渐近线及函数作图共25页
- 格式:ppt
- 大小:3.54 MB
- 文档页数:25
函数三种渐近线的求法公式渐近线是指函数图像在无穷远处的趋势线,它可以帮助我们更好地理解和分析函数的性质。
在数学中,常见的渐近线有水平渐近线、垂直渐近线和斜渐近线。
下面将分别介绍这三种渐近线的求法公式。
一、水平渐近线当函数f(x)在无穷远处的函数值趋近于一个常数L时,我们称L为f(x)的水平渐近线。
水平渐近线通常是y=L的形式。
求法公式:1. 若极限lim[x→∞]f(x)存在且等于L,则y = L是f(x)的水平渐近线。
2. 若极限lim[x→-∞]f(x)存在且等于L,则y = L是f(x)的水平渐近线。
注:若f(x)在无穷大处不存在极限,则没有水平渐近线。
例题1:求函数f(x)=(3x^2+2)/(x^2+1)的水平渐近线。
解:由于当x趋近于无穷大时,常数项对于分子和分母的影响越来越小,因此该函数的水平渐近线应为y=3/1=3二、垂直渐近线当函数f(x)在一些点x=a处的函数值趋近于无穷大或负无穷大时,我们称x=a为f(x)的垂直渐近线。
求法公式:对于函数f(x):1. 若lim[x→a]f(x)存在且为无穷大或负无穷大,则x = a是f(x)的垂直渐近线。
2. 若lim[x→a+]f(x)存在且为无穷大或负无穷大,则x = a+是f(x)的垂直渐近线。
3. 若lim[x→a-]f(x)存在且为无穷大或负无穷大,则x = a-是f(x)的垂直渐近线。
注:若f(x)在特定点附近没有无穷大的极限值,则没有垂直渐近线。
例题2:求函数f(x)=1/(x-1)的垂直渐近线。
解:由于当x趋近于1时,分母趋向0,因此该函数在x=1处有垂直渐近线。
三、斜渐近线当函数f(x)在无穷远处的函数值趋近于一个斜线L时,我们称L为f(x)的斜渐近线。
斜渐近线通常是y = mx + b的形式。
求法公式:1.对于函数f(x):若lim[x→∞][f(x) - (mx + b)] = 0,则y = mx + b是f(x)的斜渐近线。
§8 函数图像的渐近线及其应用秒杀知识点①②知识点1:(渐近线的定义与类型)1.若曲线C 上的动点P 沿着曲线无限地远离原点时,点P 与某一固定直线l 的距离趋于零,则称直线l 为曲线C 的渐近线.2.渐近线分类:共分三类:水平渐近线(0α=),垂直渐近线π2α⎛⎫= ⎪⎝⎭和斜渐近线(0πα<<),其中α为渐近线的倾斜角.知识点2:(渐近线的求法)设曲线()y f x =有斜渐近线y kx b =+.如图所示,曲线上动点P 到渐近线的距离()()cos PN PM f x kx b α==-+.① 根据渐近线定义,当x →+∞(对x →-∞的情形也有相应结果)时,0PN →,从而应有()()lim 0x f x kx b →+∞-+=⎡⎤⎣⎦,②或()lim x f x kx b →+∞-⎡⎤⎦=⎣,③ 又由()()()1lim lim 00x x f x k f x kx b x x→+∞→+∞⎛⎫-=-=⋅=⎪⎝⎭. 得()limx f x k x→+∞=.④于是,若曲线()y f x =有斜渐近线y kx b =+,则k ,b 可由③,④确定,反之,若由④和③式求得k ,b ,再由②和①式得0PN →,从而直线y kx b =+为曲线()y f x =的渐近线.即斜渐近线问题就是③和④的极限问题.若曲线()y f x =存在水平渐近线y b =,则有()lim x f x b →+∞=或()lim x f x b →-∞=,反之,则y b =是曲线()y f x =的水平渐近线.若曲线()y f x =存在垂直渐近线0x x =,则有()0lim x x f x →=∞或()0lim x x f x +→=∞,()0lim x x f x -→=∞,反之,则说明0x x =是曲线()y f x =的垂直渐近线.知识点3:(正确认识渐近线——关于渐近线的几点注记)第一,并不是所有无限伸展或远离原点的曲线都有渐近线,如2y x =,sin y x =等都没有渐近线. 