第七章应力状态和强度理论详解
- 格式:ppt
- 大小:3.93 MB
- 文档页数:5
第七章应力状态分析强度理论7.1 应力状态概述一、工程实例1. 压缩破坏2. 弯曲拉伸破坏3. 弯曲剪切破坏4. 铸铁扭转破坏5. 低碳钢扭转破坏二、应力状态的概念1. 点的应力状态过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。
2. 一点应力状态的描述以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。
3. 求一点应力状态(1)单元体三对面的应力已知,单元体平衡(2)单元体任意部分平衡(3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。
三、应力状态的分类1. 单元体:微小正六面体2. 主平面和主应力:主平面:无切应力的平面主应力:作用在主平面上的正应力。
3. 三种应力状态单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零四、应力状态分析的方法 1.解析法2. 图解法7.2应力状态分析的解析法一、解析法图示单元体,已知应力分量x σ、y σ、xyτ和yx τ。
xxx(一)任意截面上的正应力和切应力:利用截面法,考虑楔体bef 部分的平衡。
设ef 面的面积为dA , ∑=0F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy∑=0F tsin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy根据切应力互等定理: y x xy ττ=三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2αα-=,∂=cos sin 22sin αα解得:ατασσσσσα2sin 2cos 22x x xy yy--++=(7-1)ατασστα2cos 2sin 2x xy y+-= (7-2)(二)主应力即主平面位置将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。
第 1 页/共 4 页第七章 应力状态和强度理论7-3 横截面上 AF =σ α截面上 αστασσσαα2sin 22cos 22=+=,强度条件 ][432sin 2][)2cos 1(2σατσασαα≤=≤+=A F A F ,等价于 ][2sin 342)2cos 1(2max σαασ≤⎭⎬⎫⎩⎨⎧⋅+=A F A F e ,由0=ασd d e,并比较︒=0α或︒60的e σ,得使e σ最小的角度︒=60α 7-7 内力 m kN M ⋅-=2.7,kN F s 10-=应力 MPa I Myz 55.10==σ,MPa bI S F z z s 88.0*-==τ 主应力 MPa 62.1022221=+⎪⎭⎫⎝⎛+=τσσσ,MPa 073.022223-=+⎪⎭⎫⎝⎛-=τσσσ主平面方位 ︒=⇒=-=74.4167.022tan 00αστα7-8(d) MPa MPa x y x 50200-=-==τσσ,, ︒=45α截面上:MPaMPax yx yy102cos 2sin 2402sin 2cos 22=+-==--=αταστατασσσαα主应力:MPa x y y4122221=+⎪⎪⎭⎫ ⎝⎛+=τσσσ, MPa x y y6122223-=+⎪⎪⎭⎫ ⎝⎛-=τσσσ主平面方位:︒=⇒=--=34.39522tan 00ασταyx7-15(a) MPa z 50=σ——为主应力,另两个主应力由下列应力决定 MPa MPa MPa x y x 403070-===τσσ,,MPa MPa x y x yx x y x yx 3.5227.94222222=+⎪⎪⎭⎫ ⎝⎛--+=''=+⎪⎪⎭⎫ ⎝⎛-++='τσσσσστσσσσσ主应力 MPa MPa MPa z 3.5507.94321=''===='=σσσσσσ,, 最大切应力 MPa 7.44231max =-=σστ7-16(a) MPa MPa MPa 105070321=,=,=σσσ A 点:MPa MPa A A 2030==τσ,在2σ与3σ决定的应力圆上使切使劲达极值7-18 立方体边长 a =20mm不计摩擦,各面上的应力为主应力顶面 MPa aF3523-=-=σ,侧面021<=σσ 主应变021==εε,又)]([13211σσνσε+-=EMPa 151321-=-==⇒σννσσ7-21 k 处截面上的内力: e M laM =,l M F e s =应力: bhFb I S F s z z s 230*===,τσ︒=45α方向即为主应力方向第 3 页/共 4 页τστσ-==31,主应变 )(131451νσσεε-==︒E由上可得 ︒+=45)1(32ενElbhM e7-22 钢球各点应力状态相同 MPa 14321-===σσσ体应变 )(21321σσσνθ++-=E体积改变 3101054.6m V V -⨯==∆θ7-23 MPa MPa MPa z y x 403070-===σσσ,,MPaMPax y x y x x y x y x 28.54)(21)(2172.944)(21)(212222=+--+=''=+-++='τσσσσστσσσσσ主应力 MPa MPa MPa 28.55072.94321==σσσ,=, []3213232221/99.12)()()(61m m kN Ev d ⋅=-+-+-+=σσσσσσν7-24 平面应力状态 MPa MPa x y x 15015===τσσ,,主应力 MPa MPa x x x27.9027.242232221-===+⎪⎭⎫ ⎝⎛+=σστσσσ,, 按第一强度理论:][11t r σσσ<= 按第二强度理论:][59.26)(3212t r MPa σσσνσσ<=+-= 满意强度条件。