) 汽车功率平衡图;完成内容:1.Matlab编程汽车驱动力与行驶阻力平衡图2.编程绘制汽车动力特性曲线图3.编程汽车加速时间曲线图4.课程设计论文1份汽车动力性仿真摘要本文是对Passat 1.8T 手动标准型汽车的动力性能采用matlab 编制程序,对汽车动力性进行计算。
从而对汽车各个参数做出准确的仿真研究,为研究汽车动力性提供理论依据,本文主要进行的汽车动力性仿真有:最高车速、加速时间和最大爬坡度。
及相关汽车燃油性经济。
关键词:汽车;动力性;试验仿真;matlab1. Passat 1.8T 手动标准型汽车参数功率Pe (kw )转速n (r/min )15 1000 36 1750 50 2200 66 2850 80 3300 90 4000 110 5100 1055500各档传动比主减速器传动比第1档 3.665 4.778第2档 1.999 第3档 1.407 第4档 1 第5档 0.472 车轮半径0.316(m )传动机械效率0.91 假设在良好沥青或水泥路面上行驶,滚动阻力系数 0.014 整车质量1522kgC D A2.4m22. 最高车速汽车的最高车速是指汽车标准满载状态,在水平良好的路面(混凝土或沥青路面)上所能达到的最高行驶速度。
汽车动力性matlab仿真源程序clcn=[1500:500:5500];%转速范围T=[78.59 83.04 85.01 86.63 87.09 85.87 84.67 82.50 80.54];%对应各转矩dt=polyfit(n,T,3);%对发动机输出转矩特性进行多项式拟合,阶数取4n1=1000:100:5500;%t=polyval(dt,n1);figure(1)title('发动机外特性')plot(n1,t,n,T,'o'),grid on%图示发动机输出转矩特性%汽车驱动力计算G=input('整车重力/N,G=');%输入970*9.8ig=[3.416 1.894 1.28 0.914 0.757];%变速器速比k=1:5;%5个前进档r=0.272;i0=4.388;eta=0.9;ngk=[800 800 800 800 800];ngm=[5500 5500 5500 5500 5500];ugk=0.377.*r.*ngk(k)./(ig(k).*i0);%计算每一档发动机800rpm 时的最低行驶速度ugm=0.377.*r.*ngm(k)./(ig(k).*i0);%计算每一档发动机5400rpm最高行驶速度for k=1:5%依次计算5个档的驱动力u=ugk(k):ugm(k);n=ig(k)*i0.*u./r/0.377;t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3Ft=t.*ig(k).*i0*eta/r;figure(2)plot(u,Ft)hold on,grid on %保证K的每次循环的图形都保留显示end%行驶阻力计算f0=0.009;f1=0.002;f4=0.0003;%三者都是轿车滚动阻力系数% disp'空气阻力系数Cd=0.3--0.41,迎风面积A=1.7--2.1'Cd=input('空气阻力系数Cd=');%输入0.3A=input('迎风面积/m2,A=');%输入2.3u=0:10:180;f=f0+f1.*(u./100)+f4.*(u./100).^4;Ff=G*f;%计算滚动阻力Fw=Cd*A.*u.^2./21.15;%计算空气阻力F=Ff+Fw;%滚动阻力、空气阻力之和title('驱动力-阻力图(五档速比为3.416 1.894 1.28 0.914 0.757)')plot(u,F,'mo-');grid on%图解法求最高车速for u=50:180;k=5;n=ig(k)*i0.*u./r/0.377;t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3;Ft=t.*ig(k).*i0*eta/r;f=f0+f1.*(u./100)+f4.*(u./100).^4;Ff=G*f;Fw=Cd*A.*u.^2./21.15;F=Ff+Fw;if abs(Ft-F)<1;umax=u;breakendenddisp('== == =汽车动力性能仿真计算结果== == =')disp('驱动力-行驶阻力平衡图及最高车速')fprintf('汽车理论最高车速(驱动力与行驶阻力曲线交点)Vmax=%3.3f km/h\n',umax)(注:文档可能无法思考全面,请浏览后下载,供参考。
提供全套毕业论文图纸,欢迎咨询编号毕业设计(论文)题目基于Matlab的汽车动力性与经济性分析计算二级学院专业车辆工程班级学生姓名学号指导教师职称时间目录摘要 (I)Abstract (II)1绪论 (1)1.1选题背景 (1)1.2国内外汽车动力性经济性仿真研究发展过程与现状 (2)1.3课题研究主要内容与意义 (3)2汽车动力性经济性计算中发动机模拟的理论基础 (5)2.1发动机数学模型的建立 (5)2.1.1发动机外特性 (5)2.1.2发动机万有特性 (8)2.2本章小结 (10)3汽车动力性模拟计算 (12)3.1汽车最高车速的计算 (13)3.2加速时间的计算 (16)3.2.1原地起步加速时间 (17)3.2.2超车加速时间 (19)3.3最大爬坡度的计算 (19)3.4各档动力因数的计算 (21)3.5小结 (23)4汽车燃油经济性模拟计算 (24)4.1汽车燃油经济性的评价指标 (24)4.2不同行驶工况的汽车燃油经济性计算 (25)4.2.1等速工况 (25)4.2.2加速工况 (25)4.2.3减速工况 (27)4.2.4怠速工况 (27)4.2.5多工况循环百公里油耗 (27)4.3等速行驶工况的汽车燃油经济性计算 (27)4.4影响汽车燃油经济性的因素 (31)4.5小结 (38)5动力性和燃油经济性的参数敏感性分析 (39)5.1汽车动力性的参数敏感度分析 (39)5.2汽车燃油经济性的灵敏度分析 (40)5.3本章小结 (42)6结论 (44)致谢 (46)参考文献 (47)附录 (49)附录一 (49)附录二 (51)附录三 (62)附录四 (68)文献综述 (85)摘要本文首先利用了最小二乘法和回归分析法对所给试验数据拟合,得到了一个函数化的发动机外特性模型和万有特性模型,为后文汽车动力与燃油经济性的仿真奠定了基础。
