孙训方材料力学07应力状态强度理论剖析
- 格式:ppt
- 大小:2.20 MB
- 文档页数:5
第七章应力状态和强度理论7-17-27-37-47-57-67-77-87-97-107-117-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。
由于实用的原因,图中的角限于范围内。
作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。
为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。
若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。
返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。
解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。
试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。
试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。
试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。
解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C 为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。
材料力学孙训方材料力学是研究物质在受力作用下产生形变和破坏的学科,是力学的一个重要分支。
材料力学主要研究的对象是材料,包括金属、塑料、陶瓷、复合材料等各种类型的材料。
材料力学研究的内容主要有拉伸、压缩、剪切、弯曲等力学性能以及材料的破坏机理等方面。
拉伸是材料中最常见的受力情况之一。
当外部力作用于材料上时,会产生拉伸力,使材料发生形变。
拉伸的目的是研究材料在正应力作用下的性能,如弹性模量、屈服强度和断裂强度等。
拉伸试验可以通过测量材料的长度和直径的变化来计算形变和应力,从而得到应力-应变曲线,从中可以推导出材料的性能指标。
压缩是材料受力的另一种情况。
当外部力作用于材料上时,会产生压缩力,使材料发生压缩形变。
压缩试验可以测量材料在正应力作用下的性能,如弹性模量和抗压强度等。
与拉伸试验类似,压缩试验也可以得到应力-应变曲线来分析材料的性能。
剪切是材料在受到平行于其截面方向的两个相对方向的力作用下发生的形变。
剪切力会使材料发生剪切变形,从而产生剪应力。
材料的剪切性能可以通过剪切试验来研究,常用的剪切试验方法有剪切强度试验和剪切模量试验。
弯曲是材料受到外力使其产生弯曲现象。
弯曲试验可以测量材料在受到弯矩作用下的性能,如抗弯强度和弹性模量等。
弯曲试验可以通过测量材料的挠度和应力来计算材料的性能参数。
材料破坏机理的研究是材料力学中的重要内容之一。
材料在受到外力作用时,可能会发生破坏,如断裂、塑性变形、蠕变等。
破坏机理的研究可以帮助我们了解材料的强度极限和在不同应力条件下的变形行为。
材料力学是工程领域中不可或缺的学科,广泛应用于材料的设计、加工和使用过程中。
通过对材料力学的研究,可以更好地理解材料的力学性能,为制造各类产品提供科学依据,提高产品的性能和可靠性。