第二,在定义“无限地远离原点”中的原点,也未必是原点,可以是任意一个给定的点,两者是等价的,只不过原点比较有名且明确而已.如1x =是()211y x =-的垂直渐近线,“无限地远离原点”和无限地远离点()1,0,甚至点(),a b 没有本质区别.第三,定义中,当曲线上的动点无限地远离原点时,只需要以某种方式远离即可,不需要以任意方式都远离.如0y =是2x y =的水平渐近线,动点P 无限地远离原点,即这只是当x →-∞时,2x y =无限接近于x 轴,而当x →+∞时,2x y =无限远离x 轴.第四,若曲线存在渐近线,则当x 充分大(或充分小),或无限趋于0x (0x x =是其垂直渐近线)时,曲线基本就像相应渐近线那样近似于一条直线,如,双曲线存在渐近线,而抛物线则没有,从渐近线的角度很容易明白两者的区别.第五,曲线与其渐近线是可以相交的,甚至曲线在“渐近”的过程中与其渐近线可无限次地穿过来穿过去. 高中教材唯一一次挑明渐近线身份是学习双曲线时,给出指示性定义后教材补充一句“也就是说,双曲线与它的渐近线无限接近,但永不相交”.因此可能会给学生造成一般的渐近线都不能与曲线相交的错误认识.如sin x y x =,因为sin lim 0x x x →∞=,所以0y =是该偶函数的水平渐近线,但sin x y x =在区间()0,+∞内有无数个零点,如图所示.第六,曲线与其渐近线可以是相切的,而且可以有无数个切点.如sin 1x y x +=,因为sin 1lim 0x x x →∞+=,0sin 1lim x x x→+=∞,所以0y =,0x =分别是该函数的水平渐近线和垂直渐近线.但该函数与其水平渐近线0y =有无数个切点3π2π,02k ⎛⎫+ ⎪⎝⎭,()k +∈N ,如图所示.第七,根据以上讨论知,曲线并不都是一直“单调”接近渐近线的.知识点4:(求渐近线举例)【示例】求曲线()3223x f x x x =+-的渐近线. 【解析】由④()33223f x x xx x x=+-,所以332lim 123x x x x x →∞=+-,即1k =. 由③及1k =得:()()32lim lim 223x x x f x kx x x x →∞→∞⎛⎫-=-=- ⎪+-⎝⎭,即2b =-. 从而曲线的渐近线方程为2y x =-.又()3223x f x x x =+-,得()3lim x f x →-=∞,()1lim x f x →=∞.所以垂直渐近线为3x =-和1x =.(如上图所示)秒杀思路分析一般用渐近线分析函数性质,常见的有()b f x ax x =+和()()f x yg x =(其中()f x ,()g x 都是关于x 的非零多项式)两种类型.(1)关于型如()b f x ax x =+的分析:当0a =,0b ≠时,()b f x x=为反比例函数;当0a ≠,0b =时,()f x ax =为正比例函数(一次函数); 当0ab ≠时,0lim x b ax x →⎛⎫+=∞ ⎪⎝⎭,则0x =是其一条垂直渐近线. 又lim x b ax x a x →∞⎛⎫+ ⎪= ⎪ ⎪⎝⎭,lim 0x b ax ax x →∞⎛⎫+-= ⎪⎝⎭,则y ax =是其一条斜渐近线,即()b f x ax x =+的图像是夹在两条渐近线0x =和y ax =之间的双曲线,具体情况如下图所示.(2)对于有理分式函数()()f x yg x =的渐近线有如下一般结论:第一,若0x 是方程()0g x =的实数解,且()00f x ≠,则有理分式函数图像存在垂直渐近线0x x =; 第二,若多项式()f x 和()g x 的次数相等,且它们的最高次项系数分别为a ,b ,则该函数图像存在水平渐近线a y b=;第三,若多项式()f x 的次数小于()g x 的次数,则0y =为该函数图像的水平渐近线;第四,若多项式()f x 的次数比()g x 的次数大1,则该函数图像存在斜渐近线,可用公式④和③求解. 【示例】讨论下列三个函数图像的渐近线.