然后,我们建立了汽车的动力性数学模型,详细分析了汽车动力性的几个评价指标,给出各个指标的计算方法及计算公式,并绘制出汽车的动力特性图,在完成动力性仿真分析之后,我们建立了汽车燃油经济性的数学模型,分析不同工况下汽车的燃油经济性并重点分析等速百公里的燃油消耗量,得到不同档位下不同车速的等速百公里燃油消耗量,并从汽车的使用方面和汽车结构方面详细的分析了影响汽车燃油经济性的因素。
MATLAB 提供了大量的数值计算函数和符号计算函数,通过调用MA TLAB 提供的函数和其附带的模块工具进行分析和计算,不但可以准确地画出图形,计算出相应的性能指标,大大提高工作效率,而且能有效地调动学生的积极性。
对于汽车工程领域中的计算问题,主要包括多项式和矩阵运算、数值微分和积分以及符号微积分、方程求解等,使用MA TLAB 能使学生能跳出繁琐的数学计算,集中精力于专业知识的学习。
MATLAB 的模拟仿真模块为试验模拟提供了优秀的工作平台,使得实验可以在无硬件支持的条件下实施,并且可以实时反映数据变化,这是传统实验不具备的。
Simulink 是MAT-LAB 提供的进行动态系统建模、仿真和综合分析的集成软件包。
它支持线性和非线性系统,Simulink提供的图形用户界面GUI 上,用户只要对所需系统模块进行鼠标的简单拖拉操作,就可构造出复杂的仿真和分析模型,可以大大提高仿真的效率和可靠性;它具有高度的开放性,用户可以根据自己的需要开发模型,并通过封装后添加到模型库中,以后就如同调用Simulink 自身提供的模型库一样直接调用即可。
利用这种特性,可在课堂上开设的仿真实验,以加深学生对理论的理解与接受。
数据分析模块为数据分析和处理提供了方便,使数据处理不再是困扰学生的最大难题;MATLAB 强大的图形处理和数值计算功能在汽车设计和综合控制上显示出其不可替代的优越性,使设计过程简单化,MATLAB 的优化工具箱为工程优化提供了最简单高效的工具。
Simulink 工具箱中的Simdriveline 模块是专门为车辆动力传动系统建模仿真设计的。
与传统的数学模型不同,Sim-driveline 采用基本元素法,即按照实际物理结构来搭建,可以直接选用转动惯量、离合器、变速器、车轮和自定义模块。
Sim-driveline 模型接口以机械力矩传递为主,数据信号传递为辅,具有双向性,动态特性很好。
同时,由于Simulink 与Simdriv-eline 强大的交互性,利用该软件设计的CAI ,学生可改变相关计算参数,就可实时看到计算及仿真结果。
基于MATLAB的车辆动力性和制动性仿真分析发布时间:2022-06-22T02:20:51.317Z 来源:《科学与技术》2022年2月4期(下)作者:邹彦冉张竹林* 蒋德飞阮帅房冠霖曹士杰[导读] 动力性和制动性是评价车辆性能的关键指标,在对关键部件进行定参数、零部件选型、匹配优化时需要进行大量计算邹彦冉张竹林* 蒋德飞阮帅房冠霖曹士杰山东交通学院汽车工程学院,山东济南 250357摘要:动力性和制动性是评价车辆性能的关键指标,在对关键部件进行定参数、零部件选型、匹配优化时需要进行大量计算,现在企业多采用EXCEL进行计算,导致效率低下、直观性不强。
本文基于MATLAB软件的App Designer模块,开发了车辆动力性和制动性仿真分析软件,具有良好的人机界面和曲线输出功能,并以某型号汽车的实际参数进行了动力性和制动性仿真验证,证明了软件仿真分析的可行性,能够为汽车设计提供良好的支撑,提高设计效率。
关键词:汽车;MATLAB;仿真分析;App Designer 中图分类号:U462.3 文献标志码:A 0 引言近年来国内外汽车行业发展迅猛,截至2021年7月,全国家用车保有量达3.84亿辆。
我国正由汽车制造大国往汽车制造强国过渡,汽车的正向研发技术越来越受到各汽车设计单位的重视。
车辆的动力性和制动性是评价车辆性能的关键指标之一[1],其性能的好坏影响到车辆的品质和市场。
如今国内外对App Designer在各领域的应用进行了研究[2],韦超毅[3]等采用App Designer对汽车的爬坡能力进行建模与仿真,开发设计了一款软件,测试了试验车的爬坡性能;张晓荣[4]等针对调节阀工作流量特性的畸变问题,设计了工作流量校正算法,并采用App Designer 开发了操作简单、功能完整的操作界面;李晶[5]等基于MATLAB对实际汽车进行动力性仿真,假设节气门开度处于最大情况下,通过仿真分析绘制出该工况下车辆动力性曲线并分析结合实际实验测量数据,验证了该仿真系统的准确性;陈利娜[6]使用MATLAB对汽车制动性能分析,获得了车辆制动力分配曲线,为汽车制动性仿真分析提供了准确的操作方法与可视化数据。
基于MATLAB的汽车运动控制系统设计仿真汽车运动控制系统是指通过电子控制单元(ECU)对汽车进行控制和管理的系统。
在汽车行驶过程中,运动控制系统可以通过调整引擎、悬挂、制动和转向等部件的工作状态,来实现对汽车行驶性能和稳定性的控制。
本文将基于MATLAB对汽车运动控制系统进行设计和仿真。
首先,需要建立汽车的动力学模型。
汽车的动力学模型包括车辆的运动学和动力学两个方面。
运动学模型描述了车辆的位置、速度和加速度之间的关系;动力学模型描述了车辆受到的作用力与车辆运动状态之间的关系。
