有限元分析——平面问题
- 格式:ppt
- 大小:368.50 KB
- 文档页数:11
第2章弹性力学平面问题有限单元法2.1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x、y两个方向的力和位移,单元的结点位移列阵规定为:相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x yααα==++546(,)v v x y x yααα==++(2-1-2)a式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标) {}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=mjimeddddmjjivuvuvui{}iijjmXYX(2-1-1)YXYiejmmFF FF⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭确定。
将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++ 123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++ 546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j j m m x u A x u x u = 2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为: m m i j ia x y x y =-m ij by y =- (,,)i j m u u u u ruu u u r m i jc x x =-(,,)i j m u u u u ru u u u r表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。
有限元平面问题三角形实例有限元法是一种常用的计算方法,可以用来解决各种工程问题。
其中,有限元平面问题是有限元法的一种应用,常用于分析三角形结构。
在有限元平面问题中,我们通常会将结构划分成许多小的单元,每个单元由节点和单元刚度矩阵组成。
而三角形结构则是有限元平面问题中常用的一种单元形状。
三角形结构的特点是简单而且易于处理,因此广泛应用于各种领域,如土木工程、机械工程、航空航天等。
下面我们就以一个实际的例子来说明如何应用有限元平面问题分析三角形结构。
假设我们要分析一个三角形钢板在受力作用下的变形情况。
首先,我们需要将钢板划分为许多小的三角形单元。
每个单元由三个节点组成,节点之间通过边连接。
在有限元分析中,我们需要对每个单元进行网格划分,并确定节点的坐标和边的长度。
然后,通过求解节点的位移和应力分布,可以得到钢板在受力作用下的变形情况。
具体来说,我们可以通过求解线性方程组来得到节点的位移。
而节点的应力则可以通过应变-位移关系来计算。
通过这种方式,我们可以得到钢板在受力作用下各个节点的位移和应力分布情况。
有限元平面问题的分析结果可以帮助我们了解结构的强度和刚度情况,为设计和优化提供依据。
例如,在钢板的设计中,我们可以通过有限元分析来确定合适的材料和尺寸,以满足结构的强度和刚度要求。
除了钢板,有限元平面问题还可以应用于其他类型的三角形结构。
例如,在土木工程中,我们可以使用有限元分析来分析三角形桥梁或者三角形支撑结构的变形和应力分布情况。
有限元平面问题是一种常用的分析方法,可以应用于各种三角形结构的分析。
通过对节点的位移和应力分布的求解,我们可以得到结构在受力作用下的变形情况。
这对于工程设计和优化至关重要,可以帮助我们提高结构的强度和刚度,确保其安全可靠。
梁问题1、一个长6m的工字截面梁,截面高0.42m,截面面积0.0072m2,截面惯性矩2.108e-4m4,材料弹性模量为3e11Pa, 泊松比0.3.两端简支,跨中受100N的集中力,试用有限元计算梁中点的挠度定义单元类型:Beam3;(分10份)定义材料弹性模量Ex=3e11和泊松比0.3;定义实常数:梁的截面积0.0072,惯性矩2.108e-4,高度0.42m2、一个长10m的方形截面梁,截面边长5mm,截面面积2.5e-4m2,截面惯性矩5.2e-7m4,材料弹性模量为3e11Pa, 泊松比0.3.两端简支,跨中受100N的集中力,试用有限元计算梁中点的挠度定义单元类型:Beam3;(分10或20份)定义材料弹性模量Ex=2e11和泊松比0.3;定义实常数:梁的截面积2.5e-4,惯性矩5.2e-7,高度0.05m3、一悬臂梁长10m,截面高0.1m,截面宽0.05m,材料弹性模量为2e11Pa, 泊松比0.3.在集中力P=10000N作用下求该梁A点处的挠度。
平面刚架问题1、建立如图所示的平面刚架结构;(建立节点和单元)2、定义单元类型:Beam33、定义材料弹性模量Ex=2e11和泊松比0.34、定义实常数:梁的截面积0.03,惯性矩2.5e-5,高度0.1m5、定义约束6 、施加载荷7 、进行求解8 、观察变形图、列出节点位移值2、一平面刚架右端固定,如图所示,已知组成刚架的各梁除梁长外,其余几何特性相同。
试以静力来分析各节点的位移。
横截面积:0.0072m 2横截高度:0.42m惯性矩:0.000218m 4 弹性模量:2.06e11n/m2泊松比0.3P x =100N200NP x =100N。
第三章 平面问题有限单元法习题答案3-2图示等腰直角三角形单元,设μ=1/4,记杨氏弹性模量E ,厚度为t ,求形函数矩阵[N ]、应变矩阵[B ]、应力矩阵[S ]与单元刚度矩阵[K ]e 。
【解】:⎪⎩⎪⎨⎧-=-=-=-=-=-=-=-=-=i j m j i m i j j i mm i j i m j m i i m j j m i m j i j m m j i xx c y y b y x y x a x x c y y b y x y x a x x c y y b y x y x a ,,,,,,⎪⎩⎪⎨⎧-=-=-=-==-==-==-==-==-==-==-=aa c a ab a a a a a ac b a a a c a a b a a m m mj j j i i i 0,0,0*0*0,000,00**0000,0,0*00*02 []⎥⎦⎤⎢⎣⎡=m jim j iN N N N N N N 0000 ),,()(21m j i y c x b a AN i i i i ++=221001010121a a a A ==[]⎥⎦⎤⎢⎣⎡----=--=--==++==++=y x a y x yx a y x a N ay x a ay ax a a N ay ay x a N a x y ax a N m j i 0000001)(1)00(1)00(12222aaj(0,a)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-=10003101310310001310311103)411(24121000141410411411)421)(41()411()1(22100011011)21)(1()1(E E E E D μμμμμμμμμ[][]321B B B B =⎪⎩⎪⎨⎧-=-=-=-==-==-==-==-==-==-==-=aa c a ab a a a a a ac b a a a c a a b a a m m mj j j i i i 0,0,0*0*0,000,00**0000,0,0*00*02 [][][][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11011010100001000111110011011000110000110000100212a B a B a B a a a a B b c c b AB m j i i ii ii[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10003101310E D []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1101101010000100011a B[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==1101103130011310031011011010100001000110003101310a E a E B D S[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10003101310E D []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1101101010000100011a B[][][][]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==42311124111331300111011011011013100320211101101010000100011000310131101101010000100011022Et a t a E tAB D B K TT e3-3正方形薄板,受力与约束如图所示,划分为两个三角形单元,μ=1/4,板厚为t ,求各节点位移与应力。