(1)()2221x x f x x x +=-+; (2)()221x g x x x =+-; (3)()3221x x h x x x +=+-. 【解析】(1)函数()f x 的定义域为R ,图像如图(1)所示,存在水平渐近线12y =.(2)函数()g x 的定义域为{}112x x x ≠-≠且,图像如图(2)所示,存在水平渐近线0y =和垂直渐近线1x =-,12x =.(3)函数()h x 的定义域为{}112x x x ≠-≠且,图像如图(3)所示,存在垂直渐近线1x =-,12x =和斜渐近线1124y x =-.方法对比【例1】(2015年安徽卷理9)函数()()2ax b f x x c +=+的图像如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【例2】(2002年全国卷)函数111y x =--的图像是(如图所示)( )A .B .C .D .【例3】(2004年湖北卷文)已知52x ≥,则()24524x x f x x-+=-有( )A .最大值5B .最小值5C .最大值1D .最小值1秒杀训练【试题1】曲线()1ln 1e x y x =++渐近线的条数为( )A .0B .1C .2D .3【解析】()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,则0x =是垂直渐近线;()1lim lim ln 1e 0x x x y x →-∞→-∞⎡⎤=++=⎢⎥⎣⎦,则0y =是曲线的水平渐近线; ()2ln 1e 1lim lim 1x x x y x x x →+∞→+∞⎡⎤+⎢⎥+=⎢⎥⎣⎦=,则y x =是其斜渐近线. 综上,共有3条渐近线,故选D . 【试题2】已知函数()321x y x =-,求函数图像的渐近线. 【解析】()321lim 1x x x →=+∞-,1x =是垂直渐近线. ()22lim lim 11x x y x x x →∞→∞==-,且()()32lim lim 21x x x y x x x →∞→∞⎡⎤-=-=⎢⎥-⎢⎥⎣⎦. 从而2y x =+是图像的斜渐近线.【试题3】如图所示的是一个函数的图像,在下面的四个函数中,其图像是所给图像的是( )A .ln y x x =+B .ln y x x =-C .ln y x x =-+D .ln y x x =--【解析】易知选择B .真题回放【试题1】(2017年全国卷Ⅲ文7)函数2sin 1x y x x=++的部分图像大致为(如图所示)( )A .B .C .D .【解析】31sin limlim 11x x y x x x x →+∞→+∞⎛⎫=++= ⎪⎝⎭.()2sin lim lim 11x x x y x x →+∞→+∞⎛⎫-=+= ⎪⎝⎭. 所以1y x =+是其斜渐近线,排除C ,B .又20sin lim 1x x x x +→⎛⎫++=+∞ ⎪⎝⎭,故选择D . 【试题2】(2010福建卷理10)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =和()y g x =的“分渐近线”.给出定义域均为{}1D x x =>的四组函数如下:①()2f x x =,()g x = ②()102x f x -=+,()23x g x x-=;③()21x f x x +=,()ln 1ln x x g x x +=; ④()221x f x x =+,()()21e x g x x -=--. 其中,曲线()y f x =和()y g x =存在“分渐近线”的是( )A .①④B .②③C .②④D .③④【解析】①两个函数图像都没有渐近线;②当x →+∞时,()f x 从直线2y =上方趋近2,而()g x 从直线2y =下方趋近2,故2y =是两函数图像的“分渐近线”;③()f x 是双曲线型函数,存在渐近线0x =,y x =,而()g x 存在渐近线1x =,y x =.但是,当x →+∞时,()f x x >,()g x x >.即()f x 和()g x 都是从直线y x =上方趋于渐近线y x =,故不满足题意. ④当x →+∞时,()()()221211f x x x x =-+→-+,()()()22121e x g x x x =--→-.并且()()21f x x >-,()()21g x x <-.所以()21y x =-是()f x 和()g x 的斜渐近线且分别从两侧趋于()21y x =-.故选C .。