在MATLAB中可以使用车辆动力学工具箱(Vehicle Dynamics Blockset)来建立汽车的动力学模型。
其次,需要设计车辆控制器。
车辆控制器负责根据车辆的状态和控制要求生成控制指令,并将其发送给相应的执行器。
控制器可以采用基于硬件的控制器,也可以采用基于软件的控制器。
在MATLAB中可以使用Simulink进行控制系统的建模和设计。
接下来,需要设计和实现车辆运动控制算法。
车辆运动控制算法可以包括速度控制、转向控制、制动控制等。
在MATLAB中可以使用控制系统工具箱(Control System Toolbox)和优化工具箱(Optimization Toolbox)来设计和实现车辆运动控制算法。
最后,需要对车辆运动控制系统进行仿真和验证。
在MATLAB中可以使用Simulink和Simscape进行车辆运动控制系统的仿真。
通过仿真可以评估和验证车辆控制系统的性能和稳定性,并进行必要的调整和优化。
综上所述,基于MATLAB的汽车运动控制系统设计仿真包括建立汽车动力学模型、设计车辆控制器、实现运动控制算法以及进行仿真和验证等步骤。
通过仿真和验证可以评估和优化车辆运动控制系统的性能和稳定性,为实际应用提供参考和指导。
基于MATLAB的汽车动力性仿真实验【摘要】文章从车辆动力学的角度建立了汽车动力性数学模型,用MATLAB编程,对某轻型货车的动力性能参数进行计算并仿真出其驱动力-行驶阻力平衡图、行驶加速度及加速度倒数曲线图,计算出该轻型货车的最高车速及II档起步加速到70km/h所需的时间,为研究该型载货汽车的动力性能提供了很好的依据。
【关键词】MATLAB;轻型货车;动力性能;仿真一、前言汽车动力性是评价汽车性能的重要指标,通常用汽车的最高车速、加速时间和最大爬坡度来评定。
绘出汽车驱动力-行驶阻力平衡图和汽车加速度曲线图是求出最高车速、加速时间和最大爬坡度的前提,本文通过MATLAB仿真求出实验用轻型货车的动力性指标,使其参数指标优化轻型货车的动力性匹配实验。
二、实验用轻载货汽车本实验用使用的汽车是福田轻型厢式货车。
其主要的技术参数见表1。
变速器传动比数据见表2。
三、建立汽车动力性数学模型1.发动机的外特性利用FZD发动机综合实验台测出该型厢式货车汽车的外特性的功率与转矩曲线,利用多项式拟合求出发动机的转矩多项式,(1)式中,为发动机转矩();为发动机转速(r/min);系数可由曲线拟合中的最小二乘法来确定;k取4。
求得:发动机最低转速=600r/min,最高转速=4000r/min2.汽车行驶方程的建立及计算模型汽车行驶时的一般方程式为:式中:分别是驱动力、滚动阻力、空气阻力、坡度阻力和加速阻力;为发动机转矩;分别为变速器传动比、主减速器传动比;为传动系机械效率;为滚动阻力系数;为空气阻力系数;A为迎风面积;为车速;为道路坡度;为汽车旋转质量换算系数;分别为汽车质量、行驶加速度。
不考虑坡度阻力和加速阻力时,方程(2)变为:(3)可得最高车速:(4)不考虑坡度阻力由汽车行驶方程可得加速时间:(5)由动力学可知:(6)汽车等速行驶时得到最大坡度:四、仿真过程1.汽车汽车驱动力-行驶阻力平衡图仿真编写程序在MATLAB中做出汽车驱动力-行驶阻力平衡图,图1。
10.16638/ki.1671-7988.2017.13.020基于MATLAB编程绘制动力特性图分析汽车动力性尹佣博(武汉理工大学汽车工程学院,湖北武汉430070 )摘要:汽车动力性主要由最高车速、加速时间、最大爬坡度三个指标来评价。
汽车动力性试验主要包括最高车速、起步连续换挡加速与超车加速和汽车最大爬坡度三大内容。
上述试验项目需要特定的试验路段,且耗时较长。
基于MA TLAB编程可以绘出发动机外特性曲线图和动力特性图,从动力特性图的角度研究汽车的动力性,不仅可以准确获得最高车速、加速时间和最大爬坡度等指标,还可以通过图像观察相关变化趋势,为进一步研究汽车的动力性提供了参考。
关键词:汽车动力性;MATLAB编程;动力特性图中图分类号:U461.2 文献标识码:A 文章编号:1671-7988 (2017)13-65-04Drawing dynamic characteristic diagram based on MATLAB programming toanalyze automobile powerYin Yongbo( Wuhan University of Technology. School of Automotive Engineering, Hubei Wuhan 430070 )Abstract:Vehicle dynamics mainly by the highest speed, acceleration time, the maximum climbing three indicators to evaluate. Vehicle power test includes the maximum speed, starting continuous shift acceleration and overtaking acceleration and the maximum car climbing three content. The pilot project requires a specific test section, and take a long time. Based on the MA TLAB programming, we can plot the engine characteristic curve and the dynamic characteristic diagram. From the view of the dynamic characteristic diagram, we can study the dynamic performance of the vehicle, not only can get the maximum vehicle speed, acceleration time and maximum climbing index, but also observe the correlation And provides a reference for further research on the dynamics of the vehicle.Keywords: Vehicle dynamics; MATLAB programming; Dynamic characteristics mapCLC NO.: U461.2 Document Code: A Article ID: 1671-7988 (2017)13-65-04前言汽车是高效率的交通工具,在汽车的众多性能中,动力性是汽车最重要的性能。
n=linspace(600,4000,100);%均分计算指令,600最低转速,4000最高转速,均分为100等分r=0.367;i0=5.83;nt=0.85;G=3880*9.8;f=0.013;CDA=2.77;If=0.218;Iw1=1.798;Iw2=3.598;m=3880;L=3.2;a=1.947;hg=0.9;ig=[6.09,3.09,1.71,1.00];%输入参数ua1=0.377*r*n/i0/ig(1);ua2=0.377*r*n/i0/ig(2);ua3=0.377*r*n/i0/ig(3);ua4=0.377*r*n/i0/ig(4);%各转速各挡位下的速度Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4;%从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*i0*ig(1)*nt/r;Ft2=Tq*i0*ig(2)*nt/r;Ft3=Tq*i0*ig(3)*nt/r;Ft4=Tq*i0*ig(4)*nt/r;%从600~4000rpm各挡位的驱动力Ff=G*f;ua=linspace(0,200,100);Fw=CDA*ua.*ua/21.15;%空气阻力plot(ua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua,Ff+Fw);%画出各挡位的Ua-Ft,及Ua-Ff+Ftxlabel('ua/ km/h');ylabel('F/N');%标注横纵轴title('汽车驱动力-行驶阻力平衡图');%标注图形题目gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('Ff+Fw');%给每根线条添加符号legend('Ft1','Ft2','Ft3','Ft4','Ff+Fw');%标注图例umax=max(ua4);disp('汽车最高车速=');disp(umax);disp('km/h');imax=tan(asin(max((Ft1-(Ff+Fw))/G)));%最大爬坡度的公式disp('汽车最大爬坡度=');disp(imax);%输出最高车速,与最大爬坡度的结果n=600:1:4000;%600最低转速,4000最高转速,相邻数组间隔1 r=0.367;i0=5.83;eff=0.85;f=0.013;CdA=2.77;m=3880;g=9.8; %输入参数G=m*g;Ttq=-19.313+295.27*n/1000-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4; %从600~4000rpm油拟合公式计算发动机转距for ig=[6.09,3.09,1.71,1.00]Ua=0.377*r*n/ig/i0; %各转速各挡位下的速度Pe=Ttq.*n/9550; %各转速下的功率plot(Ua,Pe);hold on; %使当前轴及图形保持而不被刷新,准备承受此后将绘制的图形,多图共存endUa=0:0.1:max(Ua);Pf=G*f*Ua/3600; %滚动阻力Pw=CdA*Ua.^3/76140; %空气阻力plot(Ua,(Pf+Pw)/eff);title('汽车的功率平衡图'),xlabel('Ua/(km/h)'),ylabel('P/kw');%画出汽车的功率平衡图gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('(Pf+Pw)/nt');legend('Ⅰ','Ⅱ','Ⅲ','Ⅳ','Pf+Pw/nt');n=600:1:4000;%600最低转速,4000最高转速,相邻数组间隔r=0.367;i0=5.83;nt=0.85;f=0.013;CdA=2.77;m=3880;g=9.8; %输入参数G=m*g;Ttq=-19.313+295.27*n/1000-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4; %从600~4000rpm油拟合公式计算发动机转距for ig=[6.09,3.09,1.71,1.00]Ua=0.377*r*n/ig/i0;Ft=Ttq*i0*ig*nt/r;Fw=CdA*Ua.