数学解函数渐近线问题一、问题描述与分析在解决数学问题中,我们经常会遇到函数渐近线的问题。
函数的渐近线是指当自变量趋于无穷大时,函数曲线与该直线无限接近,但并不会与其相交的直线。
在解题过程中,我们需要确定函数的渐近线的类型和方程,以便更好地理解和分析函数的性质。
二、概念和原理1. 水平渐近线:当函数f(x)的极限lim(x→±∞) f(x)存在时,若极限lim(x→±∞) f(x) = a,则直线y=a为函数f(x)的水平渐近线。
2. 垂直渐近线:当函数f(x)的极限lim(x→c) f(x)存在或者lim(x→c^+) f(x) = ±∞(或lim(x→c^-) f(x) = ±∞)时,若x=c为函数f(x)的垂直渐近线。
3. 斜渐近线:当函数f(x)的极限lim(x→±∞) f(x)/x存在时,若极限lim(x→±∞) f(x)/x = k,则直线y=kx为函数f(x)的斜渐近线。
三、问题求解我们以一个具体的函数为例进行讲解。
例题:求函数f(x)=3x^3+2x^2-4x-1的渐近线。
1. 水平渐近线的求解:首先我们需要求出函数f(x)当x趋于无穷大时的极限。
由于函数中最高次项为3x^3,所以当x趋于无穷大时,3x^3的影响会主导。
根据极限的性质,lim(x→±∞) f(x) = lim(x→±∞) (3x^3+2x^2-4x-1) = ±∞。
因此,函数f(x)=3x^3+2x^2-4x-1不存在水平渐近线。
2. 垂直渐近线的求解:接下来我们需要寻找函数f(x)的垂直渐近线。
我们可以通过求函数在某些点的极限来确定是否存在垂直渐近线。
a) 当x趋于正无穷大时,函数f(x)的极限为lim(x→∞) f(x) =lim(x→∞) (3x^3+2x^2-4x-1) = ∞。
因此,x=c为函数f(x)的垂直渐近线,其中c为正无穷大。
利用导数求解函数的渐近线与曲线段问题在微积分中,导数是一种重要的工具,可以帮助我们研究函数的性质与行为。
在本文中,我们将探讨如何利用导数来求解函数的渐近线与曲线段问题。
一、渐近线渐近线是指函数曲线在无限远处逐渐趋近的直线。
具体来说,对于函数f(x),如果当x趋于无穷大或负无穷大时,函数值f(x)与一条直线L的距离趋近于0,那么该直线L就是函数f(x)的水平渐近线。
类似地,如果当x趋于无穷大或负无穷大时,函数值f(x)在某个方向上无限趋近于正无穷大或负无穷大,那么该方向上的直线L就是函数f(x)的斜渐近线。
要求解函数的渐近线,我们可以通过计算函数的导数来进行推导。
具体步骤如下:步骤1:首先计算函数f(x)的导数f'(x)。
步骤2:对于水平渐近线的情况,我们需要将f(x)的导数f'(x)置为0,并求出x的值。
然后将x带入原函数f(x)中,得到相应的y值。
这个点(x,y)即为水平渐近线与曲线的交点。
步骤3:对于斜渐近线的情况,我们需要将f(x)的导数f'(x)在无穷大或负无穷大的极限中求出。
然后根据极限的定义,我们可以得到斜渐近线的方程。
二、曲线段曲线段问题是指给定函数f(x),我们需要找出在某个特定区间上与x轴或y轴相交的曲线段。
通过求解导数,我们可以找到函数的最值点,进而确定曲线段的起点和终点。
具体步骤如下:步骤1:计算函数f(x)的导数f'(x)。
步骤2:求解f'(x)=0的解,得到函数f(x)的极值点。
步骤3:确定曲线段的起点和终点。
根据问题的要求,我们可以分别将特定区间的两端点带入函数f(x)中,得到相应的函数值。
这两个点即为曲线段的起点和终点。
通过以上步骤,我们可以利用导数有效地求解函数的渐近线与曲线段问题。
这为我们研究函数的行为和特性提供了有力工具。