^2/21.15;D=(Ft-Fw)/G %汽车动力因子公式plot(Ua,D); %画出汽车动力特性图hold on; %使当前轴及图形保持而不被刷新,准备承受此后将绘制的图形,多图共存endf=0.0076+0.000056*Ua%滚动阻力与速度之间的关系plot(Ua,f); %画出速度与滚动阻力图title('汽车动力特性图'),%给图加题目xlabel('Ua/(km/h)'),ylabel('D');gtext('Ⅰ'),gtext('Ⅱ'),gtext('Ⅲ'),gtext('Ⅳ'),gtext('f');legend('Ⅰ','Ⅱ','Ⅲ','Ⅳ','f');n=600:10:4000; %600最低转速,4000最高转速,相邻数组间隔10m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[6,09 3.09 1.71 1.00];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598;%输入参数Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4;%从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r; %各转速各挡位下的驱动力ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0; %各挡位各转速下的速度Fw1=CDA*ua1.^2/21.15;Fw2=CDA*ua2.^2/21.15;Fw3=CDA*ua3.^2/21.15;Fw4=CDA*ua4.^2/21.15; %不同速度下的空气阻力Ff=G*f;deta1=1+(Iw1+Iw2)/(m*r^2)+(If*ig(1)^2*i0^2*nT)/(m*r^2);deta2=1+(Iw1+Iw2)/(m*r^2)+(If*ig(2)^2*i0^2*nT)/(m*r^2);deta3=1+(Iw1+Iw2)/(m*r^2)+(If*ig(3)^2*i0^2*nT)/(m*r^2);deta4=1+(Iw1+Iw2)/(m*r^2)+(If*ig(4)^2*i0^2*nT)/(m*r^2); %不同挡位下的汽车旋转质量换算系数a1=(Ft1-Ff-Fw1)/(deta1*m);ad1=1./a1;a2=(Ft2-Ff-Fw2)/(deta2*m);ad2=1./a2;a3=(Ft3-Ff-Fw3)/(deta3*m);ad3=1./a3;a4=(Ft4-Ff-Fw4)/(deta4*m);ad4=1./a4; %各挡位下的加速度plot(ua1,ad1,ua2,ad2,ua3,ad3,ua4,ad4);title('汽车的加速度倒数曲线');xlabel('ua(km/h)'); ylabel('1/a〕'); %作汽车加速度倒数曲线gtext('1/a1'),gtext('1/a2'),gtext('1/a3'),gtext('1/a4');legend('1/a1','1/a2','1/a3','1/a4');n=600:10:4000;m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[6.09 3.09 1.71 1.00];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598; %输入参数Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4; %从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r;%各转速各挡位下的驱动力ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0;%各挡位各转速下的速度Fw1=CDA*ua1.^2/21.15;Fw2=CDA*ua2.^2/21.15;Fw3=CDA*ua3.^2/21.15;Fw4=CDA*ua4.^2/21.15;%不同速度下的空气阻力Ff=G*f;i1=asin((Ft1-Ff-Fw1)/G);i2=asin((Ft2-Ff-Fw2)/G);i3=asin((Ft3-Ff-Fw3)/G);i4=asin((Ft4-Ff-Fw4)/G);%不同档位下的坡度plot(ua1,i1,ua2,i2,ua3,i3,ua4,i4);title('汽车的爬坡度图');xlabel('ua/(km*h^-1)');ylabel('i/%');%作汽车的坡度图gtext('Ⅰ'),gtext('Ⅱ'),gtext('Ⅲ'),gtext('Ⅳ');m=3880;g=9.8;r=0.367;nt=0.85;f=0.013;CdA=2.77;i0=5.83;pg=7.1;%汽油的重度取7.1N/Lig=[6.09 3.09 1.71 1];n=600:1:4000;n0=[815 1207 1614 2012 2603 3006 3403 3804];B00=[1326.8 1354.7 1284.4 1122.9 1141.0 1051.2 1233.9 1129.7];B10=[-416.46 -303.98 -189.75 -121.59 -98.893 -73.714 -84.478 -45.291];B20=[72.379 36.657 14.524 7.0035 4.4763 2.8593 2.9788 0.71113];B30=[-5.8629 -2.0553 -0.51184 -0.18517 -0.091077 -0.05138 -0.047449 -0.00075215];B40=[0.17768 0.043072 0.0068164 0.0018555 0.00068906 0.00035032 0.00028230 -0.000038568]; %输入参数B0=spline(n0,B00,n);B1=spline(n0,B10,n);B2=spline(n0,B20,n);B3=spline(n0,B30,n);B4=spline(n0,B40,n);%使用三次样条插值,保证曲线的光滑连续ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0; %求出发动机转速围对应的3、4档车速Pe3=(m*g*f*ua3/3600+CdA*ua3.^3/76140)/0.85;Pe4=(m*g*f*ua4/3600+CdA*ua4.^3/76140)/0.85; %发动机功率for i=1:1:3401 %用拟合公式求出各个燃油消耗率b3(i)=B0(i)+B1(i)*Pe3(i)+B2(i)*Pe3(i).^2+B3(i)*Pe3(i).^3+B4(i)*Pe3(i).^4;b4(i)=B0(i)+B1(i)*Pe4(i)+B2(i)*Pe4(i).^2+B3(i)*Pe4(i).^3+B4(i)*Pe4(i).^4; %插值得出对应速度的燃油消耗率endQ3=Pe3.*b3./(1.02.*ua3.*pg);Q4=Pe4.*b4./(1.02.*ua4.*pg); %3.4挡等速百公里燃油消耗量plot(ua3,Q3,ua4,Q4);title('最高档与次高档等速百公里油耗曲线'); %画出最高档与次高档等速百公里油耗曲线xlabel('ua(km/h)'); ylabel('百公里油耗〔L/100km〕');gtext('3档'),gtext('4档');。
基于matlab的车辆工程仿真实例基于MATLAB的车辆工程仿真实例MATLAB是一种强大的数学计算软件,广泛应用于各种领域,包括车辆工程。
在车辆工程中,MATLAB可以用于模拟和优化车辆的性能,例如加速、制动、悬挂、转向等。
本文将介绍一个基于MATLAB的车辆工程仿真实例,以展示MATLAB在车辆工程中的应用。
本实例是一个简单的车辆加速仿真,目的是评估车辆的加速性能。
仿真模型包括车辆、发动机、变速器和轮胎等组成部分。
车辆模型采用简化的二自由度模型,发动机模型采用简单的动力学方程,变速器模型采用离散化的传动比,轮胎模型采用简单的摩擦力模型。
仿真过程中,输入加速踏板位置信号,输出车辆速度和加速度信号。
下面是仿真的主要步骤:1. 定义车辆模型参数,包括质量、惯性、轮距、轴距、重心高度等。
2. 定义发动机模型参数,包括最大功率、最大扭矩、转速范围等。
3. 定义变速器模型参数,包括传动比、换挡时间等。
4. 定义轮胎模型参数,包括摩擦系数、轮胎半径等。
5. 编写仿真程序,包括车辆动力学方程、变速器控制逻辑、轮胎摩擦力计算等。
6. 运行仿真程序,输入加速踏板位置信号,输出车辆速度和加速度信号。
7. 分析仿真结果,评估车辆的加速性能,例如0-100km/h加速时间、最大加速度等。
通过这个实例,我们可以看到MATLAB在车辆工程中的强大应用。
MATLAB提供了丰富的数学计算和仿真工具,可以帮助工程师快速建立车辆模型、优化车辆性能、评估车辆安全性等。
同时,MATLAB还可以与其他工具和平台集成,例如Simulink、CANape 等,进一步扩展其应用范围。
MATLAB是车辆工程中不可或缺的工具之一,它可以帮助工程师更好地理解和优化车辆性能,提高车辆的安全性、舒适性和环保性。
SCIENCE &TECHNOLOGY VISION 科技视界0引言动力性和燃油经济性是汽车性能的重要指标,石油价格的飞速上涨,对汽车性能有了更高的要求。
动力性和燃油经济性的计算机仿真能准确、快速、有效的预测性能指标。
节省实车试验中不必要的巨额浪费及实车道路试验中驾驶员、道路环境、气候等因素对汽车使用性能测定的影响,在新车设计中迅速且经济地选择最佳方案。
1发动机数学模型发动机数学模型是整车动力性和燃油经济性仿真计算的重要依据,包括外特性数学模型和万有特性数学模型。
本文以发动机台架实验数据为依据,采用插值法描述发动机万有特性;采用最小二乘法曲线拟合描述发动机外特性。
1.1发动机的外特性在进行动力性估算时,一般仍沿用稳态工况时发动机台架试验所得到的使用外特性中的功率与转矩曲线。
稳定工况时发动机转矩曲线基本呈抛物线形状,并且为转速的一元函数,所以采用最小二乘法曲线拟合法描述。
T tq =a 0+a 1n+a 2n 2+…+a k nk式中n 为发动机转速(r/min);T tq 为稳定工况下发动机转矩(N ·m);系数a 0,a 1,a 2,…,a k 可由最小二乘法来确定;拟合阶数k 随特性曲线而异,一般在2、3、4、5中选取。
1.2发动机万有特性发动机的万有特性是个二元函数,燃油消耗率b 是发动机转速n 和功率p 的函数,国内外多采用试验数据的矩阵描述方法,需要时插值提取;国内也有采用曲面拟合法的,但要小心其系数矩阵可能出现病态。
本文采用插值法比较迅速,精度的高低取决于数据点的疏密程度,可真实的反映万有特性的局部特点。
二元插值公式:b=b (n ,p )=i+2m =i∑i+2k =jb (n j ,p i )[]j =m{其中n k ,p m ,b(n k ,p m )为给定的万有特性上的节点。
发动机转矩、油门开度与转速之间的关系复杂,通过试验测试只能得到部分点值。
为了得到任意工况下的燃油消耗率值,必须仿真出燃油消耗率值与发动机转速和转矩之间的函数关系,建立发动机燃油消耗率模型。
2009 届海南大学机电工程学院汽车工程系汽车理论课程设计题目:汽车动力性的仿真学院:机电工程学院专业:09级交通运输姓名:黄生锐学号:20090504指导教师:编号名称件数页数编号名称件数页数1 课程设计论文 1 3Matlab编程源程序 12 设计任务书 12012年6月20日成绩汽车理论课程设计任务书姓名黄生锐学号20090504 专业09交通运输课程设计题目汽车动力性的仿真内容摘要:本设计的任务是对一台Passat 1.8T手动标准型汽车的动力性能进行仿真。
采用MATLAB编程仿真其性能,其优点是:一是能过降低实际成本,提高效率;二是获得较好的参数模拟,对汽车动力性能提供理论依据。
主要任务:根据该车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合自己选择的适合于该车的发动机型号求出发动机的最大功率、最大扭矩、排量等重要的参数。
并结合整车的基本参数,选择适当的主减速比。
依据GB、所求参数,结合汽车设计、汽车理论、机械设计等相关知识,计算出变速器参数,进行设计。
论证设计的合理性。
设计要求:1、动力性分析:1)绘制汽车驱动力与行驶阻力平衡图;2)求汽车的最高车速、最大爬坡度;3)用图解法或编程绘制汽车动力特性曲线4)汽车加速时间曲线。
2、燃油经济性分析:1) 汽车功率平衡图;完成内容:1.Matlab编程汽车驱动力与行驶阻力平衡图2.编程绘制汽车动力特性曲线图3.编程汽车加速时间曲线图4.课程设计论文1份汽车动力性仿真摘要本文是对Passat 1.8T 手动标准型汽车的动力性能采用matlab 编制程序,对汽车动力性进行计算。
从而对汽车各个参数做出准确的仿真研究,为研究汽车动力性提供理论依据,本文主要进行的汽车动力性仿真有:最高车速、加速时间和最大爬坡度。
及相关汽车燃油性经济。
关键词:汽车;动力性;试验仿真;matlab1. Passat 1.8T 手动标准型汽车参数功率Pe (kw )转速n (r/min )15 1000 36 1750 50 2200 66 2850 80 3300 90 4000 110 5100 1055500各档传动比主减速器传动比第1档 3.665 4.778第2档 1.999 第3档 1.407 第4档 1 第5档 0.472 车轮半径0.316(m )传动机械效率0.91 假设在良好沥青或水泥路面上行驶,滚动阻力系数 0.014 整车质量1522kgC D A2.4m22. 最高车速汽车的最高车速是指汽车标准满载状态,在水平良好的路面(混凝土或沥青路面)上所能达到的最高行驶速度。
由已知的Tq 曲线和其他参数可得到汽车各挡位下的驱动力Ft ,并可做出驱动力曲线。
(a )ri i T Ft 0g q η⋅⋅⋅=(b )0g a i i nr 377.0u ⋅⋅= (c )f g f ⋅⋅=M F(d )汽车在水平路面上匀速行驶时阻力包括滚动阻力和空气阻力,运用公式(b )可求出不同挡位下汽车的行驶速度,继而利用公式(c )、公式(d )分别求出滚动阻力和空气阻力。
Ft+Fw 与车速的关系为行驶阻力曲线,结合公式(a )的各档驱动力曲线就得到汽车驱动力—行驶阻力平衡,如图1。
第Ft5曲线与Ft+Fw 曲线的交点便是最高车速u 。
显然最高车速为90km/h 。
3.加速时间常用原地起步加速时间与超车加速时间来表明汽车的加速能力。
原地起步加速时间是指汽车由Ⅰ挡或Ⅱ挡起步,并以最大的加速度(包括选择最恰当的换挡时间)逐步换至最高挡到某一预定的距离或车速所需的时间。
如图2.一般常用0—100km/h 所需的时间来表明原地起步的加速能力。
4.最大爬坡度汽车的上坡能力是用满载时汽车在良好的路面上的最大爬坡度。
轿车的最高车速大,加速时间短,经常在较好的道路上行驶,一般不强调它的爬坡能力;然而,它的Ⅰ挡加速能力大,故爬坡能力也强。
货车在各种地区的各种道路上行驶,所以必须具有足够的爬坡能力,一般最大爬坡度在30%即16.7º左右。
(1) )(i Fw Ff Ft F +-=(2) )(15.21cos -ri i sin 20g q ua A C G T G D ⋅+⋅⋅⋅=αηα(3) 21)(sin fG Fw Ft +-=+ϕα 为坡道的角度(4) 211cos f+=ϕ5.汽车功率平衡汽车行驶时,不仅驱动力和行驶阻力互相平衡,发动机功率和汽车行驶的阻力功率也总是平衡。
如图3汽车功率平衡图。
432)1000(8445.3)1000(874.40)1000(44.165)1000(27.295313.19n n n n Tq -+-+-=式中,Tq 为发动机转矩(N*m );n 为发动机转速(r/min )。
发动机最低转速m in n =1000r/min,最高转速m ax n =5500r/min⎪⎪⎭⎫⎝⎛++++=dt du mu Afu C Giu Gfu P a a D a a e 3600761403600360013δη附件:matlab编程原程序(1)驱动力与行驶阻力平衡图(注:红色字为本文要仿真的参数)Matlab输入语句:close all;n=linspace(1000,5500);%设定转速范围ua1=0.377*0.316*n/(4.778*3.665);%公式计算各档车速范围ua2=0.377*0.367*n/(4.778*1.999);ua3=0.377*0.367*n/(4.778*1.407);ua4=0.377*0.367*n/(4.778*1.00);ua5=0.377*0.367*n/(4.778*0.472);Ttq=(-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4);% Ttq-n 曲线拟合公式x1=3.665;x2=1.999;x3=1.407;x4=1;x5=0.472;Ft1=x1*Ttq*4.778*0.91/0.316;%公式计算各档对应转速下的驱动力Ft2=x2*Ttq*4.778*0.91/0.316;Ft3=x3*Ttq*4.778*0.91/0.316;Ft4=x4*Ttq*4.778*0.91/0.316;Ft5=x5*Ttq*4.778*0.91/0.316;F1=1522*9.8*0.014+(2.4/21.15)*ua1.^2;%公式计算各档对应的各个车速下的行驶阻力F2=1522*9.8*0.014+(2.4/21.15)*ua2.^2;F3=1522*9.8*0.014+(2.4/21.15)*ua3.^2;F4=1522*9.8*0.014+(2.4/21.15)*ua4.^2;F5=1522*9.8*0.014+(2.4/21.15)*ua5.^2;plot(ua1,Ft1,'g',ua2,Ft2,'g',ua3,Ft3,'g',ua4,Ft4,'g',ua5,Ft5,'g',ua1,F1,'r',ua2,F2,'r',ua3,F3,'r',ua4,F4,'r',ua5,F5,'r');%汽车驱动力-行驶阻力平衡图xlabel('ua/(km/h)');%汽车驱动力-行驶阻力平衡图ylabel('F/N');title('汽车驱动力-行驶阻力平衡图');(2)汽车功率平衡仿真Matlab输入语句:close all;n=linspace(1000,5500);%设定转速范围ua1=0.377*0.316*n/(4.778*3.665);%公式计算各档车速范围ua2=0.377*0.367*n/(4.778*1.999);ua3=0.377*0.367*n/(4.778*1.407);ua4=0.377*0.367*n/(4.778*1.00);ua5=0.377*0.367*n/(4.778*0.472);Ttq=(-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4);% Ttq-n 曲线拟合公式x1=3.665;x2=1.999;x3=1.407;x4=1;x5=0.472;Ft1=x1*Ttq*4.778*0.91/0.316;%公式计算各档对应转速下的驱动力Ft2=x2*Ttq*4.778*0.91/0.316;Ft3=x3*Ttq*4.778*0.91/0.316;Ft4=x4*Ttq*4.778*0.91/0.316;Ft5=x5*Ttq*4.778*0.91/0.316;F1=1522*9.8*0.014+(2.4/21.15)*ua1.^2;%公式计算各档对应的各个车速下的行驶阻力F2=1522*9.8*0.014+(2.4/21.15)*ua2.^2;F3=1522*9.8*0.014+(2.4/21.15)*ua3.^2;F4=1522*9.8*0.014+(2.4/21.15)*ua4.^2;F5=1522*9.8*0.014+(2.4/21.15)*ua5.^2;Pe1=Ft1.*ua1./3600;%计算各档对应转速下的功率Pe2=Ft2.*ua2./3600;Pe3=Ft3.*ua3./3600;Pe4=Ft4.*ua4./3600;Pe5=Ft5.*ua5./3600;P1=F1.*ua1./(3600*0.85);%计算各档对应的各个车速下的行驶阻力功率P2=F2.*ua2./ (3600*0.85);P3=F3.*ua3./ (3600*0.85);P4=F4.*ua4./ (3600*0.85);P5=F5.*ua5./ (3600*0.85);plot(ua1,Pe1,'b',ua2,Pe2,'b',ua3,Pe3,'b',ua4,Pe4,'b',ua5,Pe5,'b',ua1,P1,'r',ua2,P2,'r',ua3,P3,'r',ua4,P4,'r',ua5,P5,'r');%汽车功率平衡图xlabel('ua/(km/h)');%汽车功率平衡图ylabel('P/kW');title('汽车功率平衡图');axis([0,160,0,80]);(3)汽车2档加速时间仿真Matlab输入语句:clearnT=0.85;r=0.316;f=0.014;CDA=2.4;i0=4.778;If=0.218;Iw1=1.798;Iw2=3.598;L=3.2;a=1.947;hg=0.9;m=1552;g=9.8;G=m*g; ig=[3.665 1.999 1.407 1.00 0.472];nmin=600;nmax=1000;u1=0.377*r*nmin./ig/i0;u2=0.377*r*nmax./ig/i0;deta=0*ig;for i=1:5deta(i)=1+(Iw1+Iw2)/(m*r^2)+(If*(ig(i))^2*i0^2*nT)/(m*r^2);endua=[6:0.01:99];N=length(ua);n=0;Tq=0;Ft=0;inv_a=0*ua;delta=0*ua;Ff=G*f;Fw=CDA*ua.^2/21.15;for i=1:Nk=i;if ua(i)<=u2(2)n=ua(i)*(ig(2)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/1000)^4; Ft=Tq*ig(2)*i0*nT/r;inv_a(i)=(deta(2)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elseif ua(i)<=u2(3)n=ua(i)*(ig(3)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/1000)^4; Ft=Tq*ig(3)*i0*nT/r;inv_a(i)=(deta(3)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elseif ua(i)<=u2(4)n=ua(i)*(ig(4)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/1000)^4; Ft=Tq*ig(4)*i0*nT/r;inv_a(i)=(deta(4)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elsen=ua(i)*(ig(5)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/1000)^4; Ft=Tq*ig(5)*i0*nT/r;。